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We discuss gravity as a gauge theory of the Poincare group in three and four dimensions, i.e., in a
metric-independent fashion. The fundamental fields of the theory are the gauge potentials, the matter
fields, and the so-called Poincare coordinates q'(x): a set of fields that are defined on the space-time
manifold, but that transform as Poincare vectors under gauge transformations. The presence of such
coordinates is necessary in order to construct a gauge theory of the Poincare group. We discuss the pro-
cedure needed to connect this theory with the Einsteinian formulation of gravity, and we show that the
field equations for the gauge potentials, for pointlike sources, and for scalar and spinor matter fields

reproduce the Einstein equations, the geodesics equations, and the Klein-Gordon and the Dirac equa-

tions in curved space-time, respectively. In 2+ 1 dimensions and in the presence of pointlike sources this

gauge-theoretical approach can be further developed: the gauge potentials can be written almost every-

where as pure gauge, and a solution of the field equations provides, at the same time, the space-time
metric and the set of coordinates that globally flatten the metric.

PACS number(s): 04.20.Cv, 11.15.—q

I. INTRODUCTION

By means of a first-order formalism, pure gravity in
2+ 1 dimensions can be shown to be a Chem-Simons (CS)
gauge theory of the Poincare group ISO(2, 1) where the
components of the gauge potential along the ISO(2, 1)
generators are the dreibein e'„and the spin connection
co' „[1,2]. How to couple this CS theory to matter in an
ISO(2, 1} gauge-invariant fashion is an interesting and
open problem. In this paper we shall show that such a
coupling can indeed be realized both for pointlike and for
extended (fields) matter sources so that the field equations
of the theory, upon postulating the invertibility of the
dreibein, reproduce the corresponding Einstein's equa-
tions. In constructing such a theory, however, one easily
realizes that the dreibein cannot be identified with a com-
ponent of the gauge potential and consequently the corre-
sponding component of the field strength no longer has
the meaning of torsion in space time. Actually the rela-
tion between Poincare gauge potentials and vielbein can
be established in a framework which does not depend on
the space-time dimensionality and which allows one to
construct a Poincare gauge theory for gravity interacting
with matter in any dimension. For this reason we shall
discuss also the four-dimensional case, but focusing our
interest in particular on (2+ 1)-dimensional gravity where
this gauge-theoretical approach could be particularly
convenient.

One may think that gravity as a gauge theory of the
Poincare group does not really represent a novelty, since
the papers by Utiyama [3], Kibble [4], Sciama [5], as well
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as Chamseddine and West [6], MacDowell and Mansouri
[7], there is by now an extensive literature on this subject.
(For a review, see for instance, Ref. [8].) However, in
these works the translational part of the Poincare symme-
try was parametrized so that it reproduces general coor-
dinate transformations in space time considered actively,
i.e., transforming fields but not the coordinates of the
space time. Here, instead, we shall follow a di6'erent ap-
proach, which is more similar to the one first introduced
by Stelle and West [9] for the SO(3,2} group spontaneous-
ly broken to the Lorentz group, successively reexamined
by Pagels [10] for the O(5) group and also used by Kawai
[11] following the lines of the standard geometrical for-
mulation of gauge theories. In this framework, we shall
consider the Poincare gauge theory as closely as possible
to any ordinary non-Abelian gauge theory, without dis-
carding the translational part of the Poincare symmetry
in favor of general coordinate transformations. This can
only be realized by introducing an extra degree of free-
dom in the theory: the set of Poincare coordinates q'(x)
that transform as Poincare vectors under gauge transfor-
mation. As we shall see, such a Higgs-type field, whose
geometrical meaning has been discussed in Refs. [9,11],
naturally arises in our formalism by gauging the action of
a free relativistic particle in Minkowski space so that it
becomes invariant under local (depending on the space-
time coordinates) Poincare transformations. The q'(x)
will then be interpreted as the coordinates of an internal
(i.e., gauge) Poincare space. Any choice of the Poincare
coordinates q'(x} can be performed just by fixing the
translational part of the Poincare group leaving the
theory invariant under residual (local} Lorentz transfor-
mations. Among these gauge choices, the so-called
"physical*' gauge q'=0 plays a particularly important
role. The name "physical" derives from the fact that
only in this specific gauge choice the components of the
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gauge potential along the Poincare generators become the
physical vielbein and spin connection. Hence, this inter-
pretation of the gauge potential only holds in the physical
gauge choice and in the framework of a Lorentz gauge
theory of gravity; alternatively, one can maintain the
whole gauge invariance under the Poincare group
[without fixing a choice for the internal coordinate q'(x)]
or choose a gauge different from the physical one, but
then the gauge potential can no longer be interpreted as
vielbein and spin connection. We shall see that in some
cases it is even possible to choose a gauge for which the
translational components of the gauge field vanish. Actu-
ally the possibilities opened by this enlarged gauge invari-
ance are not yet fully explored and the study of the quan-
tum level of such a Poincare gauge theory, for example,
in gauge choices different from the "physical" one, would
be extremely interesting.

The organization of the paper is as follows. In Sec. II
we formulate the theory in four dimensions. The gauge
potentials are introduced by gauging the coordinates q'
of a particle in the Minkowski space and the ISO(3, 1)
gauge-invariant actions for point particles, scalar and spi-
nor fields, and for the gauge potentials are then present-
ed. We discuss the procedure needed to connect this
ISO(3, 1) gauge theory with the Einsteinian formulation of
gravity, and we show that the equations of motion ob-
tained from the previous actions, upon supposing the
vierbein invertible, reproduce the geodesic equations, the
Klein-Gordon and the Dirac equations in curved space
time, and the Einstein equations. We also discuss the
geometrical interpretation of the Poincare coordinates.

In Sec. III we specialize to three dimensions, ~here the
formulation of the theory is particularly appealing for the
following reasons.

(a) The Einstein-Hilbert action can be written in this
case as a pure Chem-Simons term of the gauge potential
and does not involve the Poincare coordinates q'(x).

(b) When the matter sources are pointlike, the gauge
potentials are almost everywhere pure gauges
A„=U 'B„U, U E ISO(2, 1), where U is the (mul-

tivalued) gauge group element that maps the Poincare
coordinates q'(x) in the space-time coordinates q'(x)
that globally flatten the metric. Consequently, as far as
pointlike sources are concerned, a solution of the field
equations in terms of U not only provides the space-time
metric but, at the same time, also the set of coordinates
that makes the metric globally Minkowskian.

In Sec. IV we draw our conclusions and discuss further
possible developments.

II. POINCARE GROUP GAUGE INVARIANCE

time of the particle, and the Lagrange multiplier A. has
been introduced to enforce the constraint p =m, m be-
ing the mass of the particle. In Eq. (2.1) the indices a are
raised and lowered with the Minkowskian metric tensor

g,b =diag(+, —,—,—). Since the particle is free, the
canonical variables (q,pb) can be identified with the
space-time canonical variables (x",n„), because in this
case the space time is Minkowskian; if instead we wanted
to include gravitational interactions, the previous
identification would be incorrect and the q and pb vari-
ables should be thought of as functions of the space-time
trajectory of the particle x (r). Obviously, S„„is invari-
ant under global Poincare transformations

qa pa qb+ a

P =A bP
(2.2}

A'
b and p' being a constant Lorentz matrix and a con-

stant translation, respectively. The Poincare group
ISO(3, 1) is the semidirect product of the SO(3, 1) group of
Lorentz transformations with angular-momentum-boost
generators J,b and the group of translations, with genera-
tors P, . The (anti-Hermitian) generators J,b and P,
satisfy the Poincare algebra

[P„Pb ]=0,
[Pa & Jbc ] lacPb QabPc

[~ah~ Jcd ] 9ac~bd 1bc~ad + phd~ac lad Jbc

(2.3)

By parametrizing A'b=exp[ —(a' /2)Jcd]'b, the
infinitesimal form of the transformations (2.2} reads

Sq'=K' bq b+p',
5P =K bP

(2.4)

Now we gauge the transformations (2.2) by requiring that
the action (2.1) becomes invariant under local transfor-
mations depending on the space-time coordinates x". To
this aim, we have to introduce the trajectory of the parti-
cle in the space time x"(r), and consider the Poincare
vector q' as depending on the proper time ~ only through
the space-time trajectory x(r). Clearly, to restore the
ISO(3,1) invariance we have now to replace the derivative
with respect to the proper time q

' with a covariant
derivative 2)~'=2)„q'x ".

We notice that two kinds of covariant derivatives can
be constructed. The first one D„q' is such that it trans-
forms like q itself (i.e., inhomogeneously} and is given by

One of the simplest ways to construct a gauge theory is
to gauge the corresponding action invariant under global
transformations. Let us consider a free relativistic parti-
cle in a four-dimensional Minkowskian manifold JH, q.
The action can be written as

D„q'=B„q'+co' „qb .

The condition

5D q' —K bD„q +D„p'

(2.5)

(2.6)

Sf„,= Jd~[p, q'+l(p m)], ,
— (2.1)

where the momentum p, is the variable canonically con-
jugate to the position variable q', ~ denotes the proper

enforces the transformation law for the gauge potential
co' to be

grab 8 Kab COac K b+ ~cb K~ (2.7)
P P I p c
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However, if we want to restore the invariance in the ac-
tion (2.1) we need a covariant derivative that transforms
homogeneously. Hence we look for a covariant deriva-
tive of the kind

52)pq K y2)pq (2.9)

5e'„= a~—'+e,e'„ (2.10)

together with Eq. (2.7) implies the transformation law

=Dpq +e

and the condition

(2.8)
The finite form of the gauge transformations of the gauge
potentials Eqs. (2.7), (2.10}are

~„'"(x)=A', (x)A'„(x)~'"„(x)+A"(x)a„A',(x), (2.11a)

e„"(x ) = d~'(—x ) A'
&

(—x )A,d (x )co „(x)p'(x ) +A'
& (x )e „(x)+A& '(x )c)„A',(x )pb(x ) . (2.11b)

we are led to define the vierbein V'„as

V'&=2)„q'=d„q'+co' „qb+e'z (2.14}

and V'„has the meaning of the soldering form between
the space time and the Poincare space A . The validity
of Eq. (2.14) can be further supported by a very simple ar-
gument. For any fixed space-time point x" we can
choose a frame in which the space time is locally Min-
kowskian; in such a point we can choose u' „=e'„=0
and the vierbein becomes V'„=B„q', i.e., the q' can be
interpreted as the local orthonormal coordinates at a
fixed point. Then, by general covariance, the form of the
vierbein at any other point can be obtained by the covari-
ant replacement c)„q'~2)„q', which is precisely Eq.
(2.14).

By introducing the Lie-algebra-valued gauge potential

A „=I',e'„——,J,be (2.15)

Eqs. (2.7) and (2.10) become the usual gauge transforma-
tions of non-Abelian gauge theories: namely,

By construction, the ISO(3, 1) gauge-invariant action for a
particle reads

S~=fdr[p, 2)„q'x "+A,(p —m )], (2.12)

where x "(r) is the vector tangent to the particle trajecto-
ry in space time and q'(x (r) ) describes an image trajecto-
ry in the (internal) Poincare space. By comparing Eq.
(2.12} with the usual action for a particle in the space
time written in the first-order formalism (n.„is the canon-
ically conjugate variable to x")

S=f 1~[m.„x"+A,(Wn„—m )]

=fdt[p, V'„x "+A,(p —m )] (2.13)

where T'„,=B„e', d e—'„+co' „eb, cv'—„e&„and
gab g ab g „ab +ac b ac b

PV P V V P p c v v c p~

forms covariantly under gauge transformations. The
Einstein-Hilbert action fd x &—g R where R is the sca-

lar curvature, can be rewritten, within our formalism, as
the Poincare gauge-invariant action

S 1 d4x &PvPae g) qag)+bR cd
EH 4 abed p PcT (2.18}

SFH =
4 f d x e ~ e g ge pe (2.19)

It should be noticed that SEH does not depend only on
the gauge potential, but also involves the Poincare coor-
dinates q'(x), and their presence is necessary in order to
preserve Poincare gauge invariance, as was first discussed
by Stelle and West [9], in the framework of an SO(3,2)
gauge theory spontaneously broken to SO(3,1).

A choice of the map q'(x) corresponds to a gauge
choice that leaves invariant the whole Lorentz group as a
residual gauge freedom. This can be realized by noticing
that a choice of q'(x) entails a choice of p'(x) in the
gauge transformations (2.2). Now we are ready to clarify
an important point that has caused some confusion in the
recent literature. It has been said that the gauge poten-
tials of the Poincare gauge theory are the vierbein and the
spin connection. Strictly speaking this statement is in-
correct because in general the vierbein has the more com-
plicated structure given in Eq. (2.14}, the translational
component of the gauge potential being e'„and not the
whole vierbein If we sh.ould replace X)„q' with e'„ in

Eq. (2.18) the Einstein-Hilbert action would not be gauge
invariant. There is a gauge choice in which e „actually
becomes the vierbein. It is the so-called "physical gauge"
q'=0. Once the physical gauge is chosen, from Eq.
(2.14) it follows that V'„—=e'„and the Einstein-Hilbert
action takes the more familiar form

5A„=—c)„u —[ A„,u ]= —b„u

The Lie-algebra-valued field strength, defined by

F„=[5„,h„]=P,T'„„,'J,bR' „„, ——

(2.16)

(2.17)

Having chosen a gauge, however, the theory is no more
Poincare but rather Lorentz gauge invariant, as the
Lorentz group is the Poincare subgroup which is left in-
variant by the gauge condition q'=0. But, since q' are
gauge degrees of freedom, any other choice is allowed to
describe the dynamics of the fields. For example, a par-
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ticularly convenient gauge choice that has been used in
the (2+1)-dimensional case is q'=5'„x", and the vier
bein becomes V „=5 „+e „+~ „qb which, again, is
not a gauge potential.

For the very same reason, if one does not choose the
physical gauge, the component T'„of the field strength
cannot be interpreted as a space-time torsion Y'„„: in
order to establish full contact with the corresponding
space-time objects, it is necessary to express '7 „, in
terms of T „by a redefinition, involving the Poincare
coordinates, which is analogous to the one used to obtain
the vierbein As .a matter of fact, using Eq. (2.14), one can
get

(2.20)

and, as expected, only in the physical gauge T'„„coin-
cides with the space-time torsion. Since we are interested
in a formulation of gravity as a gauge theory of the Poin-
care group, we shall not fix any gauge choice for the
Poincare variables q'.

As the Einstein-Hilbert action, Eq. (2.18), is invariant
under ISO(3, 1) gauge transformations, it must be possible
to write it in an ISO(3,1) manifest scalar form To. this
aim, we have to introduce a Lie-algebra-valued tensor
Q„„which contains the Poincare coordinate q and that
transforms covariantly under gauge transformations. A
natural choice is

(E ccdqb2)~ R —
Eb dq Q„q R

abcdqcX~ a+eabcd2)A'T pa)

=2vrG fdr(p, qb q,—pb)x ~5' '(x —x(r)) . (2.25c)

With the previous identifications for the vierbein and for
the space-time torsion and postulating the invertibility of
the Uierbein, Eqs. (2.25b), (2.25c) reproduce the correct
Einstein's equations

(2.26b)

whereas Eq. (2.25a) becomes, taking into account Eqs.
{2.25b), (2.25c),

x "(r}(Bg,+co, ~„)=0 . (2.27)

As expected, as far as the angular momentum of the par-
ticle is purely orbital (Mab =q pba—qbpa), the space-time
torsion '7'„„v anis hes. On the contrary, a spin contribu-
tion S,b in the angular momentum would entail a spin-
interaction term in the action of the type

,' fdr@)'—„S,bx "(r), (2.28)

and Eq. (2.26a) would become

Q„„=D„2)~'P, ,'2)„q'l)~—J—ab, (2.21) e""~ e,b,d V' 'T =2mG f drx "Sa„5' '(x —x(r)),

b ) ( a& bc ) 0 ( ab~ cd ~ eabcd (2.22)

the action (2.18) can be written in a manifest ISO(3, 1) sca-
lar form

where D„and 2)„have been defined in Eqs. (2.5) and
(2.8). Introducing the degenerate, invariant, and associa-
tive inner product

(2.29)

leading to a nonvanishing space-time torsion.
The equations of motion for the particle are obtained

by varying the action with respect to q, (x(r)), p, (x(r)),
x(r), and A, . The variation with respect to q, (x(r))
reproduces Eq. (2.27) whereas the variation with respect
top, {x(r)}gives

S~H X W ~sF ~ e (2.23) 2Ap'+x "(B„q'+e'„+co' „qb ) =0 . (2.30)

The next step is to derive the equation of motion, and to
verify their equivalence to those obtained in the Einsteini-
an formulation of the theory. Let us consider the gauge-
invariant action

V'P ~+x "x ~(B„V' +co' b„V )=0, (2.31)

Substituting Eq. (2.30) in Eq. (2.27) and taking into ac-
count Eq. (2.14) we get

S=fdr[p, 2)„q'x"+A,(p m)]—
1

d x e""~ e,b,dS„q'2)~ R' (2.24)
p'x "(T'„+R' „~b)=p,x 7'„„=0. (2.32)

namely, the geodesics equation. Finally 5S/5A, =O obvi-
ously enforces the constraint p =m whereas
5S/5x"(r)=0 gives an equation which is identically
satisfied, that is

where G is Newton's constant. The equations of motion
for the fields obtained by varying S with respect to q'(x),
e'„(x), and co' „(x)are, respectively,

=4nG fdr(B~, +a), ~b)x "5 '(x —x(r)), (2.25a)

6'"~ e,b,dg)~ R' =2nG fdrp, x "5' '(x —x(r)),
(2.25b)

Hence, all the variations of the action reproduce the cor-
responding equations in the Einsteinian approach; more-
over, the extra degrees of freedom that we introduced in
order to construct a gauge theory of the Poincare group
turn out to be harmless. The corresponding (extra) equa-
tions either collapse with other equations [see Eq. (2.27)]
or provide identically satisfied conditions [see Eq. (2.32)].

Next we consider the coupling with matter fields (spi-
nors and scalars}. It is important to stress that in our ap-
proach the space-time coordinates do not change under a
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:—sc' y +p'm y,
5q =0,

where

(Jcd) b lcbsd ldb~c ~ (Jcd) c (Jcd) 4

(Pb )'4=5'b, (Pb )', =(Pb ),=0 .

(2.33a)

(2.33b}

(2.34)

Accordingly we can construct the covariant derivatives

n„q'=a„q'+~'b„q b+m'e'„q, (2.35a)

(2.35b)

that under the gauge-group transform as the fields y' and

y, respectively. An ISO(3,1) gauge-invariant action is
then

Sg= 3
d X 6 E~b~d

c3xÃq' +&Ã (V' 0' 2q q' q™
+q, q'p m )] .

(2.36)

Sz in the physical gauge and in the flat-space-time limit
becomes

Poincare transformation and consequently the matter
fields transform only because of their internal structure
and not because of their x dependence. The fact that the
x" do not transform is compensated by the presence of
the Poincare coordinates q'(x) so that we will obtain
gauge-invariant actions that not only reproduce the
correct gravitational equations of motion, but are also in-

variant under diffeomorphisms. We intend to provide ac-
tions that are ISO(3, 1) gauge invariant and independent
of the metric tensor g„.We naturally require that the
matter fields carry a representation of the whole Poincare
group. Let us first consider a scalar field. In order to for-
mulate a metric-independent theory we have to work in a
first-order formalism. To this purpose we introduce a
field y", A =0, . . . , 4 carrying a vectorial representation
of the Poincare group; in components y reads
y"=(p', m p), where qr' is a Lorentz vector, y

—=y a
scalar field and m a mass parameter. The transformation
law for such a field, along the Lorentz and the transla-
tional (fourth) component can be written, in terms of the
vectorial (5 X 5) representation of the Poincare group gen-
erators, as

5qr'= ,'(J,d)'b—z—'"y +(Pb)'4p m p

2—f d x(pre, y' B—,yqP+4m qP+4y, rp'),

X V(y, y' 2q, y'pm —+q, q'prism ), (2.39)

where V(y, y' 2q, y'q&m —+q, q'qPm } is a second-order
polynomial of the argument. To include fermions we
have to introduce 4X4 Dirac matrices y' normalized by
[y', y ] =2g' (we use the conventions of Ref. [12]). Spi-
nors belong to the fundamental representation of ISO(3, 1)
transforming as

5/=up=( ,' J,bx'b+—P,—p')g

l abo "a.by
—im—y.p'.(1+—sy, )y, (2.40)

where cr'"=i [y', y ]/2 are the ten matrices representing
the generators of a Lorentz transformation on a spinor,
P, =im y, (1+sy5) is the generator of the translations on
a spinor, m is a mass parameter, and s is a real number
such that s =1. From Eq. (2.40) the covariant derivative
that transforms as the field itself is

2)„g=d„f co' „cr,bp—+im—ye'„( I +sy)sg . (2.41)P P 4
The gauge-invariant action for a massive Dirac spinor is

(2.37)
that, after eliminating the field y„reproduces the flat-
space-time action for a scalar field of mass 4m. The vari-
ation of Eq. (2.36) with respect to tp' [supposing
det(2)&q')%0] gives a relation between y and gP:

2)„q'p, =
—,'B„q) . (2.38)

By means of Eq. (2.38} the variation with respect to y
provides the Klein-Gordon equation in curved space time
for a scalar particle with mass 4m.

It has to be stressed that the requirement of gauge in-
variance of the theory under the whole Poincare group
and the consequent requirement that the fields carry a
representation of such a group, entail the presence of a
mass term in the action. Had we considered massless
fields, the field y" would have been a Lorentz-vector field
and would have transformed only through x' b.

As one should expect, the variation of S& with respect
to the gauge fields reproduces the correct energy-
momentum tensor for a massive scalar field in the Ein-
stein equations and in particular does lead to a vanishing
torsion.

The potential term for scalar fields can also be con-
structed and reads

SS = f d X e~ ~ ecbcdS~q 2)„q Spq 2)gq

Sz= —,', f d x e" ~ e,b,d2)„q'2&~ 2) q'(QIy imq'[y y, (1+—sy5)

—y, y (1—sy5)]+4m (q y, q' ——,'~q~ y )(1+sy,)]2)zf H c )— . .(2.42)

where H.c. denotes the Hermitian conjugate and
~q~ =q'q, . Again, in the physical gauge and assumed
the invertibility of the vierbein V'„=2)„q', this action
reproduces the correct Dirac equation in curved space
time for a spinor of mass 4m, and provides a nonvanish-

I

ing torsion term in the gauge-field equations.
For the spinors, as well as for the scalars, the mass

term is related to the translational part of the gauge
group so that a massless fermion would carry a represen-
tation only of the Lorentz group.
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We conclude that all the renormalizable field theories
can be included into this metric-independent, Poincare
gauge-invariant formalism.

Some remarks concerning the geometrical interpreta-
tion of the Poincare coordinates are now in order. A
purely geometrical description of the problem goes
beyond the aim of the present paper, and for a deeper
analysis of this subject we shall refer to the works by
Stelle and West [9] and by Kawai [11]. We shall limit
ourselves to some comments which can be useful for a
better understanding of the meaning of the fields intro-
duced so far.

The fields q'(x) were obtained by gauging the action of
a free particle defined in the (internal} Minkowski space.
However, the presence of such degrees of freedom is fun-
damental, in order to construct an ISO(3, 1) gauge theory,
not only for describing gravitational point-particle in-
teractions, but also matter-field interactions and even
pure gravity with no matter degrees of freedom. Conse-
quently, it turns out that the Poincare coordinates q'(x)
must have a more fundamental and intrinsic role in a for-
mulation of gravity as a Poincare gauge theory.

Following the usual geometrical interpretation of
gauge theories, the gauge potentials e'„and co' „are the
connections defined on the principal ISO(3, 1) bundle.
From the principal bundle, a fiber bundle admitting a glo-
bal cross section X can be constructed, whose fibers are
the coset spaces I ISO(3,1)/SO(3, 1)). Moreover, the
tangent spaces to the fibers [ISO(3,1)/SO(3, 1)I at the
points selected by the cross section can be smoothly
mapped onto the tangent space at the corresponding
space-time point; i.e., there must exist a form soldering
the two tangent spaces. Such soldering form is just the
uierbein V'„=2)„q', the coset spaces [ISO(3,1)/SO(3, 1) I

are the Poincare spaces JM,~, and a point on the cross sec-
tion X is represented by the Poincare coordinates q'(x).
For a fixed space-time point P&

—=x~&, one can always
choose a cross section X, which coincides with the
tangent space at P& and the vierbein at that point is sim-

ply given by B„q', (x, ). Had we chosen a different cross
section Xz, the coordinates q2(x, ) on Xz would not
represent the locally orthonormal coordinates anymore.
However, qi(x, ) and q2(x, ) are related by a Poincare
transformation q;(xi)=A'b(x, )q2(x, )+p'(x, ) so that,
for any cross section other than X,, the vierbein has the
more general structure exhibited in Eq. (2.14). Once a
cross section has been picked, the residual structure
group is SO(3,1) and two uierbein which differ by a
Lorentz transformation must be identified. Now we are
able to explain what the field strength E„represents:
given an infinitesimal closed curve x(~) in the space time,
rE[ro, ~, ] and x(~o)=x(r, ), the Poincare torsion T'
gives the gap by which the image curve q'(x(r)) =q'(r)
in the internal space fails to close and the Poincare curva-
ture R „(which coincides with the space-time curva-
ture) gives the relative rotation of the image vector
q'(x(r, )) developed around such an infinitesimal curve
with respect to the original vector q'(x(~o)). In fact, by
parallel transporting q '(x ) when x ( r ) describes an
infinitesimal closed curve one can check that the quantity

q'(x(ri)) —q'(x(~0) } has precisely the form of an
infinitesimal gauge transformation, with translation p'
proportional to T'„and rotation ~' proportional to
Z'b„, namely,

5q'=q'(r, ) q—'(ro)=lr' qb(ro}+p'

=e"'[R' „„(~0)qb(ro)+T'„( ro)],

where the antisymmetric matrix e" is given by

1 '& dx" „1e""=— dr x "(r)=— dx "x' .
2 Q d7 2

(2.43)

(2.44)

Incidentally, the square brackets on the right-hand side
of Eq. (2.43) give precisely the space-time torsion 7'„„
evaluated at the point x(~0) [see Eq. (2.20)] so that, for
any physical system without spin, 5q'=0 on shell: for
any closed curve in the space time, the image curve is
closed and the vector q'(ri) returns to its original posi-
tion q'(ro) and with the same orientation.

III. (2+1)-DIMENSIONAL CASE

A. General framework

SEH ,' f d x e"—"~—e,b,2)„q'R '„ (3.1)

However, in 2+1 dimensions the action (3.1) can be writ-
ten only in terms of gauge potentials e'„and co'"„, yet
remaining Poincare gauge invariant. In fact, all the
terms containing q in Eq. (3.1) give, taking into account
the Bianchi identity, only a surface term and SEH be-

comes

SEH = ,' f d x e"—"I'e,b, e'„R ' (3.2)

In order to write SEH as a Chem-Simons action, it is con-
venient to redefine the SO(2, 1) generators and gauge po-
tential

From the gauge-theoretical point of view, gravity in
2+1 dimensions [13] is even more interesting than the
(3+1)-dimensional case. This is due to the fact that in
2+ 1 dimensions the Einstein-Hilbert actions can be writ-
ten as a Chem-Simons term of the ISO(2, 1) gauge group.
After the original works by Achucarro and Townsend [1]
and Witten [2], there have been several attempts to cou-
ple this gauge theory to pointlike sources, both for the
study of classical [14,15] and quantum graviational effects
[16—22]. In this section after a brief review of Witten s
approach, we introduce the actions coupling this theory
to matter fields and to pointlike sources. In the latter
case, being the gauge potentials almost everywhere pure
gauges, an ISO(2, 1) gauge-group element not only
specifies the gauge potentials but also provides the gauge
transformation that, starting from the Poincare coordi-
nates q', gives the space-time coordinates q

' that global-

ly Batten the metric.
Following the general method developed in the previ-

ous section, it is immediate to write an ISO(2, 1) gauge-
invariant form for the Einstein-Hilbert action:
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bcJa 2 ~a Jbc

a ] a bc
CO p

— TE' bc CO

(3.3a)

(3.3b)

Sq =e'b, ~bq'+p',

5P —6 bc+ P
(3.10)

in such a way that the Poincare algebra takes the simpler
form

[J„Jb]=ebb,J', [J„Pb]=e,b, P', [P„Pb]=0 .

(3.4)

The Lie-algebra-valued gauge potential can then be
written as

A„=P,e'&+J,co'„, (3.5)

and the ISO(2, 1) gauge transformations that leave the ac-
tion (3.2) invariant take the form

5A = —6u= —Bu —[A u]IJ P IJ pP

u =P,p'+ J,~' .
(3.6)

Finally, introducing the invariant, nondegenerate, associ-
ative inner product

(P„P ) = (J„J ) =0, (P„J ) =ri,

SEH can be written as a pure Chem-Simons term

S,„= , f—d—'xe~"~(A„,a„A,+ ,'[A„-, A, ]& .

(3.7)

(3.g)

It is worth stressing that in SEH the q'(x) fields do not
appear; consequently, as far as the vacuum solutions are
concerned, e'„can indeed be interpreted as the space-
time dreibein and yet the theory is fully Poincare (and not
only Lorentz) gauge invariant, in contrast with what hap-
pens in 3+1 dimensions. In this particular case, the
Poincare and space-time torsions coincide and the equa-
tions of motion obtained from SEH reproduce, upon pos-
tulating the invertibility of the dreibein, Einstein s equa-
tions of vanishing curvature.

It has to be noticed, however, that this is a peculiarity
of the vacuum solutions. In fact, if we try to couple this
gauge theory with matter sources, then e'„can no longer
be interpreted as a dreibein. As an example we can con-
sider the ISO(2, 1) gauge-invariant action for a relativistic
spinless particle with mass m:

where the gauge transformations for the variables q' and
p' are now parametrized as

Sr =fd~[p, (B„q'+e'„+e'b,b)"„q'}x"(r)+A(p m)]-
=f d r[p,2)„q'x "+A,(p m) ], — (3.9)

The only case in which e „can be identified with the
space-time dreibein is when the physical gauge q'=0 is
picked; however, in this case one is not dealing with a
Poincare gauge theory but rather with a Lorentz gauge
theory, as the action (3.9) with q'=0 is invariant only un-
der Lorentz transformation. This point, if not carefully
taken into account, can give rise to meaningless results
as, for instance, a nonvanishing torsion associated with
spinless particle couplings. To overcome the problem we
notice that, again, the space-time torsion T'„„is different
from the Poincare torsion T „,(i.e., the coefficient of the
field strength F„along the P, generators). In fact, from
Eq. (3.11) one can easily obtain the (2+1)-dimensional
analogue of Eq. (2.20):

(3.12)

R'„„=—
—,'e'b, R '„„being the component of the field

strength along the J' generators.
The coupling with matter (spinor and scalar} fields can

be performed along the same lines of the (3+1)-
dimensional case. The gauge invariant action that repro-
duces the correct field equations for a scalar field y in
curved space time can be obtained, as above, by introduc-
ing a Poincare vector field p"={p', tm q&)A =0, . . . , 3,
transforming under the Poincare group as

5q =(Jb)',Kbq'+(Pb)'~bmzq

bcK iP +P N1

5q)—:5qr =0,
(3.13a)

(3.13b)

where we have used the (4X4) representation of the Poin-
care group generators:

(J )'b= —e 'b, (J )' =(J )'i=0,
b) 3 5 b & { b c { b} g

(3.14a)

(3.14b)

From Eqs. (3.13)—(3.14) one can define covariant deriva-
tives transforming as the fields g' and y,

2)„y'=B„qF+e'b,co „p'+m e'&y, {3.15a}

(3.15b)

and, in terms of these, the action reads

As in the (3+1}-dimensional case, a comparison between
Eq. (3.9) and the corresponding action in the Einsteinian
formulation gives the expression for the dreibein:

(3.11)

—,fd xe" e b,&„q &A [f&bf' diPP +&Ã (f'ef' 2qdq'q™ ~«q q™ (3.16}

The coefficient in Eq. (3.14) has been chosen in order to reproduce, once the physical gauge is selected and the vector
field yd is eliminated through its equations of motion, the action for a scalar field in curved space time.

Like in the (3+ 1)-dimensional case, a consequence of the fact that the field qr" carries a vectorial representation of
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the Poincare group is the presence of a mass term for the scalar field y, the mass being related to the translational part
of the Poincare group.

The (2+1)-dimensional action that describes fermions interacting with Poincare gauge fields cannot be straightfor-
wardly obtained from the analogous (3+ 1)-dimensional action [Eq. (2.42)], because of the absence in 2+ 1 dimension of
an operator playing the role of y in 3+ 1 dimensions. Moreover, the Dirac matrices in 2+ 1 dimensions being two-
dimensional [we will choose the y'= (o—,icr, i o—'') representation, (T' = Pauli matrices], a spinorial representation of
the ISO(2, 1) algebra, Eq. (3.4), cannot be achieved only in terms of 2X2 matrices y'. To represent the operator J, and

P, we shall choose in fact the 4 X4 representation

1J =—
0

0
P =—im

3 jQ

0
=——imI I, ,

(3.17)

where we have defined I', the step operator I =(i '0), and the coefficient in P, has been introduced for later conveni-
ence. In order to maintain a covariant notation we then have to work with four-dimensional spinors, )I'=(&~}, where f
is two-dimensional. The action of the Poincare group on %' is given by

5%= u 4i = (J,«'+ P,p') 4; (3.18)

i.e., )p transforms in the fundamental representation of ISO(2, 1). As usual, the covariant derivative 2) )p, transformingp
as M)„)P=u2)„%, is defined by

(3.19)23„)I)=((}„+A„))Ii=(}„)Ii+co'„J,%+e'„P,% .

Introducing 4=4 I, the gauge-invariant action that reproduces the Dirac action for a spinor of mass m in the gravi-
tational field reads

im 2

S =f d x e""i'e,b, V'„V"„)T( + ™(I gI' I 'gI )+— I I (2'' ~q~ I") 2) O' —H. c.
8

(3.20)

with the obvious definition for I+ and g =q I', . Again, the fact that the spinor )p carries also a representation of the
translational part of the Poincare group necessarily yields to a mass term in the action (3.20). In two-dimensional nota-
tion Eq. (3.20) becomes

S+———d x e&"&e
b V @V py'D&g+ e

&
5 f+ —me fqd t/if+ —e dfpy (e "~p 2q D—~p)

3 ~ 3 3

+ mg(5'd5 f—r)+rP'+5'&5—gd)q (2qfygD g yge zP) —H.c— (3.21)

where Dztg=d g+(i/2)y, co f. The gauge-invariant actions, Eqs. (2.39), (2.42), (3.16), and (3.20), for the interaction
of matter fields with Poincare gravity deserve further investigations either in the direction of the research of new classi-
cal or semiclassical solutions (in particular the existence of the soliton solutions presumably can be more easily
discovered in this gauge-invariant framework because of the resemblance it bears with a usual non-Abelian gauge
theory) or for quantization purposes. In particular the enlarged gauge freedom introduced by the presence of the q'
variables opens unexplored possibilities. Suppose for example that the coordinate q'(x} are chosen so that
q'(x) =5'„x",then the theory would be defined on the fiat manifold Jkt» even if the space-time manifold is nowhere fiat

in the presence of matter field. The connection between the manifold 8, and the space-time manifold would be real-

ized by the soldering from V„'=2)„q' that in this gauge choice would become simply V'&= '5+be'&+co" bq„since
there would not be any more distinction among greek and latin indices. The definition of the theory on the manifold
IAf

q
instead of on the space-time manifold would then give us an intriguing "flat theory of gravity. '* But let us turn to a

more prosaic interaction with point particles.

B. Interaction with pointlike sources

The action we shall consider for X relativistic spinless particles interacting with Poincare gauge fields is

S—Sp+SEH
X

b p Z

4mGdr[ad, p(' )X)„q, )x ((')(r)+)(( )(p( )
—M( ) )]— d x e" i'e, „(d,co' (3 co'„+e'„,co „co—' ), (3.22}

where 6 is the Newton's constant, M( ) is the mass of the ath particle, x
( )(r) is the vector tangent to the ath trajecto-
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ry in space-time and q(' ) (x(r) ) is the image trajectory in JR . By varying S with respect to e'„and co'„we get the field

equations1, 1

4~G 4mG

N , dx~. . „,= g f«p( )x~()5"'(x —x( )(r))= gp( )(x ) o
5"'(x—x( )(xo}),

1 a=1 dx

1 pp, 1

4~G ~ 4~G

(3.23a}

= g f drj (' )x~~ )5(3)(x —x(~))= g j( )(x ) 5' '(x —x( )(x )),
a=1 a=1 X

(3.23b)

where j ( )
=e'b, q(" )P( )

is the orbital angular momentum of the ath particle in A~ and, after the integration over r is

performed, the trajectory three-vectors are xI' ) =(x,x( )(x )). A variation of S with respect to q( )
and p(' ) gives the

equations of motion for the cath particle:

++(a)X (a)+ ~(a)p(a)

pP (a) (a) ( pP(a) +e bc& )1 (a) )x (a) 0 '
(3.24)

The equations obtained by varying S with respect to xI' )(r) provide relations which are identically satisfied whereas

Eqs. (3.23) and (3.24) give, with the proper identifications for the space-time dreibein and torsion, the correct Einstein s
equations and the geodesic equations, respectively. In fact, by means of Eqs. (2.11}and (3.23a) one can show that Eq.
(3.23b) becomes

'7'„„=a„V'. —a„V'„+—e'„(~'„V'.+~'„V'„)=0 . (3.25)

Spin interactions can be included in the system by adding to the action (3.22) a gauge-invariant spin term of the form
described in Ref. [18], and the field equations of motion have the same form of Eqs. (3.23) where now

j ( ) =e'&q( )P(' )+s(' ),s('a) being the sPin of the ath Particle. The equations of motion for the Particles Eqs. (3.24), in-

stead, become more complicated if the spin is considered; however, since in 2+1 dimensions the spin of a particle is

proportional to its momentum, the equation for the spin precession and the Mathisson-Papapetru equation for the
motion of a spinning particle would collapse into a single equation.

Let us now discuss the structure of the solutions of Eqs. (3.23) and (3.25). By means of Eq. (3.23a) one can show that
a solution of Eq. (3.25) is given by

N N

V =()& X g X( )f( )(X&X())(X ) ' ' '
X()V)(X )) 5 +e bett) &

X g X( )f( )(X&X())(X ) ' ' '
X()V)(X }) 5

a=1 a=1

(3.26)

where f( )(x;x(,)(x ) x()v)(x )) is an arbitrary function with the property

f( )(x(p)(x )'x() )(x ) ' ' ' x()v)(x ) )=5
p (3.27)

Moreover, the f( ) must vanish when GM( ) ~0, in order to recover the correct fiat-space-time limit in Eq. (3.26), the

f( )
are nonsingular at finite distance from the origin of the coordinates, they decrease rapidly at large distances, they

are single valued at the origin, in summary they have to be well-defined test functions for the 5 distributions in Eq.
(3.23a). Of course functions with these properties can be constructed explicitly, for example,

f( ) =exp
~

x —x(.)(x')~'"g
G M( ) p~ ix x(p)(x )i

(3.28)

A solution of Eq. (3.23a} is known in the case of static particles [14]when

p(' ) =(M( ),0,0),
and reads

(3.29)

cc) p=co ()=0 co =G();% (x x(i) . . . x()v))

where

(3.30)
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N

4 ( xj x( i )q ~ ~ ~
& x( ~) ) g p ( )

al ctan0

a=1

X X(~)
2 2

X X( )

1 1
(3.31)

In the case of one particle at the origin the metric defined by Eq. (3.26) has the usual form of the one-particle solution
discussed for example in Ref. [13]. In the case N ) 1 Eq. (3.26) describes a nice N-particle generalization of the one-
particle dreibein Although Eq. (3.26) in the static case has a very difFerent form if compared to the N-particle solution
found in Ref. [23], it corresponds to the same metric. In fact the scalar curvature is the same and has the same point-
like singularities.

Now we want to discuss an important feature which is specific of (2+1)-dimensional gravity coupled to pointlike
sources, and shows the e%ciency of this gauge-theoretical approach in solving Einstein s equations. In the presence of
point particles the space time is flat outside the sources and it is always possible to find a set of coordinates xg which
are globally Minkowskian.

Moreover, for the very same reason, the gauge potential A„ is almost everywhere a pure gauge, i.e.,

A„=U 'B„U, (3.32}

the gauge-group element UCISO(2, 1) being, in general, singular and multivalued at the source location. It is con-
venient to work in the 4 X 4 representation of the Poincare group, so that U can be written as

A'
b P'

(3.33)

where A' „ is a 3 X 3 Lorentz matrix and p' is a translation. Then, from Eqs. (3.32) and (3.33) it follows that

=U '8 U=
P IJ

(A-')', a„A'b (A-')' a

0 0

=A '8 I' ——'e' A 8 A'J
b pP a 2 bc d p a

Consequently, taking Eq. (3.5) into account, the general form of the gauge potentials reads

(3.34)

1 ~Q p b() +cd
p 2 bc d p (3.35a)

e'„=Ab 'a~b . (3.35b)

From Eqs. (3.35}the space-time dreibein (3.11) can be written in terms of A and p as

V' =Ab 'B„(A,q'+p") =Ab 'B„g ",
where we have introduced the coordinates

Q
'= A' „q"+p' .

In terms of the q
' the space-time line element becomes

ds =ri, V'„V gx"dx'=ri, B„q'Bg dx "dx'=ri, df'dg

(3.36)

(3.37)

(3.38)

Therefore the gauge transformation that parametrizes the gauge potentials as pure gauges (A, p) is precisely the one
that, from the Poincare coordinates q', gives the space time coordi-nates q

' that globally flatten the metric, i.e., q '=xt'r,
as Eq. (3.38) exhibits. For this reason, to solve the field equations in terms of (A, p) instead of (e, co) turns out to be
much more convenient, as the solution automatically leads not only to the space-time metric, but also to the globally
Minkowskian space-time coordinates.

In order to write Eqs. (3.23) in terms of (A, p), we first parametrize the Lorentz matrix A as A=exp(~'J, ); since the
3 X 3 representation of the Lorentz generators is (J, ),= —e, „we have a Lorentz matrix in terms of K'.

Q a
sin K K Kb K KbA' =(e ')' = — e' ~' —cosl~l —5 + (3.39)

where lvl =V'(v ) —(a') —(v ) . Substituting Eq. (3.39) in Eqs. (3.35) we can write the gauge potentials in terms of a

and p',
abc

~b sinl~lco' = — (1—cosl~l) +
K2 K K2

K K

l2
(3.40a)
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e a
P

sinl&l KbK
ei, K +coslKl 5i,

KbK
(3.40b)

so that the field equations (3.22) can be finally rewritten as

abc

(1—cosl~l ) + sinlal it'a'
K2 K K2

e~'a.a,~, = —2~G y p...(x'), 5"'(x—x...(x')),
K a=1 X

(3.41a)

sinlitl &i„ KK gbe"'ic, +cosl a.
l

—ri'
z

e""~B,Bg i= 2nG—Q j~ i(x ) 5' '(x —
x~ i(x )} .

K a=1 dx
(3.41b)

Equations (3.41) clearly show that a' and p' have to be, in
general, singular and multivalued, otherwise, the left-
hand sides would vanish by symmetry and would never
reproduce the 5 distributions in the right-hand sides.

A general feature of gauge theories is that an appropri-
ate gauge choice is able to simplify dramatically the solu-
tions of the field equations. In the physical gauge q'=0,
e'„can be interpreted as dreibein and Eqs. (3.23) essen-
tially collapse to the Einstein s equations in the first-order
formalism. However, even if this gauge choice can be
useful to establish full contact with the corresponding
Einsteinian theory, q'=0 is not always the most suitable
choice to solve the field equations. For example suppose
that the physical system we are considering is such that
each particle has a vanishing angular momentum. Then
the most convenient gauge choice will be q'=5'„x", so
that the right-hand side of Eq. (3.23b) vanishes and we
can consistently choose the trivial solution p'=0 for this
equation. Hence, half of the field equations are immedi-
ately solved. Notice that from Eq. (3.40b) p'=0 implies
e'„=0 and, whereas the vanishing solution is acceptable
in our approach, it would have been meaningless if the
e'& were interpreted as space-time dreibein

Once a solution of Eq. (3.41a) has been obtained, the
solution for the dreibein of the corresponding metric is
given by Eq. (3.26). It has to be stressed, however, that to
find a consistent solution of Eq. (3.41a) is a formidable
task, not because of the difBculties in solving the equation
itself but because one has to find solutions for K' that give
a single-valued spin connection in order to have a single-
valued and smooth metric. Related problems were ad-
dressed in Ref. [15], where singular solutions of Eqs.
(3.23}for N particles were provided.

It is worth pointing out that different solutions of Eqs.
(3.41}correspond to different gauge choices for the gauge
potentials in Eqs. (3.23), and that solutions in different
gauges lead to the same space-time metric tensor, but in a

different coordinate frame. In this regard, a simple exam-
ple can be instructive. Let us consider a particle of mass
M moving with constant velocity v along the positive
direction of the x' axis. If we choose the q'=5' x"
gauge, we have to reproduce the space-time matter distri-
bution and motion laws in JK~, namely,

q'(r)=(y~, yvr, O), p'(r)=(My, Myv, O) (3.42)

K'= Gp'arctan —= Gp'qI(P) (3.43)

where p is any arbitrary positive constant, whose pres-
ence is related to the fact that the radial gauge condition
does not fix completely the Lorentz gauge invariance.

The spin connection corresponding to Eq. (3.43) is
given by

co'„=Gp'B„V(P), (3.44)

leading to the space-time metric [see Eq. (3.11)]

ds = [g„„—G M [(x —vt) y +(x')']a„q'(p)a, ep)
2e„xt'5,—p'8„+(P)]dx "dx' . (3.45)

This metric has to be equivalent to the one obtained by
boosting in the x direction the metric for a static parti-
cle at the origin, namely

where y=(l —u ) ' . Since j'(r)=0, we can choose
p'=0 (and then e'„=0) as a solution of Eq. (3.41b) and
we are still free to perform a Lorentz gauge choice. The
most appropriate is the radial gauge x"co'„=0 and a
solution of Eq. (3.41a) is this gauge is simply

F2= &(dt udx )& &(dx vdt )& y GM +y (x

y +y (x —vt)

2y (x —vt) (1 GM) +y 1—2 2 G dy d(x vt)—
y +y (x ut) 2 —

y +y (x vt}— (3.46)
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If we naively choose P= 1 in Eq. (3.45), the metric we get
has a very different structure from the one above. In-
stead, by choosing p= 1/y, the two metrics, coincide.
Since a different gauge choice must lead to equivalent
metrics, there must be a coordinate transformation relat-
ing the two metrics. It does exist and is given by

4(1)=arctan

1 4( 1 )
—GM arctan —tan%'( 1 )

1

y

(3.47)

Notice that p= 1/y is a very natural gauge choice, as
%(1/y) gives the azimuthal angle in the reference frame
of the moving particle.

Point-like matter distributions in (2+1)-dimensional
gravity have a relevant physical application as they give
the cross sections of the space-time geometries created by
parallel moving infinite cosmic strings in four dimensions.
Very recently it has been claimed that in some particular
cases two cosmic strings in motion can support closed
timelike curves [24]. However, by using the method
based on the matching conditions of the coordinates that
flatten the metric [23], the configuration analyzed in Ref.
[24] has been proved to correspond to an unphysical (ex-
otic) space time [25]. With our gauge-theoretical ap-
proach, one could obtain not only the matching condi-
tions obeyed by the globally Minkowskian coordinates,
but also the analytic expression of the space-time metric,
thus providing useful tools for a deeper understanding of
the geometries created by moving cosmic strings.

IV. CONCLUSIONS AND POSSIBLE DEVELOPMENTS

Our main results can be summarized as follows.
(1) In order to construct a gauge theory of the Poincare

group, it is necessary to introduce, in addition to the
gauge potentials, nondynamical degrees of freedom q'(x)
(Poincare coordinates), whose equations are autornatical-

ly satisfied if those of the gauge and matter fields are
satisfied. The necessity to introduce the Poincare coordi-
nates q' is discussed in full detail, as well as their georne-
trical interpretation.

(2) The correspondence with the usual Einsteinian for-
mulation of the theory has been established by giving the
expressions, in terms of the gauge fields, of the spin con-
nection and the Uierbein. The former trivially coincides
with the gauge potentials co' „associated to the Lorentz
transformation whereas the physical Uierbein is given by a
more complicated expression involving q', co' „and the

gauge potentials e'„associated with the translation gen-
erators. In particular, it is not true that the field e'„can
be identified with the space-time Uierbein V „. Only in

the "physical" gauge q'=0 the identification V'„:—e'„
holds but, in this case we are not dealing anymore with a
Poincare gauge theory of gravity but rather with a
Lorentz gauge theory, as the Lorentz is the residual
gauge group which is left invariant by a choice of the

gauge coordinates q'(x).
(3) We have provided Poincare gauge-invariant actions

for the gauge fields as well as for the couplings with
matter, i.e., point particles, scalar and spinor fields, and
we have shown that, with the identifications discussed in
point (2) and upon postulating the invertibility of the Uier

bein, the corresponding equations of motion reproduce
the Einstein equations, the geodesics equations, the
Klein-Gordon and Dirac equations in curved space time,
respectively.

(4) The procedure we have presented is independent on
the dimension of the space time. A particularly interest-
ing case is the (2+1)-dimensional one, where the q'
dependence in the action for the gauge potentials can be
ruled out, and we recover the well-known property that
the Einstein-Hilbert action can be written as a pure
Chem-Simons term of the Poincare group. But what is
even more appealing is that in 2+ 1 dimensions, as far as
point-particle interactions are concerned, the gauge po-
tentials can always be chosen almost everywhere as pure
gauges. This is a consequence of the fact that in 2+1 di-
mensions the space time is always flat outside pointlike
sources. Thus our procedure can be further developed by
writing all the field equations as well as the expressions
for any relevant physical quantity in terms of a gauge
group element U=(A, p)EISO(2, 1). In this case, a solu-
tion of the field equations simultaneously provide both
the metric and the set of globally Minkowskian space-
time coordinates. In fact, the physical meaning of the
solution U =(A,p) is the gauge transformation that, out
of the Poincare coordinates q'(x), gives the space time-
coordinates g'=A'bq +p' that globally flatten the
metric.

Several aspects deserve consideration and many possi-
ble developments can be worked out. First of all, an old
and still unsolved problem is whether or not a metric-
independent quantization procedure for gravity exits. If
it does, the Poincare gauge theory we have presented
seems to be the most reasonable choice to being with.
Maybe the standard and well-established techniques for
the quantization of non-Abelian gauge theories could
prove useful in such an attempt.

Another interesting issue is the connection between the
present paper and the procedure developed in Ref. [14] in

the context of a formulation of gravity as a Poincare
gauge theory defined on a fat space. To this regard, we

notice that all the actions given in this work are separate-
ly invariant under gauge transformations and
diffeomorphisms in space time. In 2+1 dimensions and
with pointlike sources, since space time is always flat out-
side the sources, it is always possible to find a particular
set of Poincare coordinates q '(x) which coincides with

the globally Minkowskian space-time coordinate. Conse-

quently it is natural to define the whole theory on the
Minkowskian manifold AL . In this case, a general set of
Poincare coordinates q'EA, wi11 not represent space-

time coordinates, but there will always exist a (singular

and multivalued) gauge transformation relating q' to g '.
This is precisely what we did in Ref. [14]. However,
since in Ref. [14] the theory was completely defined on
the Poincare space JR, a gauge transformation on the



45 GRAVITY AND THE POINCARE GROUP 2731

gauge potentials (e(q), co(q)) also entailed a transforma-
tion of the arguments q', which automatically took into
account the invariance under diffeomorphisms.

An intriguing possibility would be to try to extend this
picture also to four dimensions or to the case of rnatter
fields, by considering a Poincare group theory defined in
the flat manifold A, and interpreting a gauge transfor-
mation as acting both on the fields and on their argu-
ments, the Poincare vectors q'EA, . In this way, the
diffeomorphisms invariance would be parametrized with
the same functions which define the gauge transforma-
tions (5q'=tt'&+p'), which is precisely the procedure
followed in Ref. [14]. Obviously, in four dimensions or in
the presence of matter fields, there would never exist a set
of Poincare coordinates which could be interpreted as
space-time coordinates, and thus the relation between
this flat Poincare gauge theory and gravity would not be
so direct as in the (2+1)-dimensional case with pointlike
sources. Nevertheless, for the Poincare gauge theory
defined on the fiat space JM, e in four dimensions, the con-
nection with the space time could be given by the expres-
sion of the uierbein in terms of q that, in this case,
should have to be considered as a definition. The possi-
bilities opened by this "flat theory of gravity" are still to
be found out. Other interesting subjects that might be

successfully treated without our formalism, concern
lower-dimensional theories. In 2+1 dimensions, since it
simultaneously gives both the metric and the coordinates
that flatten the metric, the theory we have presented
could give insights on the space-time geometry generated
by moving point particles and, consequently, on the
structure of the space time generated by moving four-
dirnensional infinite cosmic strings [23—25].

Moreover, it should not be difficult to generalize the
procedure developed in Sec. III B to other types of null-
measure matter distributions such as, for instance, string
sources for which the gauge potentials can still be written
as pure gauges.
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