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Quasinormal modes play a prominent role in the literature when dealing with the propagation of
linearized perturbations of the Schwarzschild geometry. We show that space-time properties of the solu-

tions of the perturbation equation imply the existence of a unique Green s function of the Laplace-
transformed wave equation. This Green's function may be constructed from solutions of the homogene-

ous time-independent equation, which are uniquely characterized by the boundary conditions they satis-

fy. These boundary conditions are identified as the boundary conditions usually imposed for
quasinormal-mode solutions. It turns out that solutions of the homogeneous equation exist which satisfy
these boundary conditions at the horizon and at spatial infinity simultaneously, leading to poles of the
Green's function. We therefore propose to define quasinormal-mode frequencies as the poles of the
Green s function for the Laplace-transformed equation. On the basis of this definition a new technique
for the numerical calculation of quasinormal frequencies is developed. The results agree with computa-
tions of Leaver, but not with more recent results obtained by Guinn, Will, Kojima, and Schutz.

PACS number(s): 97.60.Lf, 04.20.Cv, 04.30.+x, 11.10.Qr

I. INTRODUCTION

Compact linear oscillating systems such as finite
strings, membranes, or cavities, have preferred time har-
monic states of motion if dissipation is neglected. There
is always a countable number of such solutions, charac-
terized by normal-mode frequencies co„and the corre-
sponding eigenfunctions which describe the spatial pat-
tern of the time harmonic motion. Any motion of the
system is a superposition (in general infinite) of harmonic
motions, which means that the eigenfunctions form a
complete system.

Mathematically this is based on the equation

The propagation of waves outside of a perfectly reflecting
sphere of radius 1. For simplicity we consider only the
l= 1 spherical harmonic angular behavior.

The general spherically symmetric solution of the sca-
lar wave equation which is regular (smooth) at the origin
is given by

[f(t+r) —f (t —r)] . —1

r

Differentiating with respect to x, y, or z gives the radial
part of the general l=1 solution which is regular at the
origin:

4(t, r) = [f'(t +r)+—f '( t —r) ]
1

where A is a differential operator acting only on the spa-
tial variables. Because of the boundary conditions dictat-
ed by the physical problem, A is self-adjoint with a pure
point spectrum on a Hilbert space. As a prototype, one
can consider the motion of a string whose ends are both
fixed. The energy in the system stays there forever "trav-
eling forwards and backwards. "

Completely different is the behavior, and, consequent-
ly, the mathematical properties, of infinite systems which
may lose energy to infinity. Examples are waves propaga-
ting on an infinite string or electromagnetic waves
reflected at a metallic body. Let us discuss and compare
for clarity the following two problems: (1) The propaga-
tion of waves described by the scalar wave equation in a
perfectly reflecting spherical cavity of radius 1. This im-
plies the idealized condition 4=0 at the boundary. (2)

[f(t+r) —f (t —r)], —1

icoe' +icoe ' —(e'"—e ' )=0, (4)

which is equivalent to

co=tan(co) .

This equation has an infinite number of solutions co„.
The corresponding time harmonic solutions of the wave
equation are

1cos(co„r) ——sin(co„r)
r

where f'(z) =df Idz. We try to find a solution with har-
monic time behavior which vanishes at r=1. The ansatz
f (z) =e' ' leads to the equation
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+—[A (t r) —B(—t+r)] .
1

2 (7)

The boundary condition that 4 vanishes at r = 1 implies

0= A'(t —1)+B'(t +1)+A (t —1) B(t+—1) . (g)

We see that only one of the two functions can be chosen
freely. If we choose B, then A is determined as the solu-
tion of the following linear differential equation:

A '(t)+ A (t) = B'(t +2—)+B(t +2)=f (t) .

Its general solution is

A(t)=e ' f e'f(t')dt'+A(0)
0

(10)

The function B (t) describes a wave coming in from "past
null infinity" which is modified by the reflection at the
sphere and travels outward as a wave described by A (t)
to "future null infinity. "

We may, for example, choose B(t) such that it van-
ishes outside of the interval, say, 2 & t & C, where C is an
arbitrary constant larger than 2. Such a solution
represents an incoming pulse of finite duration, it has spa-
tially compact support for all times. We then have to set
A(0) =0 to obtain the solution of finite energy—
otherwise, the solution would grow exponentially in the
past. The result is a finite pulse coming in and a pulse of
infinite duration going out. Inserting (10) into (7), we ob-
serve that, for large t (i.e., t ) r +2—C), the solution is

4(t, r) =a ——e '+"+—e
70 r2

-r ~=axe e +
r2

where

a= I e'f(t')dt'.
0

(12)

Note that the form of solution (11) is independent of the
particular structure of the incoming wave, which is
characterized by the function B (t). Only the constant a
depends on B(t).

The spatial part of this solution represents a "quasinor-
mal mode" with frequency co=i. In this particular exam-
ple there exists only one quasinormal mode. Further-
more, the frequency is imaginary, making the solution
not oscillatory, but just damped. Had we treated the case
l=2, then there would be a ——', +i &3 in the exponent;
for higher l there are l quasinormal modes. In other
cases (more complicated obstacles), there may be an

Any solution of the problem is a superposition of these
solutions; this is a consequence of the completeness of the
eigenfunctions.

In the second case the situation is quite different. Be-
cause we want a solution of the wave equation outside of
the sphere, the regularity at the center is not required,
and the general solution is

4(t, r) =—[ A '(t r)+—B'(t + r) ]
1

r

infinite number.
The radial part of the function in (11) is, in a way,

analogous to the eigenfunctions of the cavity. If we just
ask for a behavior like e'"', we will find such a solution
for arbitrary values of co. Only for ice= —1, however,
will the radial part be "outgoing at infinity" as in (11). It
is this function, which is defined by the usual
"quasinormal-mode boundary conditions, " rN-e' "
for r~~. The physical meaning of the quasinormal
modes is that they describe the asymptotic behavior of
the waves as t ~ ao at fixed r.

What we described in this example is true in more gen-
eral cases. The scattering theory by Lax and Phillips [1]
demonstrates the following for the reflection of waves at
quite general static obstacles in Minkowski space: There
is a finite or infinite number of "quasinormal modes" (this
terminology, however, is not used in the mathematical
literature) which appear as poles of the scattering matrix
and govern the asymptotic behavior for t ~ ~ at fixed r.
A theorem by Lax and Phillips [2] demonstrates that
these numbers can be calculated as the solutions of the
Helmholtz equation which satisfy the quasinormal-mode
boundary conditions.

The question of completeness of the quasinormal
modes is never an adequate one. In the case we dis-
cussed, the 1=1 scattering at the sphere, there exists just
one quasinormal mode. Furthermore, the analogues of
the eigenfunctions grow, in general, at infinity and are
not elements of the Hilbert spaces of solutions of finite
energy. It is only the late time asymptotic expansion
which is determined by these solutions. For generic data
the mode with the weakest damping dominates this be-
havior.

For wave propagation on the Schwarzschild
background —the subject of this paper —the situation is
more complicated. For the Lax-Phillips theory to be
applicable it is essential that space is flat outside of the
obstacle. We could only apply this theory directly if we
would cut off the Schwarzschild metric at some large ra-
dius R and take the flat metric near infinity. Certain cal-
culations [3,4] indicate that, due to backscatter at the
curvature of the nonflat metric up to infinity, the ex-
ponential decay changes to a polynomial one. It is plausi-
ble that the Schwarzschild quasinormal modes are the
limits of the modes calculated with the cutoff at R, letting
R go to infinity. This makes the late-time asymptotics
more diScult to determine. Nevertheless, numerical cal-
culations [4] show that the fundamental quasinormal
mode (i.e., the one which is damped least) dominates the
decay for intermediate times.

In Sec. II of this paper, we will demonstrate how quasi-
normal modes of Schwarzschild black holes may be
defined uniquely, even though the Schwarzschild metric
is nowhere flat. In Sec. III, we present a technique for
the explicit construction of the quasinormal-mode solu-
tions and for the numerical calculation of the quasinor-
mal frequencies. In Appendix A, we discuss mathemati-
cal problems arising from the approach which is com-
monly used to deal with the perturbation equation. This
approach is based on a quasistationary picture, appealing
to an analogy with a resonant system [5]. In Appendix B,



45 QUASINORMAL MODES OF SCHWARZSCHILD BLACK HOLES: 2619

some details of our construction of the solutions are out-
lined. In Appendix C we prove that the solution defined

by our approach is indeed the correct one.

Kruskal extension of the Schwarzschild spacetime. If, in

particular, the data have compact support on the
Schwarzschild part, then there is a positive constant C
such that

II. DEFINITION OF QUASINORMAL MODES
~4(t, x, 8,$)~ ~C for all t and (x,8,$) . (16}

The following master equation has been found [6,7] to
describe scalar as well as electromagnetic or gravitational
perturbations on the static part of the Schwarzschild
space time:

82
2 rPI(t, x)+ Arg&(t, x)=0,

Bt
(13)

where 4(t,x,8,$)=P&(t,x)1'& (8,$) is the perturbing
field, and Y& indicate the spherical harmonics appropri-
ate to the type of perturbation under consideration. The
radial coordinate r has been scaled such that the horizon
is at r = l. In order to obtain (13},the so-called "tortoise
coordinate" x =r + ln(r —1 } has been used, the horizon
being pushed to x = —00.

A is the following differential operator:

This implies that such a solution has a Laplace transform

P, (s,x) =J e "P((t,x)dt, (17)
0

which is a holomorphic function of s =s0+is, for sp )0
and satisfies the differential equation

s rQ(+ ArPI=J(, (18)

f"(s,x) s f(s,—x) V(x)f—(s,x)=J(s,x),
with the potential

(19)

where J&(x) is determined by the data at t=O (in the fol-

lowing we will omit the subscript l). Equation (18}corre-
sponds to an inhomogeneous Schrodinger-like differential
equation for the function f =rP:

a2 1A= — + 1 ——
Bx r

l(l+1) + cr

p2 p3
(14) 1V(x)= 1 ——

T

l(l +1} o

r 2 f 3
(20)

where r is to be considered a function of x. cr denotes the
type of perturbation:

1 for a scalar perturbation,
0 for an electromagnetic perturbation,
—3 for a gravitational perturbation

(15}

i.e., ~ is the spin of the perturbing field.
The general theory of partial differential equations for

wave equations of the above type shows that smooth ini-
tial data 4(O, x, 8,$) and (8/Bt }4(O,x, 8,$}determine a
unique, smooth solution 4(t,x, 8,$) for all t and (x,8,$}.

In the context of quasinormal modes, a quasistationary
picture, using Fourier analysis in time, is generally ern-

ployed to obtain a time-independent problem. Specific
boundary conditions are then imposed to determine a
discrete set of "resonant frequencies. " This approach,
however, suffers from several problems: The
quasinormal-mode solutions do not form a complete set,
and they become unbounded both at the horizon and at
spatial infinity. Therefore, they cannot be used to deal
with a "real*' problem which is given, for example, in
terms of initial values to (13). Mathematically, the
boundary conditions, especially at spatial infinity, do not
uniquely define solutions (see Appendix A and [8]}. Nu-
rnerically, it is extremely diScult to find solutions which
satisfy the boundary conditions, as this involves tracking
a small quantity in an exponentially growing one.

We will show that these problems can be avoided if the
initial data at t=0 are taken into account explicitly, and
a Laplace transformation instead of a Fourier transfor-
mation is used on Eq. (13}.

Kay and Wald [9] have shown that the solution is
bounded if the data have compact support on the

Without loss of generality, we consider only Cauchy data
with vanishing field at t=0. J then depends only on x.

The spectrum of the corresponding self-adjoint opera-
tor turns out to be purely continuous, there are no
periodic solutions of finite energy. There exist only im-

proper eigenfunctions, similar to plane waves, which can
be used to build packets of finite energy. These state-
ments have been proven by Dimock and Kay [10].

We may restrict our treatment to initial data of com-
pact support, since these are dense in the space of data of
finite energy. We then know that the corresponding solu-
tions must have a Laplace transform which is analytic in
the right complex half-plane In the following we wi11 use
the Laplace transformation technique not to show ex-
istence, but to obtain certain representations of the solu-
tions.

Leaver [4] and Sun and Price [11,12] never discuss the
question whether the solutions actually have a Laplace
transform. Rather, they take the existence of the Laplace
transform for granted, as well as the existence of quasi-
normal modes. They assume that the quasinormal modes
are defined and calculated by the quasistationary ap-
proach, relying on Fourier transformation of the time-
dependent perturbation equation. Their emphasis is on
treating astrophysical problems using the Laplace trans-
forrn, they do not attempt to calculate the quasinorrnal
frequencies themselves on this basis.

A solution of the homogeneous, linear ordinary
differential equation corresponding to (19) is determined
by the initial values f (a) and f'(a) at an arbitrary value
a of the argument, it is then defined for all x. Any such
solution is an entire function in s [13], there are two
linearly independent solutions for each value of s.

The equation above plays a prominent role in the
theory of Sturrn-Liouville operators. A theorem of Weyl
demonstrates that, for nonreal s, there is—depending on
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f (s,x')f+(s, x) (x'(x),
G(s,x,x') =

W(s) f (s, x)f+ (s,x') (x' & x ), (22)

the behavior of V(x) for x~oo —either one solution
which is square integrable in 0&x ( ao, or all solutions
are square integrable. The first case is called the limit-
point case, the second the limit-circle case. For the po-
tential in (20), one is in the limit-point case at both ends.
Hence, there is a solution f+ which is square integrable
to the right and one, f, which is square integrable to
the left.

The solution of the inhomogeneous equation is unique
up to a solution of the homogenous equation. Among all
possible solutions, we have to find the unique solution of
the inhomogeneous equation which is the Laplace trans-
form of the original solution in space time. Any two
linearly independent solutions of the homogeneous equa-
tion define a particular Green's function of the inhomo-
geneous equation. If we build the Green's function using
f and f+, and if J(x) is of compact support, we obtain
a solution of the inhomogeneous equation which is square
integrable in x:

f (s,x)= J G(s, x,x')J(s, x')dx', (21)

Im a

~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~41 11I ~ \44 001 iI@10101 8 Ii V@VII 04VA1 IV@V 0114 11 I~

Re(s)

FIG. 1. Path of integration I in the complex plane for the in-

verse Laplace transformation. S&, . . . , Ss are the first eight
poles of the Green's function. The shaded region indicates a
branch cut of the Green's function along the negative real axis
including [Oj.

f (s,x)-e'" as x ~—~

and

f+(s,x)-e ' as x~ oo

(23)

where 8'(s) is the Wronskian off and f+.
The boundedness of the solution in space time (16) im-

plies that the Laplace transform (17) is bounded in x as
well. The choice (22) for the Green's function is therefore
correct.

The general theory of the limit-point case at both ends
tells us that the Green's function, which yields square-
integrable solutions of the inhomogeneous equation, is

unique. All other Green's functions lead to solutions of
the inhomogeneous equation which are unbounded in x.
Therefore, (22) is the only possible choice for the correct
Green's function.

So far, we have defined the Green's function only in the
right half-plane of s, where the path of integration for the
inverse of the Laplace transform is located. We may now
continue the Green's function analytically into the left
half-plane of s. This may be done by continuing f and

f+ from the right into the left half-plane and using (22)
again. It turns out that the Wronskian of f and f+ has
isolated zeros there, leading to poles of the Green's func-
tion (22) (see Fig. 1).

The formal replacement s =ice turns the Laplace-
transformed equation (19) into the well-known Fourier-
transformed equation. Note that a real solution of the
time-dependent equation will have a real Laplace trans-
form for a real Laplace parameter s. In this case, the in-
homogeneity J(s,x) in (18) is also real, as well as f and

f+ and the Green's function constructed from them.
Investigating (19) with standard techniques [15], we

find that the solutions which are bounded at either end
must behave like

in the right half-plane of s. Their analytic continuations
into the left half-plane must therefore show the same be-
havior, even though this will make them unbounded at
the boundaries. The replacement s =icu then shows that
f and f+ satisfy the usual quasinormal-mode boundary
conditions. Thus, the solutions of the homogeneous
equation used to construct the Green's function (22) al-
ways satisfy "outgoing" boundary conditions at either
spatial infinity or at the horizon [usually, waves going
into the horizon are called "outgoing" with regard to the
static part of the Schwarzschild space time, especially
when the tortoise coordinate x of (13) is used].

The vanishing of the Wronskian indicates that we have
indeed found values of s (and therefore co) where there ex-
ists a solution of the transformed equation which satisfies
the conditions at both boundaries simultaneously. We
may therefore regard the zeros of the Wronskian of f
and f+ as quasinormal modes of the Regge-Wheeler po-
tential (20).

It is now possible to close the path of integration I
(Fig. 1) in order to compute the contributions to the in-
verse of the Laplace transform which arise from the cor-
responding poles of the Green's function. This has been
done by Leaver [4], and it turns out that these contribu-
tions indeed dominate the response of the metric some
time after the disappearance of the initial perturbation, as
quasinormal modes are expected to do.

We note that the mathematical ambiguities of the
quasistationary picture, arising from the fact that it has
never been shown how the quasinormal-mode boundary
conditions should be used to actually pick a unique solu-
tion (see Appendix A), do not occur here at all. It is also
quite clear how actual physics problems may be treated
using the Laplace transform. Indeed, Leaver [4] and Sun
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and Price [11,12] have already presented such calcula-
tions. Therefore, we suggest that the quasistationary pic-
ture be dispensed with altogether, and that quasinormal
modes be regarded as the poles of the Green's function
for the Laplace transformed solutions.

Having defined the quasinormal modes, the problem of
their physical meaning has to be solved. The representa-
tion of the solution in terms of a Laplace transform al-
lows one to relate decay properties in time to analyticity
properties of the Laplace transform. We know that it is
analytic in the right complex half-plane. The zeros of the
Wronskian lead to poles in the left half-plane. If these
were the only singularities, we would obtain exponential
decay in time with frequencies determined by the quasi-
normal modes. The analysis by Leaver [4] indicates that
there is an essential singularity at s=0, leading to polyno-
mial decay in time like t ' . In addition, Leaver
shows that contributions from the part of the integration
path which lies at ~s~

= 0O cause further modifications of
the decay behavior.

III. CONSTRUCTION OF THE SOLUTIONS
AND NUMERICAL RESULTS

f'"(r)=(r —1)' g a„(r—1)",
n=0

f' '(r)=(r —1) ' g b„(r—1)" .
n=0

(25)

The coefficients an and b„may be obtained by substitut-
ing these expansions into (24) and choosing, e.g.,
ao =bo =1.

If Re(s) &0, then f' '(r) is unbounded as r~l, while
f'"(r) is bounded. Since there is only one bounded solu-
tion, f'"(r) must be identical to the desired solution
f (r). Note that the series in (25) converge absolutely
for

~
r —1

~
& 1. f (r) is therefore well defined for

0 & r & 2 and may be continued analytically to 0 & r & ~.
In fact, it is possible to obtain a series expansion for
f (r) which covers —,

' &r & 00 in one piece (see, e.g.,
Leaver [4]).

So far, the identification of f (r) with f'"(r) is valid

We will now address the question how the Green's
function can actually be constructed and how its singu-
larities may be determined. On this basis we will develop
a new technique for the numerical calculation of quasi-
normal frequencies. The following results are presented
in more detail in the Ph.D. thesis of Nollert [14].

In the following we will use the Schwarzschild coordi-
nate r as radial coordinate, since all coefficients in the
differential equation corresponding to (19) are known ex-
plicitly as functions of r, but not as functions of x. The
homogeneous part of (19) then becomes

r (r —1) f"(r)+r(r —1)f'(r)

+[ sr 1(l +—1)r(r ——1) cr(r —1—)]f(r)=0 . (24)

Using standard techniques [15], we obtain two series ex-
pansions for two linearly independent solutions of (24):

only in the right half-plane of s. However, the expansion
of f (r) converges for all s and is analytic in s. There-
fore, it also represents the analytic continuation off (r)
into the left half-plane of s.

We also know that there are two linearly independent
solutions f'+'(r) and f'+'(r) which have the following
asymptotic expansions for r~ Oo:

N
f~p~(r)=e '"r ' g a„r"+P(r ')

n=0
(26)

f' '(r)=e+sr„+s g ~ „—n+P(r N i)——

n=0

Again, if Re(s) &0, then f'+'(r) is unbounded as r~ oo

and f'+'(r} is bounded. Therefore, the required solution
f+(r) must be identical to f'+'(r). However, since the
expansions (26} are only asymptotic and do not converge
for any value of r, the problem of actually constructing
f+(r) remains. In principle, it is possible to start with
some initial condition [which may be obtained from (26)],
to integrate to large values of r, and to check if the solu-
tion stays bounded. If not, change the initial conditions
and try again, until f+ (r) has been obtained with
sufficient accuracy.

This method works for values of s in the right half-
plane, but not in the left half-plane: There we would
have to look for a solution which becomes unbounded as
we integrate towards large values of r. However, almost
all solutions of (24) are unbounded as r approaches
infinity. Thus, it will be impossible to distinguish the
solution f+(r) from others in this way.

If we need f+(r) in the left half-plane (to compute
quasinormal modes, for example), the "trial-and-error"
method would have to be repeated for many values of s in
the right half-plane and the resulting solutions be contin-
ued analytically (as functions of s) into the left half-plane.
While this procedure is well-defined mathematically, it is
impossible to realize numerically, especially for large neg-
ative real parts of s. We must therefore look for some
representation which allows us to obtain f+(r) directly
for all values of s.

The construction of such a representation will be based
on the asymptotic expansion (26) of f'+'(r). We will
define a sequence of solutions which will be coupled to
the values of the asymptotic expansions at growing values
of r. We will then show that this sequence converges to a
solution which we will identify as the desired solution
f+ (r).

Define a sequence A„(r)of functions by

A„(r)=e '"r ' g a r™,
m=0

(27)

df„+ dA„(r„)= (r„)for all n &No,
dr " dr

i.e., the A„arejust the asymptotic expansion of f'+'(r)
truncated after n+1 terms. Define a sequence of solu-
tions of (24) by the initial conditions

f„+(r„)= A„(r„),
(28)
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where

2lsl
(29)

via (30) from the Wronskian of f, (r.) with f (r)], we have

C"'= — K1
n K 2n

12

and No has to be chosen such that rN & 1. This coupling
0

between r and n will be necessary to guarantee conver-
gence of the sequence f„+(r)

Let g (r) be an arbitrary solution of (24). Consider the
sequence W„(r)= W[g, f„+](r)of Wronskians of g(r)
with f„+(r).The Wronskian of any two solutions of (24)
has the form [16]

r
W [f),f 2](r)=K)2w(r) =K)2

r —1
(30)

where K,2 is a complex constant.
We therefore have a sequence K„ofnumbers corre-

sponding to the sequence of Wronskians W„(r)such that

W„(r)—= W[g, f„+](r)=K„w(r). (31)

This sequence K„is given by the following expression (see
Appendix B):

Kn =KN +

where

m =N0+1
k + g I

m =N0+1
(32}

and

k =w '(r )W[g, A —A, ](r ),
1 =w '(r ) W[g, b, , )(r )

g (r')I, (r')
dr

"m —i r' (r' —1) w(r')

(r)=A (r) —f+(r) .

(33)

(34)

Let f, (r) and f2(r) be any two linearly independent
solutions of (24). We may then express each f„+(r)as a
linear combination of f, (r}and f2(r):

f„+(r)=C„'"f,(r)+C„' 'f2(r) .

Due to the identity

K,~f~(r)+K23f, (r)+K3,f (r)=0 (35)

for any three solutions f; (r) of (24) [where K," is obtained

I (r) is obtained by applying the differential operator
corresponding to (24) to A (r) [see (B14)]. k„and 1„
represent the difference between K„1and Kn. We may
regard k„asthe contribution which arises from using one
more term in the asymptotic expansion (26) and l„asthe
contribution due to changing from rn 1 to rn in the ini-
tial condition (28) for f„+(r).K~ may be determined by

0

using (28) to evaluate W~ (r~ ).
0 0

It may be shown that the sequence Kn converges for
n ~ ~ (see Appendix B). The sequence W„(r)therefore
converges point by point to a function

W(r)= lim W„(r)=Kw(r)=( lim k„)w(r) .

and

c"'= 1
n K 1n

12

(36)

where K,„andK2„aredetermined by letting g (r) =f&(r)
and g (r) =f2(r), respectively, in (32)—(34). Since
K, =limn „E,n and K2=limn „K2„exist,so must

any given r, the sequence f„+(r)converges to

f (r) =C'"f—
~
(r)+ C"'f2(r) . (37)

On the other hand, any linear combination of f, (r) and
f2(r) is itself a solution of (24). Thus, the function f (r),
which has been defined only point by point so far, must
also be a solution of (24).

Note that the solutions f„+(r)in the sequence defined
by (28) are usually unbounded as r~ao. It is therefore
necessary to show that the limit function f(r) stays
bounded as r~ oo (see Appendix C). Since there is only
one solution which has this property, we may identify
f (r) as the desired solution f+ (r).

The sequences E,„andE2n converge absolutely for all
values of s except those where Re(s) = —Isl, i.e., the nega-
tive real axis including j0]. They contain only functions
of s which are analytic in s, except at s=0 and at isolated
points along the negative real axis. Therefore, f(r} as
given by (32)—(34), (36), and (37) may again be regarded
as a representation of f+(r) which is valid for (almost)
all values of s.

We note that in the derivation above, we have encoun-
tered three possible procedures for the definition of
f+ (r): (i) Pick out the solution which stays bounded as
r —+ 00 for values of s in the right half-plane, continue this
solution analytically into the left half-plane, (ii) construct
the sequence f„+(r)according to (28) and use its limit, or
(iii) pick two suitable solutions f, (r) and f2(r) and use

expression (37). However, while these possibilities are
mathematically equivalent, only the third is actually
practical for numerical purposes.

For the computation of quasinormal modes, we do not
have to construct f+ ( r ) explicitly. It is sufficient to use

g(r) =f (r} in (32)—(34) to determine the value of K for

f+ and f . If K is zero, the Wronskian of f+ with f
vanishes and the Green's function (22) has a singularity.

For the numerical evaluation of f (r), a series repre-
sentation which converges for all values r & —,

' may be
used instead of (25) [4]. However, the convergence of this
series becomes very slow as r grows. It is therefore better
to switch to power series in (r —r, ) with growing r; as
r —+ 00.

1„in (34) may be computed by numerical integration.
However, it is much faster to obtain a differential equa-
tion for the integrand

g (r)I„,(r)i„{r)=
r (r —1) w(r)
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by substituting

r (r —1) m(r) .
~ Nollert [14]

Leaver [4)

Ixn(a)—0.8

in (24). This differential equation may again be solved by
a power-series ansatz, this power series may then be in-
tegrated trivially.

In this way, all expressions involved in the computa-
tion of E are given in terms of convergent series. The
convergence properties as well as the remainder terms
may be estimated a pnori, allowing an eScient numerical
evaluation of E. However, it turns out that the series E„
may 6rst grow very large before approaching its limiting
value. This effect becomes stronger as the real part of s
grows more negative. While this obstacle may, in princi-
ple, be overcome, it has kept us so far from calculating
E(s) for Re(s) (—6.

We have searched for zeros of E as a function of s, for
the case of gravitational perturbations (cr= —3) and
different values of l. The results are presented in Table I
and in Fig. 2. The values obtained by Leaver [4] via a
continued fraction expression and by Quinn, Will, Koji-
ma, and Schutz [17] (GWKS) through a Wentzel-
Kramers-Brillouin (WKB) approach are shown for com-
parison.

It turns out that our results agree completely with
Leaver's, with the exception of Leaver's purely imaginary

X Guinn, WiG, KojinIa,

and Schutz [17]

X p

X
Pe

—0.6

—0.4

Oi p
pe

—0.2

{
t

{

—6.0 —4.0 —2.0

0.0

0 Re(s)

frequency, which corresponds to s = —4 in the case of
1=2. We do not find a zero of K(s) at this value of s.
However, the question whether there is a quasinormal
mode near s = —4 has many aspects which go beyond
this simple statement [14]. We will discuss these in a fu-
ture paper.

We would like to stress that our technique, as well as
its mathematical foundation, is totally different from the

FIG. 2. The first 12 poles of the Green's function for the
gravitational case and 1=2. The results of Leaver and of
GWKS have been multiplied by i. Note that the values of
GWKS for n =6, 8, 10, and 12 are not shown.

TABLE I. The first 12 singularities of the Green's function for the gravitational case and 1=2,3.
The results of Leaver and of GWKS have been multiplied by i to compare them with ours.

1=2
Zeros of It, (s)

Re(s) Im(s) Re(s)
Leaver [4]

Im(s)
GWKS [17]

Re(s) Im(s)

1

2
3
4
5
6
7
8
9

10
11
12

—0.177 925
—0.547 830
—0.956 554
—1.410 296
—1.893 690
—2.391 216
—2.895 821
—3.407 682

No zero of K(s)
—4.605 289
—5.121 653
—5.630 885

0.747 343
0.693 422
0.602 107
0.503 010
0.415 029
0.338 599
0.266 505
0.185 645

0.126 527
0.153 107
0.165 196

—0.177 925
—0.547 830
—0.956 554
—1.410296
—1.893 690
—2.391 216
—2.895 822
—3.407 676
—3.998 000
—4.605 289
—5.121 653
—5.630 885

0.747 343
0.693 422
0.602 107
0.503 010
0.415 029
0.338 599
0.266 505
0.185 617
0
0.126 527
0.153 107
0.165 196

—0.178 40.746 4
—0.549 80.692 0
—0.942 20.605 8
—1.437 60.535 2
—1.934 20.454 8

Not available
—2.961 80.354 0
Not available
—3.99040.298 0
Not available
—5.01340.262 4
Not available

1

2
3
4
5
6
7
8
9

10
11
12

—0.185 406
—0.562 596
—0.958 185
—1.380 674
—1 ~ 831 299
—2.304 303
—2.791 824
—3.287 689
—3.788 066
—4.290 798
—4.794 709
—5.299 159

1.198 887
1.165 288
1.103 370
1.023 924
0.940 348
0.862 773
0.795 319
0.737 985
0.689 237
0.647 366
0.610922
0.578 768

l=3
—0.185 406
—0.562 596
—0.958 186
—1.380674
—1.831 299
—2.304 303
—2.791 824
—3.287 689
—3.788 066
—4.290 798
—4.794 709
—5.299 159

1.198 887
1.165 288
1.103 370
1.023 924
0.940 348
0.862 773
0.795 319
0.737 985
0.689 237
0.647 366
0.610922
0.578 768

Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
Not available
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one used by Leaver. In fact, these two are the only known
methods to compute, without approximation, quasinor-
mal frequencies well beyond the fundamental ones. As
we have shown, the basis for our computations is
mathematically rigorous and well understood. On the
other hand, the continued fraction relation used by
Leaver is derived by an analogy to the H2+ ion which is
not unambiguous mathematically.

The imaginary parts of GWKS's numbers (which have
to be multiplied by i) agree well with the real parts of s,
the remaining di8'erences are probably due to the approx-
imations contained in their WKB method. However, for
N ~ 4, there are considerable difterences between the real
parts of their quasinormal frequencies and the imaginary
parts of s, which can probably not be attributed to ap-
proximation inaccuracies.

According to Guinn [18], in the case of the Poschl-
Teller potential, the quasinormal frequencies computed
on the basis of the boundary conditions indeed agree with
those obtained by the %KB technique. The Poschl-
Teller potential, which has been used as an approxima-
tion to the Regge-Wheeler potential by Ferrari and
Mashhoon [19],never becomes exactly 0 either, but it de-
cays exponentially at infinity, while the Regge-%'heeler
potential shows a polynomial behavior. %e have already
pointed out [20] that the real part of the quasinormal fre-
quencies depends strongly on the decay behavior of the
potential at spatial infinity, while the imaginary part is
rather insensitive to it. It is therefore possible that the
differences between our calculations and those by GWKS
show up only if the potential decays slowly at spatial
infinity.

IV. CONCLUSIONS

We have first formulated the perturbation problem for
the Schwarzschild metric in space time. The approach
usually employed to obtain a time-independent problem
is Fourier transformation of the time-dependent equa-
tion, followed by imposing boundary conditions on the
solutions derived from an analogy to quantum mechan-
ics. However, the spectrum of the relevant self-adjoint
operator is purely continuous, there are no periodic solu-

tions of finite energy. %e have demonstrated that this
leads to problems with the mathematics of this definition
of quasinormal modes, as well as with the physical inter-
pretation of the resulting "eigenfunctions. *'

Alternatively, we have first shown that finite energy
solutions of the time-dependent equation must have a La-
place transform. We have then proven that the proper-
ties of the solution in space time necessarily imply a
unique choice of the Green's function for the Laplace-
transformed (inhomogeneous) equation. There is neither
the necessity nor the freedom to choose ad hoe boundary
conditions or to appeal to an analogy with quantum
mechanics. It turns out that the correct Green's function
must be constructed from solutions of the homogeneous
equation which may be regarded as "outgoing" at either
spatial infinity or the horizon.

The Green's function for the Laplace transform of a
real solution of the time-dependent equation is real, if the

APPENDIX A: ASYMPTOTIC BEHAVIOR
BECOMES INSUFFICIENT FOR SPECIFYING

A UNIQUE SOI.UTION IF Im(ru) )0

In the literature on quasinormal modes of black holes,
a quasistationary approach is commonly used to deal
with the time-dependent perturbation equation. Equa-
tion (13) is Fourier transformed, expressing P(t, x) as

P&(t,x)=e'"'P, (co,x) . (A 1)

Initial conditions at some fixed time to cannot be taken
into account in this way. Rather, the boundary condi-
tions

Laplace parameter s is real. It is constructed from real
solutions of the homogeneous Laplace-transformed equa-
tion. This real Green s function has a unique analytic ex-
tension onto the complex right half-plane, where the real
part of s is positive. This follows from the original solu-
tion being bounded in space time. This analytic exten-
sion of the real Green's function may be used to compute
the inverse of the Laplace transform.

We then construct the maximal analytic extension of
the Green's function. There we find isolated singularities
due to the vanishing Wronskian in the denominator of
the Green's function. This implies that the correspond-
ing two solutions of the homogeneous equation become
linearly dependent, the resulting single solution satisfying
both boundary conditions simultaneously.

Since these boundary conditions are identical to those
usually imposed on quasinormal-mode solutions, we pro-
pose to define quasinormal frequencies as those values of
the Laplace parameter s where the poles of the Green's
function occur. This definition sufFers from none of the
diSculties which are characteristic for the (quasistation-
ary) Fourier-transform approach.

We have given analytic expressions for the Green's
function in terms of absolutely convergent series expan-
sions. These expressions may also be used to determine
quasinormal frequencies numerically, without the
dif6culties which have stiQed such attempts in the past.
It turns out that our results are identical with values ob-
tained by Leaver, but they disagree with more recent cal-
culations by Guinn, Will, Kojima, and Schutz.

For the Schwarzschild background, the meaning of the
quasinormal frequencies and the corresponding solutions
of the perturbation equation is not completely clear. In
cases where the Lax-Phillips scattering theory is applic-
able, the quasinormal frequency with the biggest real part
determines the final decay in time of any solution at a
fixed point in space. The corresponding "quasinormal-
mode eigenfunction" describes the final form of the
damped waves in a fixed finite spatial interval. This form
is independent of the particular initial data. However,
these results cannot be applied directly to the
Schwarzschild case. Nevertheless, numerical calcula-
tions, e.g., by Leaver and Sun and Price, indicate that
quasinormal modes describe a universal exponential de-

cay for some intermediate time, before a polynomial de-

cay behavior takes over to dominate the final evolution
for very late times.
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(A2)

AP(x) —co P(x) =0, (A3)

where A is the differential operator defined in (14) (we
have dropped the subscript I, the argument co, and the
caret on P). However, this is no longer true if co is corn-
plex and has a positive imaginary part. Note that quasi-
normal frequencies can occur only at such values of co

where this is the case.
We will look especially at the situation when x ~+~.

Stated more accurately, the boundary condition (A2)
specifies

P(x)=e ' "[1+O(x ')] as x~~ . (A4)

Suppose now we had singled out a specific solution Pi(x)
whose asymptotic behavior is given by (A4). There is
another solution Pz(x) of (A3) which behaves as

$2(x)=e+'""[I+O(x ')] as x~oo . (A5)

We may now define $0(x)=Pi(x)+$2(x). Then $0(x) is a
solution of (A3) and it has the asymptotic behavior

are imposed on the solutions of (Al). With respect to the
time dependence chosen in (Al), these boundary condi-
tions specify waves which are outgoing at either spatial
infinity or at the horizon. In this context, "outgoing at
the horizon" means traveling towards smaller values of x
(and therefore of r}, i.e., going into the black hole.

For the purpose of studying quasinormal modes, it is
commonly assumed that (Al), applied to either x ~—~
or x~+ ~, may be used to uniquely determine a solu-
tion of

APPENDIX B: COMPUTATION OF K[g,f+ ]
AND PROOF OF CONVERGENCE

Since the Wronski determinant is linear in any one of
both functions, we obtain

W„(r„)=W„,(r„)+W[g,f„+ f„+—, ](r„)
= W„,(r„)+W[g, A„—A„,)(r„)

+ W[g, A„,—f„+,](r„), (Bl)

where we have used that f„+(r)and A„(r)are identical at
P =T~.

Dividing by w (r„),we find

K„=K„i+w '(r„)W[g,A„—A„ i](r„)
+w '(r„)W[g,b,„&](r„). (B2)

The term k„=w '(r„)W[g,A„—A„,](r„)may be
evaluated in a straight-forward way. For the computa-
tion of l„=w '(r„)W[g,h„ i](r„) we apply the
differential operator corresponding to (24) to A„(r)and
obtain

DE( A„)(r)=I„(r), (B3)

since A„(r)is not a solution of (24).
However, we may as well regard (B3) as an inhomo-

geneous differential equation which has A„(r)as a solu-
tion. Since f„+(r)is a solution of the homogeneous part
of (B3), the function b,„(r)= A„(r) f„+(r)mus—t also be a
solution of (B3).

The Wronski determinant W[g, h„](r) satisfies the
differential equation

$0(x)=e '""[I+O(x ')+e ' "[1+O(x ')]}
=e ' "[1+O(x ')], (A6)

d W[g, h„]
r (r —1) (r)+r(r —1)W[g, b,„](r)

dr

=g (r)I„(r). (B4)
since, with a positive imaginary part of co, the term e ' "
vanishes faster than any power of I/x.

Therefore, $0(x} [and almost every other solution of
(A3)] has identically the same asymptotic behavior as
P&(x). Thus, it is clear that (A4) is not sufficient to single
out a unique solution of (A3) if co is complex and has a
positive imaginary part.

This is not surprising since an asymptotic expression
never defines a single function, but always a class of func-
tions. In the case of real co (or complex co with negative
imaginary part}, the class defined by (A4} happens to con-
tain only one solution of (A2), while in the case of a posi-
tive imaginary part of co it contains almost all solutions of
(A3).

A similar problem exists at the horizon, i.e., for
x —+ —~. However, we may derive a convergent series
for solutions of (A3), which may formally be compared
with the boundary condition. In this way we can identify
a unique solution which we choose to regard as "outgo-
ing at the horizon. " This procedure does not work forx~+ co: The differential equation (A3) has a strong
singularity here. Therefore, a convergent series expan-
sion for x~+ ao does not exist, asymptotic expansions
like (A4) are all we have to work with.

Substituting

W [g,h„](r)= V„(r)W„(r) (B5)

into (B4) yields the differential equation

r (r —1) W„(r)V„'(r)=g(r)I„(r) (B6)

g ( r')I„(r')
V„(r)= dr' .'. r' (r' —1) w(r')

(B7)

This solution satisfies the initial condition V„(r„)=0,
which follows from (28) via b „(r„)=0=6,'„(r„)and
W„(r„)=0.

Using the definition of 1„,(B5), and (30), we obtain

g (r')I„ i(r')
'n —

&
r' (r' —1) w(r')

(B8)

%'e will prove the convergence of the series g(k„+1„)
by treating gk„and gl„separately. In order to examine
the behavior of k„for large n, we will approximate g (r)

for V„(r) This ma. y readily be integrated, leading to the
solution
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by the first two terms of its asymptotic expansion:

g(r)-e +'"—r '(—go+g, r ') . (B9)

In order to determine an+ &/a„,we need to know the re-
currence relation for the a„explicitly:

We will only demonstrate the case where the asymptot-
ic expansion of g (r) has minus signs in both exponentials.
The case corresponding to two plus signs may be treated
in a completely analogous way and, in fact, leads to a fas-
ter convergence of gk„.

Evaluating the expressions on the right-hand side of
(33) to first order in r ', we find

co(n) a„+c(( n) a„,+cz(n)a„z+c3(n)a 3 0

(B12)

where

co(n) =2sn,

k„+)
k„

n —1

$/~$~ n +1 n +1a„r„
=e ~/)~[ an+1 2lsla„n+1

—2$"n —2$ —n

fn

Using r„=n/2lsl, we obtain

n+1
' —n

(B10)

(Bl 1)

c, (n ) =n (n —1)—2s (n —1)—2s —I (l —1),

cz(n) = —n (2n —5)—2s (n —1)+l (1 —1)—o —2,

c3(n) =n (n —4)+2s(n —2)+s +(r+3 .

Usually, for large n, the behavior of an will be charac-
terized by a„/a„,—n /2s. We therefore obtain

kn+,

k„ Ie
—( —s//s/ e

—[(+Re(s)/isi] .
& 1 if Re(s)% —ls

(B13)

where we have used lim„„(1+1/n)"=egk.
„

therefore converges absolutely as long as s does not lie on the negative
real axis.

In order to prove the convergence of g(, we will use
I pl„I

& g I I„I and
n

g(r')I„((r') 1II„I=f" " dr' & f"
I

Idr'& maxi
"n —( r' (r' 1) w(r')—

For simplicity, we will assume that the maximum is attained at r =r„.
At this point we need to know I„(r)explicitly:

I„(r)=e '"r 'r "a„c3(n+3)+e '"r 'r "+'[a„(c3(n+2)+a„cz(n+2)]
+e '"r 'r "+ [a„zc3(n+1)+a„(cz(n+1)+a„c,(n +1)], (B14)

where the c;(n) are the same as in (B12).
We will split up 1„into a sum of six contributions,

each corresponding to a term of the form
e '"r 'r '" /'a„;ck(n+3 j), i j kE[0—1 2], in
I„(r).The convergence of each of these contributions

may be examined separately. It is suScient to consider,
as an example, the contribution arising from
e '"r 'r "a„c3(n+3). For large n, its dominant behav-
ior is

convergence of gl„"'may therefore be shown in the same
way as for gk„.

APPENDIX C: PROOF THAT
THE LIMIT SOLUTION f ( r) IS BOUNDED

FOR Re(s) & 0

Every function f„+(r) in the sequence of solutions
defined by (28) may be expressed as a linear combination
off(+~(r) and f '+'(r) [see (26)]:

~(1) 1

2lsl

1

2lsl

2$f'
n —2s —n

rn ~ngoc3(n +2)a„(e
r~(r„—1)

$1'

g (r„)e "r„'r„"+'a„(c3(n+2)
r„(r„—1) w(r„)

(B15)

f„+(r)=C„"'f'+'(r)+C''f' '(r) for all n &No . (Cl)

Since the limits C"'= limn C„'" and C' '

=lim„„C„'' exist, there must be some index 1V& and
real, positive numbers m, and m 2 such that

IC„'"I&m,

Again, we are only presenting the case where
g (r)-goe '"r ' for large r Obviously, I„"'.is dominated
by tke same terms which are characteristic for kn. The

and

IC„' 'I &mz for all n &N( .

(C2)
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We want to show that C' ' must be zero. Suppose
C' '%0: In this case there is also an index N2 and some
real, positive number M2 such that

mz =
—,', and M+ =1/M2, with indices N3, N4, and Ns

determined accordingly. Let N= max(N(, . . . , Ns ). We
then have

~C„' '~ )Mz for all n )Nz . (C3) AN(re ) =fthm (rN )

Since f'+'(r)-e '"r '[a o+O(r ')] for large r, we
can find an index N3 for any positive number m+ such
that

~f '+' ( r„)~ & m+ for all n )N3 (C4)

as long as Re(s) & 0. For the same reason, there is an in-
dex 1V4 for any positive number m z such that

~ A„(r„)~

& m
„

for all n )N4 .

On the other hand, f(+'(r)-e'"r'[13o+0(r ')], so
there is an index N5 for any positive number M+ such
that

=Ct't"f '+" ( rN ) +Ct'v 'f '+'( rN )

—~Atv(re) Ctv
—f+ (rN)~

C(2)f (2)(r )
~

However, due to (C2), (C4), and (C5), we find

l AN(rN) CN'f+ (rN)l &mA+mtm+ =1

On the other hand, due to (C3) and (C6),

~(Ct't 'f'+'(re )~ &M&M+ =1 .

(C7)

(C9)

~f'+'(r„)~)M+ for all n &N5 . (C6)

Choose suitable values for m& and M2 with corre-
sponding indices N, and N2. Let m+ =1/(2m, ),

Obviously, (C8) and (C9) together are in contradiction to
(C7). Therefore, C' ' cannot be different from 0, and the
limit function f ( r ) must be proportional to
f'+" (r)=f+(r).
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