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Quantum-mechanical scattering of charged black holes
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We describe the quantum-mechanical scattering of slowly moving maximally charged black holes.
Our technique is to develop a canonical quantization procedure on the parameter space of possible static
classical solutions. With this, we compute the capture cross sections for the scattering of two black
holes. Finally, we discuss how quantization on this parameter space relates to quantization of the de-

grees of freedom of the gravitational field.
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I. INTRODUCTION

Here we study quantum-mechanical interactions of
charged black holes. In classical general relativity there
exist exact static solutions for N maximally charged black
holes; the black holes can be placed anywhere, and will
remain at rest. This suggests that, for slowly moving
maximally charged black holes, the spatial geometry at
any time will be well approximated by the static solution
for the black-hole configuration at that time. The classi-
cal solutions were worked out [2] following this type of
adiabatic approach. Now, the parameter or moduli space
of possible static solutions is a 3N-dimensional manifold,
consisting of the positions of the N black holes. There-
fore, for the slowly moving black holes, a path is traced
out in moduli space as the three geometry evolves to the
four-dimensional spacetime.

In studying the classical solutions it was found that the
motion of the black holes was governed by an effective
Hamiltonian for N point particles. The approach here is
to use this Hamiltonian to evolve a Schrodinger wave
function, for the case of two black holes. The wave func-
tion is a function of the positions of the two black holes;
that is, the configuration space of the wave function is the
parameter space of possible classical static solutions.
Hence the degree of freedom being quantized is the prop-
er distance between the two black holes.

One can imagine that if the full theory for quantum
gravity were known, one could compute the motion of
maximally charged black holes and then consider the
slow-motion, low-energy limit. Here, we can hope that
we are computing an approximation to the actual motion.
Of course, since we do not know the theory of quantum
gravity we have no way of knowing how good an approx-
imation this is. On the other hand, we do know of some
ways this approximation may fail. In particular, the clas-
sical metrics were assumed to have a particular form,
corresponding to slow motion. However, in the full
quantum-theoretic description of the system, there will

surely be excitation of degrees of freedom which are not
included in this model; i.e., the configuration space for

the true wave function must include other degrees of free-
dom than those in the moduli space considered here. In
our approximation we will never see these. This is simi-
lar to minisuperspace models, and also quantized non-
linear 0 models (when viewed as models of approximately
constrained systems), which suff'er the same

shortcoming —there is no way excite modes which are
not in the approximation [l].

Perhaps the most interesting issue is the meaning of
the wave function for the geometry of the spacetime. In
the classical case the metric can be found by solving con-
straint equations, with the black-hole positions and mo-
menta as sources, after the motion of the black holes is
known. When the sources are quantized, one can no
longer speak of a position and velocity of the source, and
instead must speak in terms of probabilities. The ques-

tion, then, is what does it mean for the metric field equa-
tions to have sources which are probabilities? Our pre-
ferred interpretation, but by no means the only one, is to
consider the probabilities as probabilities for finding
different spacetimes. We discuss these issues in the final

section.

II. THE SYSTEM FOR SCATTERING
OF MAXIMALLY CHARGED BLACK HOLES

We now review the work of Ferrell and Eardley [2].
This section will conclude with the classical Hamiltonian
for black holes. In the next section we will discuss the
quantization procedure, e.g. , the Hilbert space of states,
and the quantum-mechanical operator which corresponds
to the classical Hamiltonian.

The sources in our study will be maximally charged
black holes. A maximally charged black hole is an elec-
trically charged (Reissner-Nordstrom) black hole with

charge Q =G '~2M. Such a black hole is maximally

charged, since if Q is increased but M is held fixed, the
event horizon which is associated with the back hole
disappears and a naked singularity arises.

The theory for charged rnatter in curved space is as-

sumed to be the coupled Einstein-Maxwell field theory.
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The action for this theory is [3]

S= f&—g''Rdx — fF F" & gd—x
1 (4) 4

16m.G 8

+f A„j"& g—d x+g fm, dr, . (2.1)

In this expression, ' 'R is the scalar curvature of the
spacetime, A„ is the electromagnetic four-potential, j is
the electromagnetic current and F„=B„A —B„A„is the
electromagnetic field strength. The last term is the action
for a collection of free particles, and does not make sense
for black holes. In deriving the classical effective action,
Eardley and Ferrell replace the singularities with charged
dust, with charge density equal to the mass density. So in
performing the manipulations the sources are smooth.
At the end of the derivation, the limit is taken in which
the charge density goes to a sum of point singularities.
This regularization scheme works because the dust is
maximally charged, and hence in a static con-
figuration. Dust with a charge less than the mass would
tend to collapse. For this paper we will not make the dis-
tinction between black holes and the smoothed distribu-
tion used to represent them.

G is Newton's gravitational constant. In this paper we
will work in units where G =1 and c =1. In these units
8=m planck where mwanck is the Planck mass.

In nonrelativistic theories, it is clear that there exists a
static configuration of maximally charged black holes,
since the condition for maximal charge is just the condi-
tion that the static gravitational attraction exactly can-
cels the electrostatic repulsion. Remarkably, in the full
Einstein-Maxwell theory for gravitation coupled to elec-
tricity and magnetism there also can be static
configurations of maximally charged black holes.

The metric that describes a system of N static maxi-
mally charged black holes (first discovered by Majumdar
[4] and Papapetrou [5] is

ds = ddt +—4 5; dx'dx', (2.2)

where V 4= 4n. g, m, 5(x——x, ) with the black holes at
the points x, and the boundary condition 4=1 at
infinity. Here V' is the Laplacian on the [x] regarded as
coordinates on flat R . In this coordinate system the hy-
persurfaces t =const intersect the singularities at the
points x =x„and the event horizons are the same points
(i.e., the event horizons are represented as points, but
have surface area 4~m, ). The Maxwell four-potential is

force. As long as the velocities remain small, there will
be very little radiation. In this approximation then, the
fields are fully fixed by the positions and velocities of the
matter sources. [A similar example of this approxima-
tion comes from electrodynamics in flat space. If the po-
sition of a charge q at ro is changing slowly, with
v=dro/dt, then the scalar potential is approximately
P(r, t ) =q/~r —ro(t ) ~, and the vector potential is approxi-
mately A =qv/~r —ro(t)~. The space of field config-
urations is just the configuration space for the particle,
since a field configuration is determined by the position
and velocity of the particle. ]

To describe slowly moving black holes, one looks for a
metric and four-potential of the form

ds 2 1
dt +2N, dx'dt+4 5, dx'dx"j, (2.4)

A = —(1—I/%)dt+ A;dx' (2 5)

1 1,b
2 b«y 2M

' +
2p

(2.6)

where P is the momentum of the center of mass,
M=m&+m2, r=xi —xz is the relative coordinate, p is
the momentum conjugate to that coordinate, and
p=m, m2/M is the reduced mass of the system. In the
first term, a flat metric is implied. The metric in the
second term is

g.b =r(r)5.b

3M 3M 3aM
r2 r 3

(2.7)

(2.8)

with 4 as before, but now the x, will be functions of
time. Both N; and A; will depend on the velocities of the
black holes. However, since we are assuming velocities
are small we can truncate the field equations for N; and
A; to first order in velocity.

Using the Einstein constraint equations, the fields N;
and A; can be solved for in terms of the source positions
and velocities. These expressions are substituted into the
Einstein-Maxwell action (2.1). The resulting effective La-
grangian depends only on the positions and velocities of
the sources. The black-hole limit is shown to be well
defined. This is the Lagrangian for the interaction of the
black holes. For details, see [2]. Finally, one finds that
the Hamiltonian for two black holes, with masses m i and
m2~ is

A = —(1—I/%)dr . (2.3)
where a= 1 —21M/M. (Recall that R is the position of the
center of mass, and r is the relative position, hence, these
are coordinates on the moduli space of solutions, not on
spacetime. )

The evolution of the center-of-mass coordinate is just
free particle motion. The evolution for the relative coor-
dinate can have one of two behaviors. If the two black
holes start at infinite separation, then when they interact
they can either scatter back out to infinity, or they can
evolve toward zero separation, depending on their angu-
lar momentum. Although in the r~0 limit the slow
motion approximation probably breaks down, it is

The space of possible Majumdar-Papapetrou metrics is
the 3N-dimensional configuration space of the positions
of the black holes —once the x, are known, + is known
and therefore the metric and scalar potential are also
known. If the black holes are moving slowly then the
solution will trace out a trajectory in the space of static
solutions [2,6]. These quasistatic solutions exist because
in the slow motion approximation radiation can be
neglected [3]: The static forces cancel exactly, and the
only relevant forces are the velocity-dependent magnetic
force and the gravitational analogue, the gravitomagnetic



2630 JENNIE TRASCHEN AND ROBERT FERREI.L 45

reasonable to guess that in this case the two black holes
coalesce into one black hole [2,3]. We will call the two
possible classes of orbits scattering orbits or coalescence
orbits, respectively. This completes the review of the
classical behavior.

The Schrodinger equation for the wave function of the
relative coordinates is

——%(x, t ) =H%'
l

III. THE QUANTUM-MECHANICAL SYSTEM

In this section we will discuss the quantum-mechanical
system induced by the classical Harniltonian H2 Q Qy

We
shall quantize the two-black-hole system using canonical
quantization. The configuration space is the six-
dimensional moduli space of possible static solutions.
The state of the system is described by a wave function
on moduli space; we will describe the Hilbert space more
precisely shortly. We must also construct the quantum
mechanical Hamiltonian operator. The center-of-mass
coordinate represents free particle motion on a flat R so
we can use the usual correspondence P = —A' 8 /BX .
The classical motion of the relative coordinate is like that
of a particle of mass p on a curved manifold with metric

g,b(r ). There is some ambiguity in defining the quantum
mechanical operator for the kinetic energy on a curved
manifold since the metric does not commute with the
usual momentum operator i A'did—x Acho. ice which
ensures that H2 Q Qy

is Hermitian, is to replace the classi-
term ~

where V, is the derivative operator compatible with the
metric g,& [7]. In addition, in the Hamiltonian we can
add a term which is proportional to the scalar curvature,
R A, since this is Hermitian, and vanishes in the classical
limit [8].

g' V, Vq+A' g%
2p

0'~&~(x, t ) = P~&(r ) Y& (8,$)exp( fEt lfi),—

so that H+=E%' implies that the radial ~- eve functions
satisfy

g"(r )+—P'+ — l('(r )
T 2

1(l+ 1) 2p(Ry(r)—l(= —
q y(r)g(r), (3.1)

where g,b is given in (2.7). A is the scalar curvature of
the three-metric g,b. The Hilbert space of states can be
taken to be square-integrable functions. We will see that
the energy eigenfunctions are square integrable as r~0.
As r ~~, the eigenfunctions become plane waves, so just
as usual, one would need to form wave packets in the free
particle regime. When checking that H is Hermitian, one
finds that boundary term contributions of probability flux
cancel, between large r and the horizon. This is similar
to the cancellation for plane waves in a box.

The eigenstates of H will have three quantum numbers,
and we will denote the eigenstates by 4~& (x, t ). Because
the potential is spherically symmetric, we take them to be
of the form

A. Derivation of the Schrodinger equation
for maximally charged black holes

Now we view the Harniltonian for the system of two

maximally charged slowly moving black holes Hp /ply as
defining the evolution of a quantum mechanical system.
That is, the system is described by a wave function %t
with the evolution operator H2 /ply.

fi .
~ +tptal H2 body+tptal '

1

As in the classical case, the center-of-mass degrees of
freedom X separate, so that the total wave function
can be taken to be of the form %„„„(x,X, t)
=4(x, t)exp[i( E,tlfi+P Xlfi—)], where E, and P are
the center-of-mass energy and momentum, and x are the
relative coordinates.

Now consider the evolution of a wave packet. Suppose
that at early times a wave packet is given which has sup-
port at large relative coordinate ~r~, so the two black
holes are far apart. As time evolves the black holes ap-
proach each other; that is, the wave packet evolves to-
wards smaller r. Part of the packet will be scattered and
part will be absorbed. This is in contradistinction to the
classical case, in which the black holes either scatter or
coalesce. Here we will compute the absorption coefficient
as a function of the angular momentum and energy of the
wave.

where

2pE
g2

(3.2)

(3.3)

where

V=
3 [y(ry „)„—ry ]+ +kg& .

l(l+ 1)
2TQ

For p=O we have

3 1 (rlM) l(1+1) rlM
2 M (1 r+/ )M M (1+r IM)

(3.4)

Here r is an implicit function of R.
The new coordinate R ranges from —~ as r ~0, to

+ co at r~+ oo; explicitly R =r+ —', M in(rlM) as-
r ~ 0O and R —= 2&aM(r IM) —' as r ~0

It is useful to change to a new "tortoise" coordinate R,
which measures radial length along a path. Let
R f&=ydr, with y as defined in (2.8), and let
y=ry'~ g This c.asts the problem into the form of a
standard one-dimensional quantum-mechanical scatter-
ing problem, and the resulting effective potential is better
behaved. Then the Schrodinger equation (3.1) becomes
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FIG. 2. The geometry of moduli space for two equal-mass
black holes (m

&

=m 2). A geodesic on this surface represents a
classical trajectory for the two-black-hole system. Circles
represent lines of constant separation of the black holes. Circles
above the throat are separated by b, r =1.46M, below the throat
by Dr=0. 0731M. The point r=0 lies infinitely far down the
cone. In "tortoise" coordinates, the throat is at R =0.

FIG. 1. We plot the potential V(R ) as a function of the "tor-
toise" coordinate, R, for two values of angular momentum.
Infinite black-hole separation corresponds to R ~ 00. R ~—00

corresponds to zero separation of the two black holes. From
the l=0 plot, one sees that there is a small barrier to coales-
cence, independent of the angular momentum. However, al-

ready for l =1 the angular momentum barrier is much larger
than this. As discussed in the text, for low energies there is
some tunneling through the l =0 barrier, but almost none
through the l & 0 angular momentum barrier.

boundary condition that y is a purely captured, left-
moving wave, as R ~—00. This implies that as
R~+ ~, the solution will be the sum of an incident
wave e 'q", normalized to unit amplitude, and a scat-
tered wave Se'q . Using the asymptotic form of the po-
tential (3.5), we find

y~& =qR [( i—)
'+—"hl '(qR )+S~&h&'+'(qR )], R ))M,

(3.6a)

(a= 1 —2p/M). For the remainder of the paper we will
treat the case /=0. ' We find, value for all p,

yqi =CqiqRh '(qR ), R && M (3.61)

3M l(l+ 1)
for R )&M,

2R3 R2

24M + 4l(i+1)
for R&& —M.R4

(3.5)

where v= &41(l + 1)+1/4 —
—,
' and h, is a spherical

Bessel function of order v. For a given eigenfunction, the
fraction of captured flux is

~ C~& ~
and the scattered flux is

IS„I'=I—IC„I'.

Hence the potential falls o8' rapidly both in the
asymptotic-free region and in the coalescence regime.
The potential with p=O, and for a couple of l values, is
plotted in Fig. 1.

If we think of the problem as the quantum mechanics
of a particle on a curved surface, the three-geometry on
which the particle moves becomes, as the horizon is ap-
proached, flat space minus a three-dimensional wedge of
solid angle 4~/4=m. A two-dimensional cross section is
shown in Fig. 2. Because the potential is asymptotically
flat, the eigenfunctions behave like free particles on either
side of the potential barrier, y=—A+e'q +8 e 'q as
R ~+ao.

%hat are the correct boundary conditions for the
eigenfunctions? If the two holes coalesce, there should be
no flux out of their joint horizon. %'e wi11 abbreviate this
as "the horizon. " (Indeed, in the classical case one can
check that in the limit m& (&m2, the solution does
reduce to that of a test particle propagating freely on the
fixed spacetime determined by the more massive black
hole. ) Therefore we want the solutions to (3.3) with the

iFor /+0 the most important effect is that as R ~—co, there
is an additional term of —96pg/R, which can alter the behav-
ior of the eigenfunctions at the horizon.

B. General properties of the solutions

Before we estimate C I and Sq& let us consider the
motion of wave packets, in which each eigenrnode evolves
like exp( —iEt /fi) =exp( i fiq t /2p ) [fr—om the definition
of q in (3.2)]. At early times, let a wave packet start in
the asymptotic-free region R ~~, t~ —~. Then, by
looking at the point of stationary phase, one sees that ini-
tially the center of the packet moves inward according to
R = —v „t, where v „=fiq/p is the nonrelativistic (rela-
tive coordinate) velocity at infinity, associated with the
momentum A'q. At large times the wave packet has split
into two pieces. The center of one piece continues to-
ward R ~—00 as R = —2v„t; this is the captured flux,
corresponding to classical coalescence of the black holes.
Apparently, it takes an infinite amount of t-coordinate
time for coalescence (this is also true in the classical
analysis. ) There is also a scattered part of the packet,
propagating as R =v t. Hence the motion of the center
of the packet is like the classical solution. The motion
along the classical path depends only on a rescaled time
v t; the parameter v scales out of the problem, and the
classical solutions depend only on the angular momen-
turn, or equivalently, the impact parameter b.

While this is also true of the center of the wave packet,
the quantum mechanical quantities of physical interest,
such as the scattering coefficient, will depend on v„(or
equivalently, q) as well as the analogue of b Indeed, from.
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the eigenfunction equation (3.3) we see that the eigen-
functions depend on the two dimensionless parameters l
and qM, or equivalently on qM and 6/M, where

b &1(1+1)
M qM

(3.7)

[This definition of b /M comes from equating the
quantum-mechanical angular momentum A'v'1(1 + 1) with
the classical angular momentum p,v„b ]F.inally, note
that the slow-motion approximation U „«1 is equivalent
to

Aq «p, (3.8)

where ~l is an unknown coefficient which is independent
of q. For large l then, the capture coefficient is

' 6l+3
2e 61

2 qM l »1,qM~0

(3.9)

that is, the (quantum-mechanical) particle is nonrelativis-
tic.

Although we do not have sufficient understanding of
the eigenfunction solutions to actually match the solu-
tions from the two asymptotic regions (and thereby
derive algebraic relations between C~l and S~l), we can
determine how the coefficients C l and S l scale with qM
in the low-energy limit. In the next section we will use
different techniques to get approximate forms for C l and

Sql in essentially all qM and l regimes.
Consider first the low-energy limit qM «1. Then for

IR I &1/q the solutions to (3.3) are (approximately) in-
dependent of q. The solution in the region M &R &1/q
inherits an overall scaling dependence on qM from the
large-R solution (3.6a). Hence this same scaling with qM
is passed onto the solution in the region—1/q &R & —M, which can then be matched onto the
large negative R region [9].

For details see Appendix A. One finds, for qM «1
and all l,

S I-—( i)'+' +0—(( qM)
'+

)ql

C. Approximate methods for C«

We now turn to the calculation of the capture
coefficient. The behavior of a wave packet will be deter-
mined by whether q is larger or smaller than the poten-
tial barrier, as in a classical scattering problem. We will
use the classical terminology, and say in these two cases
that "the particle is over or under the barrier, " respec-
tively. Recall that the barrier has a contribution from
the angular momentum, as well as a piece independent of
l. When the energy of the particle is large, so that q is
much greater than the height of the potential barrier, one
can use the Born approximation. When q is small so
that the particle is well under the barrier there are two
cases. If the angular momentum barrier is large, l »1,
one can use the WKB approximation. If l =0, one can
use another approximation where the potential is re-
placed by a 5 function.

In general for a given l and qM the roots of a cubic
equation determine if the particle is over or under the
barrier. In the case p=O this simplifies: If l =0, then the
particle is over the barrier if qM & +2X 3 /5 -=0.23. If
l 1, the particle is over the barrier, and hence primarily
captured, if qM ) —,'&l(l+ 1), which is equivalent to
b/M &5/2. (In the classical case, coalescence always
occurs if b /M & 5/2. )

1. Lou energies

In the small-qM regime one looks for wave functions of
the form

I

S'
I

' e ' . In the first WKB, or adiabatic, ap-
proximation, S=—f (q —V)'~ dR', for a wave propa-

gating in from R =+00. This neglects terms of order
IBV/BR IIq

—VI, which are small except near the
classical turning points R, and Rb, defined by
V(R„Rs ) =q . Further, for the WKB approximation to
be valid, the width of the potential, Rb —R„must be
large compared to the wavelength of the incident parti-
cle. For l%0 and small incident energies,
qM «2/5&1(I+ I), we see from (3.5) that R, =——21/q
and R~—=I/q. So the WKB approximation is valid if
&l(1+1)»2. For l =0 WKB is never valid; one cannot
fit several wavelengths in under the barrier.

Using the standard WBK matching formulas (see, e.g. ,

[10]) one finds the capture coefficient for the case when
the particle is well under the barrier, and &l(l + 1)))2,

and

IC OI (qM) for 1=0 . (3.10)

IC,(I'=4 2~+ (3.11)

[A similar analysis in the case of a Klein-Gordon field
scattering off a Schwar zschild background yields
IC II ~(qM) '+ .] Therefore at low energies the only
significant capture occurs for 1=0waves.

2We would like to thank Jonathan Simon for explaining this
point.

where
Rb

ln(8)= f dR(V —
q )

In the intervals R, &R & —M and M &R &Rb, V goes
like 1/R, and the integration can be done exactly. In
the remaining region of integration, q can be neglected
compared to V, and the value is approximately

fI dR v'V -=I (which actually turns out to be a fair es-

timate from doing the integral numerically). Using the

values for R, and Rb given above, and keeping terms of
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leading order in qM /I we find
61+3

2
Icl

&&

Ic 1 M
ql 2 l

l »1, «1.2101+s '

(3.12)
1/2-

The dependence on qM in (3.12) agree with the expres-
sion that was derived from scaling arguments (3.9)
(Indeed, one can now a proximate the unknown
coefficient I~II =1 e '/H2 .) The important point is
that the capture coefficient is very small; performing the
integration numerically one finds the capture coefficient
equals 0, to five significant figures, in ranges where the
WKB approximation is reliable.

For l =0 and energies below the potential barrier we
must use a different technique. In this case the wave-
length of the incident wave is much greater than the
width of the potential, as long as qM «1; that is, M is
small compared to the de Broglie wavelength &21JE /A'.

(In this regime there is no particular additional constraint
for consistency with the slow velocity requirement (3.8).
It is sufficient that pM/R=pM/m p~,„,k is less than or of
order 1.) This long-wavelength wave is not sensitive to
the details of the potential, and the potential in (3.3) can
be replaced by a 5 function, V~LV05(R ), with strength
fixed by

I

.01
I

.05

I M
I

FIG. 3. Capture coefficient vs qM for I =0, calculated using
(3.13). For very low energies, the behavior is different than for a
classical particle with zero angular momentum.

0.23&qM(1, where it gives a capture coefficient of
essentially unity. This agrees with the results of the
high-energy approach discussed next. ]

2. High energies

For energies high compared to the height of the poten-
tial, the simplest approximation is the Born approxima-
tion, which appears to be sufficient here. To this end, we
rewrite the eigenfunction equation as an integral equa-
tion:

y(R)=y (R )+f dR'G(R, R') V(R')y(R'), (3.14)

1s

LVO= fdR V(R) .

This problem can be solved, and the capture coefficient

where y (R ) is any solution to the equation with the po-
tential set to zero, and G(R, R') is the Green's function
for that equation. For the no-flux-out-of-the-horizon
boundary conditions, as before one takes y =e ' and

Ic, I'= 1

LVO
1+

2q

2
101+
qM

e iq(R —R')
IG(R, R )

2lq
iq(R —R i

G(R, R') =
2lq

for R &R',

for R &R' .

1=0, qM «1 . (3.13)

It is simple to estimate LVc to be a few times 10 /M,
and numerical integration gives LV0=2X10 /M . As
qM —+0 the capture coefficient goes like (qM), which
agrees with the previous result (3.10) derived from scaling
arguments.

Classically, if the two black holes approach each other
with zero angular momentum, they always coalesce. In
the quantum mechanical system, for incident energies of
qM=0. 1,0.01 and 0.001, the l=O mode has a capture
coefficient of 0.99, 0.50, and 0.001, respectively. The be-
havior interpolates between almost complete capture, as
one expects for a particle, to complete scattering to the
asymptotic free region, as is characteristic of a wave.
(See Fig. 3.) At very long wavelengths the wave barely
"sees" the black hole.

In summary, for incident energies under the barrier we
can easily compute the captured flux from (3.13), and the
higher angular momentum waves are almost completely
scattered. Only the I =0 mode has a non-negligible cap-
ture coefficient. This is not too surprising since an angu-
lar momentum barrier is hard to tunnel through. [(3.13)
can also be used for incident energies over the barrier,

ls, l'= fdR v(R)e1
ql 4

(3.15)

The integral is approximately zero where the Born ap-
proximation is valid: the width of the potential at half-
maximum is about 3M, which means that for qM»1 the
exponential in the integrand is rapidly oscillating and
different contributions cancel. We computed the integral
numerically and indeed one finds that, for qM ~ 10, once

Substituting into (3.14), we have y as the sum of an ingo-
ing and an outgoing wave, and hence can deduce the
scattering and capture coefficients S and C. It is simple
to check that this approximation does not conserve prob-
ability. However, if one computes S and C to second or-
der, probability is conserved. Furthermore, only C gets a
correction at this order. S is already correct to second
order, so it suffices to compute S to first order and derive

I
c I' from

I cI'=I —Is I'.
The range of validity of the Born approximation is

qM»0. 23, if l=0,
qM» —,'&l(1+ I), if 1&0 .

In these ranges one has
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the particle is over the barrier, the scattering coefficient is
0, to five significant figures.

3. Summary ofscattering behavior

pM pM
2IPlanck

in the case when the particle is over the barrier.

(3.16)

For qM ~ 10 we see particlelike behavior. Recall that
the condition for the wave to be over the barrier, and
hence captured, is

v'l(1+1) (
qM

which is the same as the classical condition for coales-
cence. For high enough energies the discreteness of l is
no longer important; a sketch of the capture coefficient vs
l looks very much like the plot of capture vs a continuous
b/M. (See Fig. 4.) Thus, for high energies, ~C~ =1 for
b/M &2.5. For b/M ~ 3, where we know the WKB ap-
proximation is valid, ~C~ =0. Indeed, C~ is probably
close to zero at an impact parameter closer to 2.5 than 3.

At intermediate energies, 0.23&qM &10, q is still
above the potential barrier for some l values. As I, or b,
is increased,

~
C

~
decreases from (nearly) unity to (nearly)

zero. The transition from the Born regime, where
~C~ =1, to the WKB, where ~C~ =0, is not as sharp as
in the high-energy case. (See Fig. 4.) For qM=0. 5 this
transition occurs over a change in b of about 14M, com-
pared to M/2 above.

For qM &0.23, we see transition to wavelike behavior,
as previously discussed. The wave is almost completely
scattered, the captured flux going to zero like (qM) '+
for large l and as (qM ) for I =0.

A priori, one might expect more back scattering in the
over-the-barrier case, and more capture in the under-
the-barrier case, than we have found; except for the
lowest angular momentum modes, the transition from a
capture coefficient of 1 to 0 is quite abrupt in b/M. This
is due to the "featurelessness" of the black-hole potential.
There is only one length scale M which determines both
the height and the width of the potential. Typically in
scattering problems there are two independent parame-
ters to vary.

One can also think of the over-the-barrier condition as
fixing q and letting M increase, since the analysis is valid
in a strong-gravity regime. Then, as one expects for a
black hole, once the particle flux is in, it never gets out.
Note that because of the slow-motion approximation
(3.8), in the regime qM ) 1 one can only consider black
holes with masses such that

2
)c1

I

&( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s +a ~ ~ ~ ~ ~ ~ ~ oslol 0

I ~ ~ ~ ~ ~ J ~ ~ ~ oe4 ~ ~ ~ t ~ ~ ~ ~ Jeo ~ ~ ~ I b/MI ' I

2.5

FIG. 4. Comparison of capture coefficient for qM=1 (+)
and qM=10 (), vs b/M=&I(l+1)/9M. For qM=10, the
graph is very much like the classical case.

IV. DISCUSSION

At this point the most interesting question is what has
been quantized? When solving the classical problem one
first solves for the trajectories of the black holes —which
immediately gives the diagonal metric components and
the time component of the Maxwell potential. Then one
finds (at least in principle) the other field components by
solving given constraint equations, in which the black-
hole positions and velocities appear as source terms [2].
The complete solution can be found in this sequence of
steps because of the slow-motion approximation.

In the present calculation we have quantized the dis-
tance between the two black holes. Instead of having a
solution r(t ) which is this distance as a function of time,
one now has an amplitude %(r, t ).

This is fundamentally different from calculations in
which "gravitons" are quantized as linear perturbations
off some fixed classical background (typically Minkowski
or Robertson-Walker type). In the charged black hole
problem, one of the degrees of freedom of the full metric
has been quantized, not just a fluctuation. To see this,
just write the spacetime metric (2.4) in coordinates such
that one of the black holes is at the origin and the other is
at comoving coordinate z, so that one of the metric com-
ponents is r(t)=a(t)z, the distance between the two
black holes.

On the other hand, we have not allowed for quantum
fluctuations in "directions in the space of metrics" other
than this single function. In a fully quantum mechanical
theory one must allow all the field components to vary
from the classical values. The situation is similar to the
quantization of a nonlinear sigma model. Suppose we
have a classical theory in D dimensions (or with D fields)
with a strong potential that approximately constrains the
dynamics to a (D-1)-dimensional submanifold with metric
g,b. This leads us to model the system by the o. model
L =g

' V, PV bP, where P is constrained to take values on
the (D-1)-dimensional submanifold. Quantizing the o.

model also misses out on quantum fluctuations in di.rec-
tions off the submanifold. One expects that quantizing
the reduced system is a good approximation to the full
system, if the constraining potential is sufficiently strong.
In the black-hole problem this corresponds to the slow-
motion approximation remaining good.

An alternative way to say this is that the approxima-
tion made here is the same as in "minisuperspace" mod-
els. In these quantum cosmology models, the wave func-
tion is taken to depend on only one metric component,
namely, the scale factor.

We also note that in deriving our black-hole Hamil-
tonian H,z, the classical equations of motion have been
inserted into the action. Now, it was checked by Eardly
that to derive the classical effective Hamiltonian one
could either work exclusively with the equations of
motion or with the action and equations of motion for
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some of the fields, as described earlier. However, since all
field configurations contribute to a functional integral,
one expects that use of the classical equations for N; and

3; also leads to difFerences from a full quantum theory.
Again, this is similar to the o. model approximation dis-
cussed above.

Next, what about the other fields in the problem? We
suggest that the prescription for recovering the metric
and electromagnetic fields from the wave function for the
black hole coordinates is similar to the prescription for
recovering the states of Schrodinger's cat in that famous
demonstration of quantum mechanics [11]. That is, ob-
served macroscopic states occur with probabilities pre-
dicted by quantum mechanics, but are not superpositions
of multiple quantum-mechanical states. Suppose that for
particular initial conditions of the wave function there is
a scattering coefficient p. Then at late times, according to
this prescription, one observes fields due to two widely
separated black holes with masses m

&
and m2 with prob-

ability p, and the set of field corresponding to one large
black hole with mass M, with probability 1 —p. That is,
one predicts that certain field configurations occur with
certain probabilities.

An alternative prescription would be to couple the
classical fields to the expectation value of the charge
operator. Then, e.g. , x would be the sum of two Coulom-
bic pieces, with widely separated poles, one with strength
m, +m2(1 —p) and the other with strength m2p. That
is, the resulting fields are prescribed deterministically,
and correspond to sources where "part of the black holes
coalesced and part scattered, " rather than different classi-
cal configurations occurring with different probabilities.

Clearly in the gravitational problem one can only argue
by analogy and according to what we observe at accessi-
ble energies, to choose the theory for specifying the clas-
sical fields. At this point in our understanding of quan-
tum gravity, we leave the choice to the sense and sensibil-
ity of the reader.
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2"I (v+ —,
'

)
+1

(qM)'(R /M) v'm.

[S~t + ( i )'—+ '](qM )'+ ' v'7r

2'+'I (l+ —,
' )(R /M)'+'

1——«R« —M,
g

(A 1)

[S t
—( i )'+']2—'I'(I+ 1/2) —«R «M.
(qM )'(R /M )'v'n.

(A2)

As ~qM ~
~0, the second term in (Al) dominates.

In (A2), we guess that as qM ~0,
S«-—( i)'+—'+(qM) +

s~t, where ~svt~ &1. (Later we
will show that this is self-consistent. ) Then, the first term
in (A2) dominates. Since in the regime—1/q «R « 1/q the differential equation is roughly in-
dependent of q, the dependence on q for each of these re-
gions must be the same. Matching the dominant pieces
of (Al) and (A2) gives the scaling as seen in (3.9) and
(3.10). To check the self-consistency, suppose we tried
S~t ———

( i )'+'+—(lower order), so that the second term
in (A2) dominates. Doing the matching one finds that the
capture coefficient for /=0 is of order 1. However, we
know that in the long-wavelength limit, the capture
coefficient for I =0 goes to 0.

APPENDIX A: DEPENDENCE
OF CAPTURE COEFFICIENT ON q AS q ~0

As described in Sec. III, one can only solve for the
eigenfunctions in the two asymptotic regions, and so can-
not actually do the matching to solve for the unknown
coefficients C

&
and S I. However, in the limit qM~O,

the qM dependence can be determined, following [9].
From the asymptotic expressions for the potential (3.5)
we find

(qM )'+'(R /M )"+'v'tr

2 +'r(v+-')
2
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