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We give an analytic treatment of the one-Higgs-doublet, electroweak phase transition which demon-

strates that the phase transition is 6rst order. The phase transition occurs by the nucleation of thin-

walled bubbles and completes as a temperature where the order parameter (P) r is significantly smaller

than it is when the origin becomes absolutely unstable. The rate of anomalous baryon-number violation

is an exponentially sensitive function of (P) r. In very minimal extensions of the standard model it is

quite easy to increase (P)r so that anomalous baryon-number violation is suppressed after the com-

pletion of the phase transition. Hence, baryogenesis at the electroweak phase transition is tenable in

minimal extensions of the standard model with one Higgs doublet.

PACS number(s): 98.80.Cq, 05.70.Fh, 11.15.Ex, 12.15.Cc

I. INTRODUCTION

In the minimal standard model, electroweak symmetry
breaking is induced by the ground state of a single dou-

blet scalar field. We can write the potential for the real
scalar component of the doublet which acquires a vacu-
um expectation value as

U($)=4k($ —o }

In a cold and empty (or relatively empty} universe, the

Higgs field P can minimize its energy and hence the free

energy of the system by choosing a vacuum expectation
value ((b) =o. However, the early Universe was neither
cold nor empty, and the presence of an ambient, thermal
distribution of particles changes this picture. Although
the vacuum energy of the system is still reduced by shift-

ing the classical value of the Higgs field away from
(P) =0, we now pay the price of adding free energy to
the particles in the surrounding plasma as they acquire a
mass (see Fig. 2}. When the temperature is high enough,
the free energy required to give mass to a thermal distri-
bution of particles exceeds the vacuum energy liberated
by displacing the Higgs-field vacuum expectation value
from the origin. This occurs for temperatures above a
critical temperature we call T&, where the configuration
of the Higgs field that minimizes the free energy of the
system is (P) =0. Thus, at temperatures large compared
to the scale of electroweak physics, the minimum of the
effective Higgs potential is at the origin. This is the ori-
gin of symmetry restoration at high temperature [1—3].
As the Universe cools, when the temperature drops to the
critical temperature T„a new minimum appears,
separated from the origin by a hump. When the free-
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energy barrier separating the two extrema is small
enough, bubbles of true vacuum are nucleated and grow.
The thermal decay rate from the unstable state carries a
suppression [4,6]

F(T)/T—
(1.2)

where Ii, (T) is the surplus free energy needed to create a
bubble of true vacuum large enough to grow indefinitely.
Bubbles of true vacuum smaller than this critical size col-
lapse under surface tension. For a bubble larger than this
critical size, as the radius of the bubble increases the free
energy liberated by the expanding volume of true vacuum
exceeds the free energy required to increase the bubble's
surface area. Such a bubble will grow and convert space
to a true vacuum. A static bubble which is exactly the
critical size is in unstable equilibrium; it is a saddle-point
solution of the free-energy functional.

At temperature T2, where the second derivative of the
potential at the origin vanishes, fluctuations can classical-
ly roll towards the global minimum without surmounting
an energy barrier. If the phase transition has not yet
completed by the time the temperature drops to T2, the
transition no longer occurs through bubble nucleation.
We call the transition first order if it proceeds by bubble
nucleation. So a necessary condition for a first-order
phase transition is that bubbles occupy most of space be-
fore the temperature drops to Tz. We will satisfy a
slightly more stringent condition. At temperatures very
close to T2 the loop expansion parameter becomes large
[2]. So in addition, a reliable analytical determination of
the phase transition requires that it complete while the
effective loop expansion parameter is small.

In the next section we write the finite-temperature
effective potential for the one-Higgs-doublet standard
model in a form which is useful for the analytic under-
standing of the nature of the phase transition. We take
the Higgs boson to be lighter than about 150 GeV, and
use the high-temperature approximation, which we will
show is highly accurate for all aspects of the phase transi-
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tion. In Sec. III we discuss the nature of bubbles which
could be nucleated to trigger the phase transition. T e
scaling arguments of Sec. III suggest that an examination
of whether the phase transition occurs via nucleation of
thin-walled bubbles is warranted. In Sec. IV, the free en-
ergy of these thin-walled bubbles is calculated, and in
Sec. V it is shown that the thin-walled bubble free energy
is small enough that the phase transition does complete
by the rapid nucleation of exclusively thin-walled bub-
bles. Our analysis is purely analytic, and we obtain for-
mulas for such quantities as the temperature of the
Universe at the completion of the phase transition and
the number of bubbles nucleated per horizon volume.

Section VI provides an important application of our re-
sults to the question of depletion of the baryon asym-
metry after the phase transition. The standard model
contains an anomaly which is baryon-number violating
[5]. At high temperatures the rate of anomalous baryon-
number violation can be quite large [6—10]. This has
stimulated a great deal of interest in the possibility of
creating the baryon asymmetry at the electroweak phase
transition (EWPT) [11—17]. A successful scenario must
explain why the baryon excess created at the electroweak
phase transition is not washed out after the phase transi-
tion completes. We show that extremely simple additions
to the standard model avoid washout for any Higgs-
boson mass up to 150 GeV.

II. EVOLUTION OF THE POTENTIAL

The tree-level potential for the physical Higgs scalar is

U(P)= (P —cr )
4

(2.1)

where ko is related to the Higgs-boson mass by
mH=2A, oo. . To reliably analyze the dynamics of this
field, we need to include the interactions of the Higgs
field with virtual particles and with the heat bath.

The one-loop, zero-temperature potential V(P) can be
written as the sum of the classical potential and a one-
loop correction: V(P) = U(P)+ V, (((}). If we adopt the
renormalization prescriptions (i) V (o )mH&m and (ii)
V'(o ) =0, for each degree of freedom to which the Higgs
boson is coupled, the zero-temperature one-loop correc-
tion to the effective potential is (see Appendix A)

V (P)=+ [m (P)ln[m (P)/m (o)]
64m.

4(mP)+2m (P)m (o. )
—

—,'m (cr)[,2

(2.2)

w ere eh th + is for bosons (fermions) and m(P) is the
fieldmass of the particle in the presence of a background fie

Equation (2.2) is valid for particles which have a mass
of the form m =a+bctp in the mass-eigenstate basis. In
addition to these quantum corrections, we must also in-
clude the interaction between the Higgs field and the hot
electroweak plasma. Taking the Higgs boson sufficiently
light we can ignore the contribution of scalar loops. Ap-
pendix B contains a critical review of the standard calcu-
lation of the temperature-dependent effective potential.
From Appendix B, at high temperature, the effective po-

tential for the standard model [16,18] can be reliably
written

V(p, T)=D(T T—2)p E—Tp + ,'A, —Tetr (2.3)

where

D =—'[6(m, r /o ) +3(mz/cr) +6(m, /cr) ],
and the coefficient of the term linear in temperature is

E= [6(mri, /o) +3(mz/o) ]=10
1277

The temperature-dependent P coupling is

4

Xgs n(mB /CB T )T= — ' 16e4~2B

4
mF 2 2+ ggF ln(mF/cFT ),

F 16o. m
(2.4}

m = (2A, + 12B )cr (2.5)

where

B= (6mw+3mz 12m, ) .
64~ o.

We define T2 as the temperature where V"(/=0 =0.
From Appendix B,

mH —88o.2

T = —=y (m„mH)mH .
4D

(2.6)

Because this result was obtained at the origin, it is va i
to all orders in m/T. The quantity y is plotted against
m for various values of m, in Fig. 1.H

2.0
g = T2/M„

I

' ' ' '

I

I I I

I

I I I I

I

1.8— Mt = 100 GeV

160
190

1.0
50

I

75
I. . . , I

100 125
M„(ceV)

I I I I I I I

150
I

175

FIG. 1. The ratio y=T2/mH plotted against the Higgs-
boson mass for three different top-quark masses.

where the B(F) denotes bosons (fermions), gs~~~ is the
number of degrees of freedom, cF and cB are constants
which can be found in Appendix B, and the masses in
(2.4} are evaluated at (P) =o. The physical-Higgs-boson
mass is related to X by
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T =T 1

1 —9E2/8TD
(2.7}

at a value of the field P, =3ET, /2A, z.. At lower temper-
atures, this point splits into a barrier P and a local
minimum P+ which subsequently evolve as

+ /9E2T2 —8$ D(7 2 —7 )
2AT 2kT T 2 (2.8)

The evolution of P+ is shown in Fig. 2. We define the
temperature T, to be the temperature at which the
second minimum becomes degenerate with the origin,
V(P +(T&))=0. Hence, if we divide Eq. (2.3) by P, T,
occurs where the resulting quadratic equations has two
real equal roots. This gives the relation

T2—
1

1

E T2 ~

1—
kTD

(2.9)

FIG. 2. A schematic picture of the effective potential for

temperatures T, T&, T& )T) T~ and T, .

For Higgs-boson masses above the current experimental
limit, the difference in temperature between T, and T2 is
small compared to the temperature. Writing T, =T2+1,
we find v ((T2 provided m& 10 GeV, where

E27= T2 (2.10)
2XTD

At temperatures well above T2, the only minimum of
the potential is (P) =0. As the early Universe cools
down from this high temperature, a second local
minimum of the potential first appears (as an infiection
point) when the temperature reaches

From Eqs. (2.8) and (2.9) we see that

3ET) ET) 3ET2 3ET2

2A, 2A.2A, T 2A, T
'

(2.11}

Teznperature-dependent VEV
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FIG 3. The temperature-dependent vacuum expectation value of the Higgs field vs the Higgs-boson mass for five different top-
quark masses. The dashed line is the exact result, while the solid curve represents the approximation of Eq. (2.3).
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FIG. 4. The tree-level, one-loop, and temperature-dependent quartic scalar couplings vs the Higgs-boson mass for three different
top-quark masses.

It will prove convenient to write the potential in terms of
the scaled field P', where P=(ETIA, T )P', for which

ET T (T T)—
T

In Appendix 8 we show that the high-temperature ap-
proximation is valid to better than S%%uo provided this
quantity is less than 1.6. An inspection of Figs. 3 and 4
demonstrates that our use of the high-temperature ap-
proximation is well justified.

(2.12)

If T] Tp && T i + T2 then for any T such that

i T, —Ti ((T„the potential reduces to the simple form
r 4

V(P) =A z' [(1—e)P' —P' + —,'P' ], (2.13)
T

where e= ( T, —T )I( T, —T2 ). In terms of the scaled
field,

$g= —,'(3+&I+8e) . (2.14)

The critical temperatures T, , T„and T2 correspond to
the following values of e:

e, = —3/8, e, =0, @2=1 . (2.15)

m, (T) P+(Ti ) 2E—~f —~ET T] ArT
(2.16)

The largest values of m /T which are of importance in
this paper correspond to T= T, and P=P (T+, ). Is the
high-temperature expansion a good approximation in this
case? If the high-temperature approximation is valid for
the top quark, it will be valid for all other particles as
well. In the temperature region of interest, for the top
quark we have

III. A HEURISTIC DISCUSSION OF
THE SADDLE POINT

After the Universe cools down to a temperature below
T, , the previously global minimum ( P ) =0 becomes
metastable. The subsequent conversion of the Universe
to the true-vacuum state (P) =P+(T) takes place by the
nucleation of true-vacuum bubbles. Accordingly, we
need to determine the free-energy barrier such bubbles
must surmount in order to grow. Consider a true-
vacuum bubble in a sea of false vacuum (P)=0. Let
( P ) =P' at the center of the bubble (see Fig. 5).

By convention we choose the state (P) =0 to have
free-energy zero, V(0)=0. Then the surplus free energy
of a true-vacuum bubble is

F= J d'x [ ,'(Vy)'+ V-(y, T ) ] . (3.1)

The free energy of a true-vacuum bubble has two con-
tributions: a surface free energy F&, coming from the
derivative terms in (3.1), and a volume term Fi, which
arises from the di6'erence in free-energy density inside
and outside the bubble. These two contributions scale
like
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eters. Simple qualitative and semiquantitative estimates
of these two cases will tell us what kind of bubble to ex-
amine with closer scrutiny. Let us first consider the
simpler case of thick-walled bubbles.

V

Vy

FIG. 5. The effective potential.

Thick-walled bubbles

For thick-walled bubbles 5R -R, and the surface ener-

gy of the bubble grows like R. In contrast, the negative
volume term increases in magnitude like R . Thus, a
thermal fluctuation producing a bubble of true vacuum,
which starts from a radius of zero and expands in radius
to envelope the system, must have a free energy greater
than or equal to some critical value. The critical radius
of the bubble, R„is the bubble radius where the total free
energy of the bubble reaches a maximum. Differentiating
(3.2), R, -5$/+2 V, and the thick-wall bubble free ener-

gy is

F, =2rrR, (5$) R,—V-4n. 3
— (5+)

V
(3.3)

Fq 2n'R 5R Fy R V
5' 4m

(3.2)

where R is the radius of the bubble, 5R is the thickness of
the bubble wall, 5$=$', ' and V is minus the average
value of the potential inside the bubble. When V(P ) is
large compared to —V(P'), it is important to minimize
the contribution to F~ coming from regions near P=P
More precisely, when the height and the width of the bar-
rier near P are not small compared to the depth and
width of the well at P+, for the optimal solution, P will

change quickly between 0 and P', and 5R will be small.
This is the situation for temperatures just below T&.
Hence, the first bubbles which could be formed are thin-
wall bubbles.

As the temperature subsequently drops towards Tz,
the barrier in P space tends to zero, and the difFerence in
free-energy density between the states (P) =0 and
(P) =P+ increases. When the size of the hump in the
potential at P becomes small compared to the depth of
the well at P+, it is favorable to make 5R as large as pos-
sible so as to minimize the "surface" term Fz. Hence,
5R -R, and we should work in a thick-wall approxima-
tion. So, whether the EWPT proceeds by the nucleation
of thick-walled or thin-walled bubbles depends on how
large the rate of bubble nucleation becomes before thick-
walled bubbles are energetically preferred. Our purpose,
throughout this section, is to gain a qualitative under-
standing of the dependence of bubble free energies on the
shape of the effective potential. Accordingly, we shall
not be too concerned with the precise value of the numer-
ical prefactors which occur in estimates of bubble param-

Note that for thick-walled bubbles the magnitude of F,
depends on the relative sizes of the shift in P and the po-
tential difference between the center and the outside of
the bubble and not the height of the barrier in m space.
As a quick estimate for the potential (2.3), defining
r=1—e, as the temperature approaches T2 the critical
free energy scales like

ET
g3/2

T
(3.4)

Thin-availed bubbles

For thin-walled bubbles, in addition to the contribution
of the derivative term to the bubble wall free energy, in-
side the bubble walls there is also a positive contribution
to the free energy from the barrier in P-space, Vb —V
As a function of the bubble radius and thickness, the
thin-wall bubble free energy is

+2Vb5$F(R )-2nR 5R

The saddle point corresponds to 5R =5$/+2 Vb and

R, —Q V&/V (5$/+ V ). So the critical free energy is
' 3/2

~b
(3.6)

V V

So the thin-wall bubble radius is found by scaling the

'For thin-walled bubbles P' will lie at the absolute minimum,
while for thick-walled bubbles we must allow for the possibility
that P' is somewhat less than P+.

2While it is true that a large barrier in V(P) vs P space makes
it hard to Buctuate a bubble of true vacuum, and a smaller bar-
rier makes it easier, we should remember that the real barrier is
in configuration space, and we should be wary of intuition based
on the one-dimensional mechanics.



2690 GREG W. ANDERSON AND LAWRENCE J. HALL 45

thick-wall radius by -+Vb/V and the thin-wall free
energy increases by a factor of —( Vb / V }3 relative to
the thick-wall case. For the potential of (2.3},
V= —V(P+), V&-—V(P ), and 5$=$+. Since the first
bubbles to form as the Universe cools to a temperature
below T, will be thin-walled bubbles, substituting ((}+ into
Eq. (3.6), recalling e=(T, —T)/(T, —T2), and expand-
ing for small e, the first bubbles to form must surmount a
free-energy barrier which scales like

2

F, =4m f r dr — ' + V(P, T )
1 dk
2 dr

(4.3)

In the limit of small e, the bubble wall thickness is negli-
gible when compared to the bubble radius. So for small e,
inside the bubble walls we can neglect the term in (4.2)
linear in spatial derivatives. This, together with the
boundary conditions that the derivative of (t and the
free-energy density vanish outside of the bubble, implies

ETiF"
E (2A, T)

(3.7)
d =&2V
dr (4.4)

As we will discuss in Sec. V, a free-energy barrier
O(100T) is small enough to allow bubbles to nucleate.
Accordingly, the estimate (3.7) tells us we should make a
careful study of bubble free energies in the thin-wall ap-
proximation the instant after the temperature drops
below T, ~

IV. SADDLE-POINT FREE ENERGIES
IN THE THIN-WALL APPROXIMATION

inside the bubble walls. We have defined the zero of V((l})
in (4.1) so that V( —u)=0. From (4.3) and (4.4) we can
write the resulting bubble free energy as

F=4nR J &2V(P)dg
P(R —5R )

+4m f dr r V(P+, T) . (4.5)
0

As a function of the bubble radius, the free energy is
given by

F(R )= (/2A, Tu R —e A. Tu R (4.6)

We can adapt Coleman's thin-wall approximation [19]
to derive an analytic formula for the critical free energy
valid in the limit that the temperature approaches T,
from below. The thin-wall analysis has been applied to
the general case of thermal vacuum stability by Linde
[20]. However we find his conclusions regarding the ap-
plicability of the thin-wall approximation to realistic
gauge theories overly pessimistic. For the potential of
Eq. (2.3), if we shift our field P~P'=P+(ET/AT), we
can cast the potential in a form where the validity of
Coleman's thin-wall approximations will be transparent.
Recall 5=E /ATD, e=(T( —T)/(Ti —T2), and define
u =ETikT. In terms of the shifted field the potential be-
comes

V(P)= [P —v (I+2m)] e(2A, T—v )(P+v )

F y T 647T
c 1 8)

E
2(2g )3/2

3

= (2.85)
50 GeV

mH
(4.7)

As we will discuss in Sec. V, the phase transition corn-
pletes when the free energy to temperature ratio is on the
order of 100. This is achieved for e= —,

' (50 GeV/mH)
For completeness, we note that to lowest order in e, in-
side the bubble walls P behaves like a domain wall and
the well-known solution is

Varying with respect to R, we find that
R, =2/[+2k, r(3av ) ]. Hence, in the limit of small e, the
critical free energy to temperature ratio is

X [ I+O(5e)] (4.1) P(r ) = —u tanh

1/2
T

2
u(r —R) (4.8)

plus terms independent of ((}. For a universe filled with
false vacuum ( ((}) = —u, the true-vacuum bubble of
minimum free energy, which is just large enough to grow,
is a static O(3)-invariant solution to the equations of
motion. Hence it satisfies

V. BUBBLEPRODUCTION, EVOLUTION,
AND NUMBER

d2d P 2d(t
dr2 r dr

(4.2)
Having determined the free energy of a bubble large

enough to grow indefinitely, we examine the rate for pro-

where the prime denotes differentiation with respect to P.
Integrating the appropriate solution to (4.2} gives the
critical free energy

3The result we obtain here will be exact in the limit e goes to
zero, for the potential of (2.3).

4The reader is cautioned that formulas (4.12) and (4.21) of Ref.
[19]are off'by a factor of 2.

~By rescaling the spatial coordinate r in Eq. (4.3), with the po-
tential given by (4.1), the free energy can be written

F, ( T ) /T = (64m /811[E /(2Ar ) ]f(e ), where f is a function

which depends only on e. The thin-wall approximation gives
2
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ducing such bubbles. As the early Universe cooled from
temperature T, to temperature T2, a point was reached
where classical thermal fluctuations were large enough to
nucleate bubbles of true vacuum. These thermal fluctua-
tions produced bubbles of true vacuum at a rate per unit
volume

izon when P -1 giving

F,(T~)/TN —134 . (5.5}

This ratio varies by about 2% as the Higgs-boson mass
increases from 50 to 100 GeV.

I /V=A (T)e (5.1) The phase transition

where F, ( T ) is the free energy of a fluctuation large
enough to pass over the energy barrier separating the two
vacua, and A is a characteristic scale in the theory. For
definiteness we take A =~T . As we shall see, the tem-
peratures we are interested in are on the order of the par-
ticle masses. Moreover, because the nucleation rate is
dominated by the exponential, the exact value of the pre-
factor is not very important, so the effect of co%1 will be
negligible.

The onset of nucleation

VH(T)-8g Mp)/T (5.2)

Without being overly precise about the numerical prefac-
tor, we take (5.2) as our definition of a causal volume.
For probabilities small compared to one, the probability
that a bubble was nucleated inside a causal volume dur-
ing a temperature interval dT is given by

Let us begin by determining when the onset of bubble
nucleation occurs. In the radiation-dominated era, the
time-temperature relationship is t =gMp~/T, where t is
the age of the Universe, Mp&=1. 22X10' GeV is the
Planck mass, and /= 1/34 near the electroweak phase
transition. Because the horizon size scales like dH =2t,
the size of a causal volume at a temperature T is

dN(T)=2co)Mp~Te ' dT . (5.6)

Consider a true-vacuum bubble expanding with a con-
stant terminal velocity p with respect to the plasma.
There are two contributions to the bubble wall expansion.
One comes from the propagation of the bubble wall
through the fluid and the other is from the expansion of
the Universe. Hence,

In order to claim that the phase transition really
proceeds by bubble nucleation, it is necessary but not
suScient to require that T2 is small enough relative to
T~ to ensure that nucleated bubbles grow enough to con-
vert the Universe to true vacuum before the temperature
drops to T2, where the free-energy barrier disappears. A
reliable determination of the phase transition requires
that it completes before the loop expansion parameter in
the SU(2) XU(1) model becomes large [2]. Moreover, be-
cause the anarnalous baryon-number-violating processes
which persist after the EWPT completes are very sensi-
tive to the value of P+(Tn), a careful determination of
the temperature at which the phase transition completes
is required.

Define dN(T) as the number of bubbles per unit
volume nucleated between temperatures T and T+dT.
From (5.1),

4~ Mp] —F,(T)/T dT
dP —16cog „e T' T

(5.3) dR =Pdt —a(T) dT
T

(5.7)

In this section, it will be convenient to make use of the
fact that the critical bubble free energy to temperature
ratio, (4.7), has a Taylor expansion about a temperature
To given by

F,(T)/T=[F, (To)/To](1+2x+3x + ), (5 4}

where x=(T To)/(T, —To)—. Between the tempera-
tures T, and T2 the free energy is a quickly changing
function of temperature but the change in temperature it-
self between T, and T2 is insignificant. Define Tz as the
temperature reached when the first bubble is nucleated in
a typical horizon. Using the expansion (5.4), we integrate
Eq. (5.3) and note that the integrand is sharply peaked
about x =0. The first bubble nucleates in a typical hor-

where a( T) is the Robertson-Walker scale factor. In the
radiation-dominated era, this leads to the differential
equation

dR
2

MPl a (T)
dT

'
T3 T

(5.8)

During the electoweak phase transition a bubble nucleat-
ed at a temperature T', and expanding with a velocity p,
has a radius

(5.9)

where RN(T') is the radius of a true-vacuum bubble
when it is produced at a temperature T'.

We can imagine two qualitatively different types of
first-order phase transitions. In a bubble expansion dom-

90 1

327r3 gga+ —ggF
7

B F 7P+ increases by a factor of 3/2 as the temperatures drops
from T& to T2.
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FIG. 6. Epsilon at the end of the phase transition vs the Higgs-boson mass for three different top-quark masses.

inated first-order phase transition, a typical observer in
the fluid sees the surrounding volume converted to true
vacuum as a nearby bubble of true vacuum expands and a
bubble wall passes over the volume. A second type of
first-order phase transition occurs if the nucleation rate
turns on very suddenly and is so rapid that a typical
volume element in the fluid is converted to true vacuum
by a nucleation event. We call this second type of first-
order phase transition nucleation dominated. The nu-
cleation rate increases on a time scale set by the expan-
sion rate of the Universe. At a time when the bubble nu-
cleation rate is large enough to produce bubbles copious-
ly, but small enough that the conversion of space to true
vacuum by the nucleation event itself is still negligible,
previously nucleated bubbles will grow appreciably in
size before there is a substantial increase in the nucleation
rate. This is a result of the smallness of the temperature
relative to the Planck mass. As a result, the vast majority
of space is converted to true vacuum by the expansion of
bubbles as opposed to being on the site of a nucleation
event. So, the volume of a bubble produced at tempera-
ture T' can be safely written

f= J dt'V(t', t)I /V

r0P g (Mp, /T )

(5.11)

End of the phase transition

Define Tz as the temperature reached when the phase
transition has completed. In the region of interest, the
temperature change is insignificant compared to the
change in F, ( T ). Defining x = ( T To )/To, using—the
Taylor expansion (5.4) about T„, we see that the in-
tegrand of (5.11) is sharply peaked at temperatures very
near T~. The phase transition completes when the frac-
tion of true vacuum approaches unity, giving

1
V(T, T')= P g (5.10)

Integrating over the duration of bubble production, the
fraction of a typical horizon that is true vacuum at time t
IS

This expression for the fraction of space containing a true
vacuum overcounts the volume where bubbles overlap. The ex-
act [21] formula is 1 —f=exp[ —f I IVV(t', t)dt']. Hence,

our definition of the end of the phase transition corresponds to
the era where only 1/e of space is still a false vacuum.



ELECTRO%'EAK PHASE TRANSITION AND BARYOGENESIS 2693

2A, TO'

F, ( Tn )/Tn -96—7 ln
(50 GeV)

100 GeV—41n
T1

—lnP (5.12)

The expanding bubbles are not extremely nonrelativistic,

giving F,(Tn)/Tn =100. Hence en= —,'(50 GeV/mIr }

and the phase transition completes the instant after the
Universe cools to temperature T&. The precise value of
e& is shown as a function of the Higgs-boson mass for
several top-quark masses in Fig. 6.

The number of bubbles

Define T„as the temperature reached by the time n

bubbles have been nucleated inside the comoving volume

coincident with the horizon volume at the end of the

phase transition:

Mp)
n =16cog T

—pF, (T)!TdT (5.13)

Equating T„with Tz, the number of bubbles produced

per horizon by the end of the phase transition satisfies the

simple relation

1n=
16m.

1

2K

—3
dF
dT Q

Tn F (Tn}
T1 TQ TA

(5.14)

It is easy to understand why the number of bubbles per
horizon increases as the derivative of the saddle-point
free energy increases. At the end of the phase transition,
the faster the nucleation rate is changing, the shorter the
duration of bubble nucleation. A larger number of bub-
bles needs to be produced for the phase transition to corn-
plete in a shorter time interval.

VI. AVOIDING %'ASHOUT OF THE BARYON
ASYMMETRY

Can baryogenesis occur at the one-Higgs-doublet
EWPT? The picture of the phase transition which we
have given, valid for Higgs-boson masses from the experi-
mental limit of 46 GeV up to about 150 GeV, certainly
shows that the Universe is far from thermal equilibrium
after the temperature drops below TN. At high tempera-
ture, anomalous baryon-number violation can be quite
rapid [6—10]. Hence the possibility of successful baryo-
genesis rests on two issues: sufficient CP violation; avoid-
ing washout of the 8+L asymmetry, after Tz.

The numerical size of CP violation in the standard
~odel is insufficient for baryogenesis. This is true even if
the strong CP parameter 0 were of order unity at high
temperatures, because the physical effects of 8 are
repressed by light-quark Yukawa couplings. Neverthe-
less, it is simple to add new physics to the standard model
which yields sufficient CP violation without changing the

behavior of the EWPT. One possibility is that this new

physics yields operators of the form (1/M )P'PFF in the
low-energy theory, where F is the electroweak field

strength [11]. Hence it may be possible to create a
significant baryon asymmetry at the one-Higgs-doublet
EWPT.

We are left with the problem of how to avoid the 8+L
asymmetry being depleted just after T& as soon as
thermal equilibrium is reestablished. Several authors
[12,16] have argued that anomalous baryon-number
violation will washout any baryon asymmetry for Higgs-
boson masses larger than some critical value, m& . Al-

C

though there are uncertainties in the calculation of m&,
C

it is in the vicinity of 50 GeV, perilously close to the ex-
perimental lower bound. Hence, the one-Higgs-doublet
EWPT of the minimal standard model, extended only to
include CP-violating operators of the form
(1/M )/*OFF, does not yield an acceptable baryon
asymmetry, with the possible exception that the Higgs-
boson mass is very close to 46 GeV. (There is also the
possibility that m& is much larger than 100 GeV, in

which case we do not know the nature of the phase tran-
sition. )

In this section we show that the problem of baryon
washout in one-Higgs-doublet models can be solved in a
way similar to the solution of the problem of sufficient CP
violation. Particles can be added to the standard model
such that our analysis of the one-Higgs-doublet EWPT
persists, but baryon washout is avoided for Higgs-boson
masses all the way up to 150 GeV. We find that these ad-
ditional particles affect the EWPT indirectly, by changing
the numerical values of the parameters of the effective
potential (B,D, E,A.r ). However, our formulas for quan-

tities of interest [T, /+2(T, z), en, etc.] are still correct
when written in terms of these parameters B,D, E,A, r.

As we go beyond the minimal standard model, why not
go to the two-Higgs-doublet model? We do not do this
because this greatly complicates the EWPT. In general,
one cannot just define a single linear combination of the
Higgs bosons as the one which gets a vacuum expectation
value (VEV), because this combination is T dependent.
No complete analysis of the phase transition exists. For
example, we do not know the quantities P, +(T )nand

$2+(Tn) which are relevant for baryogenesis. The ad-

vantage of the one-Higgs-doublet EWPT is that we know
essentially everything about the phase transition, so that
we can use the requirement of avoiding baryon washout
as a guide to what new physics should exist.

The analysis of this section will be valid for a whole
class of models. This class of models has a single Higgs
doublet and has the EWPT proceed by the nucleation of
thin-wall bubbles. More precisely, the class is defined by
three criteria.

(i) The EWPT is induced by a single Higgs doublet,
and the coefficient of the tree-level P term is sufficiently
small that the Higgs contribution to V(P, T) can be
neglected.

(ii) All particle masses are such that at temperatures
near T, the high T approximation, (B6}, for V(4, T ) is
valid, with the exception of particles so massive that their
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thermal contributions to the effective potential are
Boltzmann suppressed to the point that they can be ig-
nored.

(iii) The EWPT proceeds by the thermal fluctuation of
thin-wall bubbles. This means that

(6.1)

These one-Higgs-doublet models all have the EWPT
proceed as we have described, except now the parameters
B,D,E,A,T can differ significantly from their standard-
model values. We now calculate how the baryon washout
rate depends on these parameters. We will not attempt to
calculate the numerical value for the washout rate, how-
ever.

At T & T& the rate for anomalous baryon number
violation is proportional to exp[ F, ( T—) /T ), where

F, ( T) is the sphaleron free energy at temperature T. In
the region of interest to us T= Tn (which is just below

T, ), and we do not know what F, (T) is. This is because
the usual approximation of keeping only the T rtz terms
in the high T expansion of b, V, (P, T) [22] is not good at
temperatures near T&. In particular it is clear that the
term ET/ ca—nnot be neglected Alt. hough the P T
terms are the largest P-dependent terms in the m /T ex-
pansion, they combine with the zero-temperature
terms to cancel when the temperature is T2. One possi-
bility is to try to find some lower temperature where the

term can be dropped, but where the high T expansion
is still good. However, since the baryon washout rate de-
creases as T is lowered, this will only yield a lower bound
on the amount of depletion. Alternatively one can do a
numerical analysis for the sphaleron energy at tempera-
tures just below T, [12]. We will assume that the sphale-
ron free energy is linear in (t( T)/T, a form motivated by
the inclusion of the T rtz terms. Hence we take

dna
dT 7 (6.2a)

where

I 0+(T}
=C& exp — C2 (6.2b)

and H =H( T) is the Hubble parameter. Cz is a large di-
mensionless constant which we assume has a more mild
dependence on (B,D, E,kr) than does P+(T) in the re-
gion of T= Tz. We take C& to be a constant, although

In order to use this formula for e„ it is actually necessary to
also require that T, —T, «T, + T, . This is because our thin-

wall analysis for ez was based on the effective potential of (2.13)
which assumes T, —T~ «T, +T, . However if this constraint
on T~ —Tz is not satisfied, Eq. (6.1) still holds provided e is re-

placed by Fat, where F=(Tz/T, )[2Tz/(T, +Tz)]~1. In the

majority of models where F is not close to l, we find that F is

not small either.

our results are unchanged if it has a large power depen-
dence on T.

The most likely T region for baryon washout is im-
mediately below Tz. If the washout is to be limited, the
washout rate must have frozen out well before
Tz. (I /H)z. «1. Taking P+(T)=(ET/Ar)rtz'+(T)
where P'+ is given in Eq. (2.14}, and integrating (6.2a)
gives a logarithmic depletion of

ns(Tn)
ln

ns(0)
AT

2C2E

T] T2 r
H

(6.3)

where

2
m& —(b A, +6B),
20

(6.5)

where we have defined the logarithmic terms of Eq. (2.4}
tobe b, A, : A, T=A, —hA, .

Others have found a critical Higgs-boson mass of about
50 GeV [12,16] in the minimal standard model. This cor-
responds to

(6.6)

for low top-quark masses.
We can now see how simple it is to avoid baryon

washout at the one-Higgs-doublet EWPT. Particles
should be added to the standard model so that E/A, T & —,

'

for any desired value of m& in the region of 45 —150 GeV.
This can be accomplished in two ways: add bosons with
small SU(2) XU(1)-preserving masses to increase E; add
bosons so that hA, +6B is increased. For a given Higgs-
boson mass this decreases z(, r as can be seen from (6.5).

It is interesting that both possibilities involve addition-
al bosons. Although ferrnions never contribute to E, they
do contribute to AA, +6B. However, they tend to increase
baryon depletion. This can be seen from the fact that a
heavy top-quark mass in the standard model decreases
the critical Higgs-boson mass:

4
2

mH (m, )=mH (0}—30
C C 4~2

m,
41n

QCF T)
+3

(6.7)

We now give a specific simple extension of the standard
model which avoids baryon washout even for Higgs-

= C, T,exp —C (3++1+ge„) . (6.4)
0 T

When en « 1, it can be dropped from Eq. (6.4). Whether
depletion is significant is largely a question of whether
the baryon washout rate freezes out before or after Tz,
i.e., of whether (I /H)r is greater or less than unity.

This entire class of one-Higgs-doublet models has a
baryon washout rate which is exponentially sensitive to
the ratio E/k, r, but is relatively insensitive to B and D,
and therefore to T, and T2. There is significant sensitivi-

ty to mH because A, T is related to mH by
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boson masses up to 150 GeV. We add a spin-0 multiplet
S which is a singlet, so that the Lagrangian of the stan-
dard model is augmented by

gsd g cr

sM ]6~2 M2
(6.12}

=8"S'8 S—M S*S—A, (S'S) 2g—S'SH'H
(6.8)

where H is the Higgs-doublet field: ~II
~

=plv'2. We
take M and g to be positive so that (S)=0 at all tem-
peratures, and the EWPT is that of the single Higgs dou-
blet.

A simple possibility is to take M sufficiently small that
where P=P +(T, ) the scalar mass ms2=M +(~$2+
=g P+. In this case the S field contributes to E. If it
gives the dominant contribution to E, then

E gs
~3

100 GeV
(6.9)

AT mH

where gs is the degeneracy of the S multiplet, and we
have chosen parameters such that hA, +6B can be
dropped in Eq. (6.5). The size of E/A, z. is restricted by
requiring that the high T expansion be valid at T&.

E & 1
(6.10)

Vs(4'}=
64m.

6 2 2
~z(~z z)+ 1 4

3 2 M2

2 4
+o &

M4 (6.11)

The decoupling behavior as M~00 is manifest. Since
V,'(o)=V '(~s)=0, this contribution does not alter the
minimum of the potential or the relation for the Higgs-
boson mass: mH=2(A, z. +68s~)o . For our purposes

SM

the most important consequence of Vs is to correct the
coefficient of P:

Hence we must take g~ 1. Note that the criterion (6.1)
for the thin-wall approximation is easily satisfied for
E/A, z much bigger than we need. There are a wide range
of parameters that avoid baryon washout for all Higgs-
boson masses up to 150 GeV.

As an example, consider (=1, gs=1, and m&=100
GeV. In this case E/A, r —2/m. , and a—ll constraints and
approximations are satisfied. Taking m, =125 GeV gives
T2-—130 GeV and T, =148 GeV. How small must the
SU(2)-invariant S mass be in order that
ms(T, )=gg (T+, } is a valid aPProximationr We find
that M ~ g(E/A, r)T, =94 GeV, which does not involve

any more fine-tuning than for the Higgs doublet.
The simple extension of the standard model described

by Eq. (6.8) can also avoid baryon washout, even if the S
particle has a mass in the TeV range. At first sight this is
surprising since S does not contribute to E. This is be-
cause M ))g +(T, ), and because the S particles have an
exponentially suppressed number density at T&. The con-
tribution of the S field to the effective potential Vs(P) can
then be obtained by expanding (A6) in a power series in
gP/M:

This is a cruical correction since it changes the mH/A, z
relation, increasing the critical Higgs-boson mass:

gsd 2& cr
mH (g)=mH ()=0)+ z

o.
2

(6.13)

Hence if (gsg )(g o /M )=3, the critical Higgs-boson
mass squared is increased by (50 GeV) . For example
taking gsg=15 and g o /M =

—,
' would give a bare S

mass of M=0. 56( TeV. Baryon depletion can be avoid-
ed even if the additions to the standard model have
masses in the TeV region.

We conclude that successful baryogenesis at the one-
Higgs-doublet EWPT can occur provided the Higgs dou-
blet is given two new interactions: one to violate CP and
the other to enhance E/k, r to avoid baryon workout.

VII. CONCLUSION

We have presented a completely analytic treatment of
the electroweak phase transition (EWPT), valid for all
Higgs-boson masses from the experimental limit of 46
GeV up to about 150 GeV. The electroweak phase tran-
sition is first order and proceeds by the nucleation of
thin-walled bubbles. We give the precise value of the
temperature at which the phase transition completes as a
function of the top-quark and Higgs-boson masses. In
addition to characterizing the electroweak phase transi-
tion, we determine the value of the Higgs field VEV after
the phase transition completes, the number of bubbles
nucleated per horizon, and many other quantities. Our
formulas also apply to many extensions of the standard
model which have the EWPT occur through just one field
acquiring VEV. Additional particles can significantly
alter quantities such as the temperature at which the
phase transition completes, through their virtual effects
on parameters in the Higgs potential. An important re-
sult of our analysis is determination of ( P ) r at the end of
the phase transition. The temperature-dependent VEV
(P)r increases by a factor of 3/2 as the temperature
drops from T& to T2. Accordingly, determination of
when the phase transition completes is essential because
the rate of anomalous baryon-number violation is an ex-
ponentially sensitive function of ( P ) r. If the rate of
anomalous baryon-number violation is large after thermal
equilibrium is reestablished, any B+1. asymmetry gen-
erated during the EWPT will be at best ephemeral.

Much attention has recently been paid to the exciting
possibility that the cosmological baryon excess may be
produced at the EWPT. The possibility that this occurs
in a model with a single Higgs doublet has largely been
ignored. This is because it has been shown that even if
sufficient baryon asymmetry could be generated, immedi-
ately after the EWPT it would be destroyed by anoma-
lous baryon-number violation, at least for Higgs-boson
masses above about 50 GeV. As a demonstration of the
utility of the analysis of the EWPT presented in this pa-
per, we have shown that this baryon washout is very easi-
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ly avoided in simple extensions of the standard model.
Perhaps the simplest is the addition of a gauge-singlet
scalar boson that receives a contribution to its mass from
the Higgs boson VEV. In a subsequent paper we will
show that the baryon asymmetry of the Universe could
be generated at the one-Higgs-doublet EWPT.

tions above, we find'

g; m;(P)
V&(P)= g + m; (P) ln ——m, (P)

64m m, (o)

+2m; (P)m,. (o ) (A5)
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APPENDIX A: THE ZERO-TEMPERATURE,
ONE-LOOP EFFECTIVE POTENTIAL

V, (P)=+ [P ln(P /cr ) 3P—+— 2$2o ] .
g4

64m
(A6)

Finally, for a particle with a large SU(2)-conserving mass
m (P)=M +gP where M ))go. , the one-loop contri-
bution decouples as

V(P)=+ (cr P o—P +—'(() )M +O(M } .
64m

(A7}

plus terms independent of P. We will have occasion to
use two special cases of this formula. For a particle with
mass m (P) =A,P, we recover the well-known result [18]

Consider an ensemble of particles i, which receive a
contribution to their mass from the vacuum expectation
value of a scalar field P. In the mass-eigenstate basis, the
unrenormalized one-loop contribution to the effective po-
tential is

APPENDIX 8: THE EFFECTIVE POTENTIAL
OF THE STANDARD MODEL

For the tree-level potential

~0
U(P)= (P —o )

4
(Bl)

hV& =+ ——
4

ln —k +m —ied k 2 2

2 (2n. )
(Al)

bV, =+ —m (P)ln
1 1 g m (d))

32~2 2 A
——m (P)

1 4

4

+m (P)A

We write the renormalized potential V& as the sum of the
tree-level potential U(P), the one-loop correction b, V„
and a counterterm potential V„:

where the + is for bosons (fermions), respectively. Going
to Euclidean space, introducing a cutoff A, and integrat-
ing we find

A,0 is related to the Higgs-boson mass by mH=2A00' .
The one-loop potential is the sum of the classical poten-
tial and a one-loop correction V= U+ V&. If we adopt
the renormalization prescriptions (i} V"(cr ) =mH and (ii)
V'(cr }=0, the relation between mH and Ao will be
preserved. In this case, for each degree of freedom, the
one-loop corrections to the effective potential is given by
(A5)"

V, (P)=+ [m (P) in[m2($)lm (cr)]
1

64m

—
—,'m (P)+2m (P)m (o)—

—,'m (cr)],

(B2)

V) = U(P)+b V, (P)+ V„(P} . (A3)

(i) V, =0,d-
d

(ii) V, =0 .
(A4)

For a collection of particles with masses of the form
m (P)=p +gP, imposing the renormalization condi-

We denote the renormalized one-loop correction by
V, =hV, (P)+ V„(P). At P=e, we choose to impose re-
normalization conditions that preserves the tree-level
values of mH, and o:

' Strictly speaking, the tree-level Higgs-boson mass preserved

by (A4) is the Higgs-boson mass at zero Euclidean momentum.

The formulas we obtain here will have corrections coming from

running the mass from zero Euclidean momentum up to mH

[23]. The divergence in (A5) for Goldstone bosons is an artifact
of this running. This is because the Goldstone-boson contribu-
tion gives an infinite running of the Higgs-boson mass between

p =mH and zero Euclidean momentum. Alternatively one

could impose renormalization conditions at different value of P.
In that case, a singularity in V" would still exist for the reasons

mentioned above, and parameters of effective potential would be

related to measurable quantities by a running in both P space
and momentum space. In this paper we work with Higgs-boson

self-couplings small enough that we can neglect scalar loops
which include the Goldstone bosons.

We have added a constant so that the one-loop contribution

to the cosmological constant vanishes at (P ) =cr.
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FIG. 7. A fermion's contribution to the free energy as a func-
tion of m/T. The solid curve is the exact contribution to one
loop. The dashed [dotted] curve represents the approximation
(B6) [(B10)].

FIG. 8. A boson's contribution to the free energy as a func-
tion of m/T. The solid curve is the exact contribution to one
loop. The dashed [dotted] curve represents the approximation
(B6) [{B10)].

V(P)= —
—,'(A, +2B)o P + 'AP +BP 1—n($2/o ) (B3)

plus terms independent of P. Here P, the physical Higgs
scalar, has a mass mH=2A, oo =(2A, +12B)o, (P) =o,
and

B= (6m&+3m, —12m, ) .1

64m o.

When the system is in contact with a hot thermal reser-
voir, such as in the early Universe, the effective potential
for the Higgs boson must be modified to include the in-
teractions between the Higgs field and the hot ambient
plasma. The thermal one-loop corrections to the effective
potential for the Higgs boson is just the free energy of the
Bose-Einstein and Fermi-Dirac distributions of particles
getting a mass from P:

where the 2 is for bosons (fermions} and m(P} is the
mass of the particle in the presence of a background field.
Neglecting the Higgs-doublet contribution to V&, the
one-loop, zero-temperature, effective potential for the
physical Higgs scalar is given by the well-known expres-
sion [18]

T4
&V)(P, T)= —g f dx x ln(1+e F)

F 21r

ggT
2m'

(B4)

where mtt{z~ is the mass of a boson (fermion) in the pres-
ence of a background field P, gz{F~ is the number of de-
grees of freedom, P=1/T and (I')B denotes a sum over
(fermions) bosons, respectively. Expanding the argument
of the logarithm and integrating, the integral equation for
b V& (P, T ), can be written in terms of a sum:

T4
b, V, (P, T)= g

p 2' (pm~ ) IC2 (pmF n )
( —1)"

n=1

gtt T

27K

00 ]
(pm+) Kz(pmzn)

n=1 ~

(B5)

Since the modified Bessel function E2 falls off exponen-
tially for large values of its argument, the expression (B5}
is well suited to numerical computation when m/T is
large. In the high-temperature limit, when m(P)/ iTs

small, Eq. (2.6) can be expanded in powers of m(P)IT
[3]. Excluding the terms independent of P,

m~4
& V~ (P, T )= g gz mz T mz T —ln(mz Icz T )—

8 12m 64~~

4

+ gg~ mFT + 1n(m~/c~T ) +O(M /T )+O(M /T ln(m IT)),
F 64

(B6)
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=D( T T—)y ET—y + —'A, Ty (B7)

where the constants D, E, and A, T are given in Sec. II.
The absolute instability of the origin occurs when the
temperature reaches Tz.

(2k+48)o mH 8Bo.
Tz= = =—y (m„mH)mH . (B8)

where ln(ca ) =—', +2 ln4m —2y = 5.41 and ln(cF ) = —,
'

+21nvr —2y=5. 41 and ln(cF)= —,'+21nm. —2y =264. '

Expanding to order T in m /T and neglecting all one-
loop Higgs-boson self-interactions, we add (B3) and (B6)
to obtain the one-loop, temperature-dependent potential
[16,18]

V(P, T)=[DT ( ,'A—+—Bcr )o)P . EP—T+ ,'ATP—

Kz(x ) =
2x

e " 1+ +
8x

(B9)

So for large values of m IT the temperature-dependent
contribution to the free energy is given by

values of m /T is the high-temperature approximation ac-
curate? From Figs. 7 and 8 we see that the high-
temperature approximation agrees with exact potential to
better than S%%uo for m IT & 1.6 (2.2) for fermions (bosons).
It is interesting to note that unless great accuracy is re-
quired, for any value of m /T, either the high-
temperature or a low-temperature approximation can be
used to obtain a simple formula for the free energy. For
large values of x, the modified Bessel function Kz has the
asymptotic behavior:

1/2

As well as providing good qualitative behavior, the stan-
dard m IT expansion (B6) gives reliable quantitative re-
sults up to surprisingly large values of m!T. For what

3/2

gV (y) — m(4) —m(p)/T
1 8m($)

(B10)

'zThis comes from Doland and Jackiw [3] where the 2.64 was
misprinted as 2.84, we thank David Brahm for bringing this to
our attention.

For any value of mlT, the better of (B6) or (B10) will
give a value for b, V&(P) which is good to better than
10 o.
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