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Quantum mechanics of a solid-state bar gravitational antenna
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A quantum-mechanical treatment of a bar gravitational antenna is presented. The theory takes into
account the crystalline structure of the bar and collective behavior of its mass elements. The low-

frequency and high-frequency (Debye) modes of oscillations are considered. It is shown that the
quantum-mechanial derivation of the absorption cross section of the gravitational antenna agrees totally
with the classical result. The recent claims of a significant (six orders of magnitude) quantum-
mechanical enhancement of the cross section are shown to be incorrect.

PACS number(s): 04.80.+z, 04.30.+x, 63.20.—e

I. INTRODUCTION

The use of solid-state bars is a current technique aimed
at detecting gravitational waves produced by violent as-
trophysical events. The first bar detectors were built and
operated by Weber in 1965 and since then their perfor-
mance has been gradually improving. Currently, the best
sensitivity of bar detectors is close to h=3X10 ' [1]
which is approximately a factor of 2 or 3 better than the
sensitivity of existing prototypes of laser-interferometer
gravitational detectors.

A solid bar represents a mass-quadrupole mechanical
oscillator. The fundamental mode of a bar, usually at the
frequency of the order of co, /2~=10 Hz, is assumed to
be nearly in resonance with characteristic frequencies of
the incoming bursts of gravitational radiation. For a bar
with mass M and length L, the absorption cross section
o'(co) integrated over the antenna's bandwidth and divid-
ed by co, is of the order of

G
O.

I
— ML col

C

(see, for example, Refs. [2—4] and Sec. II below). The nu-
merical value of col determines the excitation energy of
the antenna acquired under the action of a burst of gravi-
tational radiation with duration At and characteristic fre-
quency co =2m/ht; eventually, it determines the
detector's sensitivity.

Expression (1) has been recently questioned by Weber
[5] who claims that the quantum-mechanical treatment of
the antenna provides a considerable enhancement factor
increasing with the number of atoms in the antenna.
Weber discusses the bar antenna as a mechanical system
consisting of N planar slabs each having one-atom thick-
ness and mass m. The total mass of the bar is M =mN.
Each pair of slabs located symmetrically with respect to
the center of the bar form an oscillator of their own with
the same fundamental frequency col, so that the bar can
be viewed as an ensemble of almost identical oscillators.
When the bar oscillates at the fundamental frequency,
each pair of slabs also oscillates with the same frequency.
The absorption cross section of each individual isolated

pair of slabs would be approximately equal to
Gc mL co, . However, referring to quantum-mechanical
considerations, Weber says that all such oscillators ab-
sorb the incoming gravitational radiation coherently, so
that the quantum-mechanical amplitude of the transition
from the ground state to the first excited state of the an-
tenna is proportional to N and, hence, the probability of
transition, the absorbed energy, and the cross section of
the entire system are proportional to N . As a result, he
arrives at the expression for 0., which is N times larger
than (1). Numerically, his value of o „ for presently
operating antennas, is about six orders of magnitude
larger than the conventional expression (1) (and his own
estimate [4] published earlier).

A similar question of a possible large quantum-
mechanical enhancement of 0.

I over its classical value has
been raised by Preparata [6]. In his first paper, Preparata
disagrees with a particular mechanism suggested by
Weber. He says that the validity of the classical and
quantum-mechanical derivation of expression (1) is based
on the assumption of the direct interaction of a gravita-
tional wave with the fundamental vibrational mode of the
antenna. Instead, in the second paper, he endeavors to
show that there exists a different interaction rnechanisrn
of a gravitational burst with the elements of the antenna
which increases the cross section (1) by many orders of
magnitude. In his view, this mechanism is associated
with the very high-frequency collective oscillations of an
ensemble of atoms of the antenna. A typical frequency of
such oscillations is of the order of the Debye frequency
cuD/2n. = 10' Hz, the largest acoustic frequency available
in solids. In other words, instead of the lowest acoustic
frequency in the antenna, which is Weber's primary con-
cern, Preparata emphasizes on the highest frequencies
which are about ten orders of magnitude larger than co&

and characteristic frequencies of the incoming gravita-
tional waves. As a result, Preparata arrives at a new
form of the cross section which is different from Weber's,
but is, again, six orders of magnitude larger numerically
than expression (1). In this way, Preparata tries to ex-
plain the correlations between the neutrino and gravity-
wave detectors claimed to be recorded [7] during the su-
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II. AN ELEMENTARY CLASSICAL THEORY
OF A QUADRUPOLE GRAVITATIONAL ANTENNA

The simplest model of a gravitational antenna is a
mechanical oscillator consisting of two masses, each of
mass m, connected by a spring. Before arrival of the
wave, the distance between the masses is L. The action of
the wave produces a "tidal" driving force which displaces
a given mass from its initial equilibrium position by the
amount g(t). The main equation governing the interac-
tion of the oscillator with the wave has the form

g+ —g+co~~g=g, cos(cot +y), (2)

where co is the frequency of the wave, g& is the amplitude
of the exerted acceleration, co& is the proper frequency of
the oscillator, and ~ is its damping time related to the
"quality factor" Q by r= Q/co~.

In order to make contact with the rest of the paper we
consider oscillators with various frequencies ordered by

pernova 1987A explosion. He concludes by saying that
"Weber's intuition that the coherent behavior of the
atoms in the bar greatly enhances their gravitational in-
teraction is seen to be confirmed, though through a
different logic. "

If the statements of Weber and Preparata were correct
they would drastically change the existing attitude to-
ward past experiments with solid-state bar gravitational
detectors and the prospects for their use in future experi-
ments. Unfortunately, as we will show below, these state-
ments are not correct. We will present a detailed
quantum-mechanical theory of a model of the bar anten-
nas which takes into account their crystalline structure
and all acoustic frequencies available. We will explicitly
indicate the assertions in the Weber and Preparata papers
which are, we believe, in error. Our conclusion is that
the quantum-mechanical properties of bar antennas do
not enhance their absorption cross section (l) regardless
of whether the low-frequency or high-frequency oscilla-
tions of their elements are considered.

The paper is organized as follows. In Sec. II we
present an elementary classical theory of the interaction
of a gravitational wave with mechanical oscillators of
different frequencies. We derive the cross section (l) and
discuss the changes which arise when the proper frequen-
cy of the oscillator is much larger than the frequency of
the incoming burst. In Sec. III we consider a one-
dimensional model of a crystal: a chain of masses cou-
pled by the internal springlike restoring forces. This
model is quite adequate to describe a realistic antenna
which, essentially, behaves like a one-dimensional system
under the influence of a plane gravitational wave with a
wavelength much larger than the size of the antenna. We
derive the proper modes, equations of motion, and the
Hamiltonian of the system. Section IV contains the
quantum-mechanical analysis of the system. We calcu-
late the transition probabilities and the absorbed energy
in the antenna and demonstrate the agreement between
the classical and quantum approaches. Section V is de-
voted to the discussion of the results.

an integer number l. We assume that co may be close to
co, , but co(&co& for large l. The coefficient g& is arbitrary
for the time being; it will be shown to be proportional to

for the lth mode of oscillation in a free extended bar.
We begin our analysis with a monochromatic gravitation-
al wave acting on the oscillator. However, we will also
give estimates for a short burst of waves by considering
the action of the driving force in a finite interval of time
At =tf —t, =2m/co.

The general solution to Eq. (2) has the form

g=e ' '(C, cosQcot r —t+Cz sin+co& —r t)

(co —
co& ) cos(tot +tp) — sin(cot +y), (3)

2co

R 7

where

R—:(co —cot) +4' r

and C&, C2 are arbitrary constants determined by the ini-
tial conditions. The part of solution (3) with constants C,
and C2 is the general solution to the homogeneous form
of Eq. (2) (with no right-hand side). If initially, at t =0,
the oscillator was at rest, i.e., g(0) =g(0) =0, then

I 2 2 2CO

C, =—(co co& ) cos—y — sing

C2 = —(co +cot ) cosy
1 1

R

+co(co —co( +2r ) sin(p . (4)

The energy of the oscillator is zero initially but by the
time t, it will be equal to

E(t)=2—,'m(g +cot( ),
where the factor 2 reflects the presence of two masses.
To find E (t) one should use solution (3).

Normally, the damping time v is much larger than the
period T&=2~/~&, co&~&&1, and by the time t &&~, the
part of solution (3) with constants C&, Cz decreases
significantly and can be neglected, so that only the oscil-
lations at frequency co persist. The solution to Eq. (2) can
also be presented in terms of a Green's function

I

/=Re ——f e ' e " ' ' 'F(t')dt'
Q) —oo

where F(t) stands for the right-hand side of Eq. (2). This
is the established regime of the forced oscillations. In
this case, the E(t), averaged over a period of oscillations
T =2m/co, takes the value

CO +Cc)i2 2

E=—mg I

The energy Ed dissipated by the damping force
Fd =(2m lr)( during a period T has the value
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Ed=2 JFddg= f g dt =T co

In the established regime of forced oscillations, the rate
of dissipation of energy, dEd/dt, should be equal to the
rate at which energy is absorbed from the gravitational-
wave flux I:

dEd =o (co)I,
dt

where o(co) is the absorption cross section at frequency
co; cr(co) has the dimensionality of cm . For a gravitation-
al wave with the amplitude h and frequency co, the
coefficient g& =a&hco L, where a& is a constant depending
on l, and the energy flux I=h co c /321rG. Thus, one
can obtain for o (co):

T

QE, -a2mh 2L2co2
2

(12)

CU=Iht — h co
G

ergs per cm . From the relationship AE, =cr, U one
derives the estimate for o., which agrees with expression
(10)

Now we will turn to oscillators with proper frequencies
co& )&co. The characteristics of the gravitational burst are
supposed to be the same as above. Our goal is to show
that energy hE& stored in an oscillator with proper fre-
quency co&))co is much smaller than b,E, [expression
(11)],i.e., energy stored in the oscillator with co, =co. To
do this, one should consider (3) neglecting co in compar-
ison with co&. It can easily be seen that

G, mL' COo (co) =641r a,2 ' r (
z 2)z+4 z —z

For co&1.))1, the maximum value of cr(co) is achieved at
co& =co (the case of resonance). However, this maximum
value drops already by a factor of 2 for slightly different
frequencies, such that 5co=co co&=+—I/r [8].

Let us consider in more detail the case of resonance:
co=co&, l=1, a& =1/16. In the established regime of
forced oscillations at frequency co& =co, the energy of the
oscillator E (t) is a constant E =

—,
' mg fr . The rate of dis-

sipation of energy is dEd/dt =—2'rn1.g f, and the absorp-
tion cross section at resonance cr(co& ) is equal to

G
cT(co~ ) —17 mL co/1

C
(9)

1 2 Gcr)= cr(co, )—=21r ML co, .
CO~ 7

(10)

Similar to cr(co, ), the quantity cr
&

has the dimensionality
of a surface area but, obviously, o(co&) and o

&
have a

different meaning.
By order of magnitude, formula (10) can be derived

directly from solution (3) assuming that the force is ap-
plied during a finite interval of time At =2~/co, and the
frequency is of order co& but not necessarily equal to co&.

In this case one cannot neglect the homogeneous part of
solution (3) (with constants C„Cz) since all the terms
give comparable contributions to g and g. One can esti-
mate the energy accumulated in the oscillator by time tf ..

hE& -mh L m (11)

This energy is absorbed from a burst carrying

For a burst of radiation with a sufficiently broad band-
width, hco=co, the flux of radiation changes little in the
vicinity of the resonance peak, that is for frequencies
co=co&+5co, 5co=+I/r. One can integrate cr(co) over the
resonance bandwidth [or simply multiply expression (9)
by 25co] and then divide the result by co&, in order to find
the cross section appropriate for bursts of radiation. In
this way one obtains, for an oscillator with total mass
M =2m, the quoted standard expression:

[It is worth noting that although the kinetic energy asso-
ciated with forced oscillations is an extra factor (co/co&)
smaller than (12), the potential energy is of the order of
(12). The homogeneous terms of solution (3) give a com-
parable or a smaller contribution to (12).] Thus, expres-
sion (12) contains a small factor (co/co&) in comparison
with (11). In addition, as was mentioned above and will
be shown in full detail below, for the lth mode of oscilla-
tions of an extended body, the factor a& is l times small-
er than a &, which reduces (12) further.

The estimate (12) is based on an analysis of a periodic
force acting for a finite interval of time ht =tf —t;. As
can be expected, this leads to a significant role for the
boundary conditions —the ways in which the force is
turned on and turned off. The estimate (12) is rather the
maximum estimate for hE& since it includes a case of a
sudden turn on of the force at t = t,. =0, encoded in an ar-
bitrary phase y. Or, equivalently, it includes an assump-
tion of a sudden release of the oscillator, previously held
at rest, at t =0 in the field of a continuous periodic wave.
In practice, for a burst with the time scale much longer
than the period of proper oscillations, one can expect the
opposite —a smooth turning on and turning off of the in-
teraction. This is the case of the adiabatic interaction
which is known to cause a much smaller excitation of the
oscillator.

We will illustrate the results for the adiabatic case by
assuming that the right-hand side of Eq. (2) vanishes at
the ends of the interaction interval, that is, at initial t, =0
and at finite tf, and is zero outside the interaction inter-
val. This leads to the conditions

8 I . 6)
g =+

z z sincot — sinco& t
CO)

Calculation of the energy of the oscillator gives

E(tf ) =2ma& h L co
1 (1+ cosco, tf ) . (13)

(~2 ~2)2

cosy =0, sincotf =0 .

For simplicity, we take ~~ 00 and reduce the exact solu-
tion (3) to the form



2604 LEONID P. GRISHCHUK 45

By comparing (13) and (12) one can see that, at most,
'2

E((t ) —b,E(f
Ct) I

i.e., E((tf ) is a factor (co/co() smaller than in the previ-
ous case [expression (12)].

In this example the force goes to zero at the ends of the
interaction interval but the first time derivative of the
force has a finite jump at t = t, and t = tf. If the first
derivative also went to zero at t, and tf, the energy of ex-
citation would be smaller than the above formula for
Ei(tf ) by the extra factor (co/tt)() . In general, the higher
the degree of adiabaticity, the smaller the energy of exci-
tation. The cases considered above will be shown to be in
full agreement with the quantum-mechanical treatment.

cles ordered by the number n. However, one can easily
go over to the limit of a continuous elastic body g(t, x) by
considering x„=n (a /2) as a continuous variable x.

Now we need to impose some boundary conditions at
the ends of the chain. Usually, one deals with an elastic
bar antenna having zero strain at the ends of the bar, that
is ()((x)/()x=0 at x =+L/2. We will impose similar
boundary conditions in the case of the chain by requiring
()J„/()n =0 at n =+N. Since chains are not precisely
continuous bodies and their descriptions coincide only in
the limit of large N, our procedure will require an adjust-
ment of the solution, though negligibly small for N ))1,
which we will perform later on. The boundary conditions
select a discrete set of frequencies allowed in the chain
and reduce the number of arbitrary constants. The con-
ditions we have adopted, as in the case of a continuous
body, reduce the general form of solution (15) and (16) to

III. EXTENDED ONE-DIMENSIONAL ANTENNA

k. +~a(2k. —k. +2
—k. -2) =0 .

The general solution to this equation is

(14)

A real antenna is a solid bar with a complicated crys-
talline structure. We will approximate this structure by a
chain of masses connected by a springlike restoring force.
For our purposes it is sufficient to consider a one-
dimensional system. This model is often used in the
theory of solids (see, for example, Ref. [9]). In the con-
text of gravity-wave research it was recently considered
by Thorne [10].

The chain consists of N + 1 particles and N springs be-
tween them, where N is an odd number. The mass of
each particle is m and the distance between the neighbors
is a =L /N. The total mass of the system is
M = rn (N + 1) and the total length is L. The equilibrium
position of the nth particle is at x„=n (a/2), where n is
an odd number running from n = —N to n =N. The
center of the entire system is at x =0. The displacement
of nth particle from its equilibrium position is denoted by

„(&).
If a is of order of the size of a cell in the crystalline lat-

tice (a —10 cm), then N is a huge number (N —10' )

for any macroscopic antenna (L —10 cm). One can
think of particles in this model as plane slabs in a bar an-
tenna.

We assume that the restoring force acting on the nth
particle is produced by its neighbors only, that is by the
particles n +2 and n —2, and is proportional to
g„+2—g„and („2—g„. Therefore, the equation of
motion of the nth particle, in the absence of gravitational
waves and internal damping, is

I urng„(t)= g g„(, g„ i= Ai cos(co(t+q)()cs
1=0

(17)

col =2coD 1 —cos, l =0, 1,2, . . . , N,lm
(18)

2(N+ 1) 2(N+ 1) 2

lan . l'mn

2(N+1) 2(N+1)

1~n . 1'7m 1

2(N+1) 2(N+1) 2

After this modification, we present the solution to Eq.
(14) in the final form:

where cs(17m /2N) stands for the function equal to
cosl m.n /2N if I is an even number, and equal to
sinl~n/2N, if l is an odd number; AI, yI are arbitrary
real constants. Thus, every particle can oscillate at N
different nonzero frequencies (18).

The N + 1 oscillating particles in the chain form a col-
lection of coupled oscillators. For ease of calculation and
for subsequent quantization one needs to introduce a set
of normal (orthogonal and normalized) modes and, in this
way, reduce the dynamical system to a set of decoupled
oscillators. The functions cs(lan/2N) are not quite or-
thogonal for the reasons mentioned above. This leads to
the necessity of a slight modification of solution (17) and
(18), negligibly small for N )&1. Instead of the functions
cs(1~n /2N) one should use the functions
cs[l~n/2(N+ I )], i.e., N is replaced by N+1. One can
check that the following conditions of orthogonality are
satisfied:

( &) e
—

itat[&eikn(a/2)+ pe
—ikn(a/2)

]n

itat[» —ikn(a/2) +p» ikn(a/2)
]

where co and k are related by the equality

~ =2coz(1 —coska)

(15)

(16)

N

g„(t)=qo++2 g q, (r)cs
1=1

l~
coI —2coD 1 cos N+1

(19)

(20)

and a, )r3 are arbitrary complex constants. Solution (15)
and (16) give the displacements of a set of discrete parti-

If one multiplies Eq. (14) by cs[lvrn /2(N + 1)] and takes
the sum over all n from —N to N, one derives the expect-
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ed equation of free motion for every / mode:

q, +a)2IqI =O . (21)

by cs[lmn /2(N + 1)],and sums over all n, one sees again
that only the odd modes interact with the wave. The
equation of motion acquires the form

The proper frequencies coI satisfy the continuum-model
acoustic relationship q&+co&q& = —v'2hco Lf (t)( —1)"

12
(27)

l~
COI CO~

for 1&&N, and approach the maximum value 2coa for
1 =N.

The kinetic, T, and potential, 8', energies of the chain
are equal, by definition, to

N l N —2
T=—m Q P, W= —mcoD g (g„+2—g„)

n= —N n= —N

By substituting (19) into the above definitions, one can
derive

N ) N

T =—M g qi, 8'= —M g co&qr .
I=1 I=1

Thus, the Hamiltonian of the system is given by

M"
H — g pi + g co(qc

1=1 1=1
(22)

F„=—
—,'mhco x„f (t), (23)

where f (t) =cos(cot +y) for a monochromatic wave with
frequency co. The H;„, includes the interaction energy of
all the particles in the chain with the wave:

N

H;„,= mhco'f (t—) Q x„g„(t) . (24)
n= —N

As one can expect from symmetry considerations, all the
even-l terms in (24), containing the factors
cos[lnn/2(N+I)], cancel out. The final expression for
H;„, reduces to

H;„,= —mh co f(t)—1 2L
2 2

N

X g ( —1)" "~ qr(t)ctg
I=1,3, ...

(25)

where pI =MqI.
Now we will derive the interaction Hamiltonian H;„, of

the chain which is acted upon by a gravitational wave.
The force acting on the nth particle is given by

Thus, the proper high-frequency modes of oscillations in
the chain interact very little with the wave as the right-
hand side of Eq. (27) is proportional to I (compare with
the discussion in Sec. II) [11,12].

IV. QUANTUM THEORY OF
THE EXTENDED ANTENNA

We can develop now the quantum treatment of the
chain of masses. The Hamiltonian (22) describes a set of
N decoupled oscillators, each having mass M. The pair
qI, pI represent the generalized coordinate and momen-
tum for every 1. In the quantum treatment, qI and pI are
operators satisfying the commutation relation

[Q&,P&. ]=i A'5t&. The p.osition operator g„(t) for every nth

particle can be written as

N

g„(t)= 2 g g&(t)cs
1=1

(we have omitted the zero-frequency term). In the usual
manner, one can introduce the creation and annihilation
operators bI+, bI according to the rule

q, =+Pi/2~IM (bi+b, ), p, = &V'AM—~', /2(bl b—
The operators bI, bI~ satisfy the commutation relation

[bi bi ]=&a"
The interaction Hamiltonian (26) can be presented in

the form

H,„,= y8, ,
I

(28)

81=FNf (t)( —1)" " 2+%/2co(—M (bi+b( ) .
12

We assume that the system is initially in its ground
state, i.e., the state vector of the system is a product of
the ground-state vectors of all the oscillators. According
to first-order perturbation theory, under the action of the
perturbation (28), each of the oscillators can only go from
its ground state to the first excited state with the energy
ficoI. The transition amplitude is given by the formula

The reasonably accurate approximate form of (25) is

(26)
N

H;„,=FNf(t) g ( —1)" "
q, (r), —

I=1,3, ... 12

C (t) = — FN( —1)" "——QA/2a) M
j' 2 I

X I f(t')e ' dt'.
0

where

V'2F:— mh co2I. .
~2

In a similar way one can derive the equation of motion,
which takes into account the driving force produced by
the gravitational wave, for every I mode. If one uses (23)
on the right-hand side of Eq. (14), multiplies the equation

Note that the N + 1 particles participating in the pro-
cess (for every l) give a large coherent factor N in the
numerator of this expression. However, for the very
same reason, the coherent behavior, the spread of the
ground-state wave function qi

—(fi/ZcoIM)'~ depends on
the total mass of the chain M, not the mass m of an indi-
vidual particle (slab). This gives a large factor N'~ in the
denominator of expression (29).
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The probability of transition is defined by

f ly
1 1

2A m

where

(30)

~d(t)~ = f f(t')e ' dt' (31)

For a particular form of f (t), namely f (t) =cos(cot +p),
the calculation of ~d(t)~ gives

sin [(coi co)—/2]t sin [(cot+co)I2]t sin[(coi —co)/2]t sin[(cot+co)l2]t
cos(co+2')t .

(coi —co ) (cot+co) Ct)( CO

(32)

%e will begin the analysis of the transition probabili-
ties from the lowest frequency mode 1=1. For a mono-
chromatic gravitational wave one can have the case of
resonance co=co&. According to (32), the resonance term
in fdf'is

1 sin [(coi co)I2]t—
4 [(co,—co)/2]

(33)

In practice, the unlimited growth of ~d(t)~ with t is re-
stricted by the damping time r. In a standard way (see,
for example, Ref. [13]), one can introduce the transition
probability per unit time

f Ci~ e
7 7 0 7

(34)

By using (30) and (33) one can calculate (34) and obtain

8 1 2 1

'7 i6 Pl COi
(35)

The rate of absorption of energy is
dE/dt =%co, W/a=~I where o. is the cross section on
resonance and I is the flux of the incoming radiation. By
inserting here all the necessary definitions one can derive
an expression for a(co, ) that is in full agreement with the
classical estimate (9). Similar to the classical case, one
can also find the cross section 0. , appropriate for bursts.
This quantity does, again, fully correspond to (10).

Of course, one can derive an estimate for a
&

directly,
by considering the interaction Hamiltonian H, (28) dur-
ing a finite interval of time At =2m. /co. In this case, the
square of the matrix element ~d~ is of the order of co,
as follows from (32). The absorbed energy b E, is
bE, = ~Ci ~

fico, . By combining these formulas one re-
turns to the same estimate (10) for 0, .

Thus, we see that regardless of whether the antenna is
treated as an elementary oscillator with two masses of or-
der of M each, or as a chain of coupled mass m, the clas-
sical and quantum-mechanical analyses give the same re-
sults.

We should also notice that for the real experimental
situation the number of gravitons absorbed by the bar's
fundamental mode is much larger than one. Strictly
speaking, first-order perturbation theory is not sufBcient
and one should take into account the higher-order
corrections. However, as is well known, this more
rigorous treatment results simply in the observation that
the actual quantum state of the excited antenna is a
coherent state ~a & with the complex amplitude

t ice, (t —f')

CO

(Compare with the Green's function form of the classical
solution discussed in Sec. II. That form of the solution is
the classical version of the quantum coherent-state for-
mula presented here. ) Obviously, the conclusions regard-
ing the absorption cross section remain valid.

Now we turn to the high-frequency modes co(&&co,
where ~( is of order of cuD. There are many such modes,
and their number is of the same order of magnitude as
the total number of the allowed modes, i.e., N. And they
all participate in the absorption of radiation. However,
we will show that the energy absorbed by all these modes
is much smaller than AE~.

In the case of coi ))co, the numerical value of d(t) de-
pends significantly on the behavior of f (t) at the ends of
the integration interval. If f (t) does not vanish at t =t,
and t =t&, then ~d~ can have the maximum value of or-
der of coi . However, if f (t) does vanish at the ends of
the interval, the integral for d(t) can be evaluated by
parts and reduced to

d (t)—:f f (t')e ' dt'= — f e ', f (t')dt' .
o ice( o dt'

In this case a typical numerical value of d (t) is of the or-
der of coco& and ~d~ -co coi . This corresponds to the
adiabatic change of the interaction Hamiltonian (see, for
example, Ref. [14]). One can illustrate this by consider-
ing f (t)=cos(cot+p). If cosy&=0 and sincotI=O, the
calculation of (32) gives

8 2

id(tI)i =
z z z (1+coscoitI),

(~2 ~z)z

that is ~d~ -co coi . Essentially, this analysis repeats the
classical considerations (see Sec. II).

We take co& as the maximum estimate for ~d~ and use
it in the calculation of b,Ei =

~ Ci ~
fico&. One can easily ob-

tain
2

which means that bE& —b Ei (co/coi )z(1/I ). In order to
find an estimate for the energy AE stored in all modes
with frequencies of the order of the Debye frequency ~D,
one should take hE( for cu(=boa and multiply it by N,
which is an approximate number of all such modes. The
result is disappointingly small:
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~E=~EaN -~E, 1 co

cog)

2

Thus, the Debye modes can by no means change the
amount of energy absorbed by the antenna from a gravi-
tational burst with characteristic frequency co.

U. DISCUSSION

where the factor N is a manifestation of "summation of
the probability amplitude over all possible absorber mass
elements [5]." However, at the next step, Weber makes a
mistake. He uses q, -(A'/2', m)' instead of a correct
value q, -(fi/2', M)' . This gives him an extra factor
N, N-10', in the transition probability ~C, ~, in the ab-
sorbed energy hE, =~C,

~

A'co, and, finally, in the cross
section ~, . (Weber speaks also of "large damping correc-
tions" which effectively reduce his enhancement factor
from 10' to 10 . A critical discussion of these damping
corrections is given in Ref. [10].)

In order to see better (in addition to a direct derivation
performed in Sec. IV) why the normalization coefficient
should be equal to (fi/2', M)' and not to (A'/2m, m)'
one can make the following simple calculation. We ac-
cept the picture of N particles (slabs) oscillating together
at the fundamental frequency co, of the bar. Classically,
the total energy of the bar is

E=m QP„=mNq, =mNco&q, .

Quantum mechanically, the mean energy of the system is
(E)=nkvd, where n is the occupation number. From
equality of the energies it follows that the classical
qi =nba, /mNco, . On the other hand, the operator q,
has the form Q&

=K (b +b t) where K is a constant which
we want to determine. The mean number of the operator
g is (g ) =K n. This quantity should be equal to the
classical q, . From their comparison one finds
K =(fi/m¹o, )'r, i.e., q, -(fi/co, M)' (b+bt).

Now we will compare our results with those of
Preparata [6]. He considers the opposite case of very
large l and coi of the order of co&. In terms of our nota-
tions, he calculates ~C&~ . However, in doing this he to-

We have presented classical and quantum-mechanical
treatments of a crystalline antenna interacting with gravi-
tational waves. We did not find any reasons for
quantum-mechanical enhancement of the antenna's cross
section. In view of this result it is instructive to compare
our analysis with explicit and implicit statements of pa-
pers [5] and [6].

Let us start with papers of Weber [5]. He considers the
case of l =1, co, =co. His interaction Hamiltonian is
essentially the same as our expression (26) for I = l. In
our notations, we can write

H& wQ co~LNq ~

This gives the probability amplitude

1
C& Nzh co~LNq ]

tally neglects the factor l representing the boundary
conditions, and, like Weber, uses q&-(R/2'&m)' in-
stead of q& -(fi/2'&M)' . On the other hand, when cal-
culating hE, the energy absorbed and stored in the Debye
oscillations, he does not multiply hE~ by the number of
modes N. This procedure, through the definition
hE =crz U, would lead to the cross section
on=(G/c )ML co,N(co/con) showing (if calculated
correctly) how much energy is stored in the Debye
modes. This cross section would be irrelevant for operat-
ing antennas since their instrumentation monitors the
fundamental-mode displacements or strains. However,
Preparata multiples o i, by the factor he@/co,
Aco/co-10, which he associates with the bandwidth of
the antenna. He claims that the resulting expression

'2
6

ML coiN
C co

gives a cross section applicable for calculating the energy
stored in the fundamental mode of the resonating bar. It
is worth emphasizing that Preparata does not propose
any mechanism at all for transferring energy from the
Debye modes to the fundamental mode but simply asserts
that a portion -b,co/co of the energy gets transferred.
This expression, even without the factor l, is still 10'
times smaller than 0, However, Preparata substitutes in
this expression N=3X10, instead of N=10' which
makes the o.

R& six orders of magnitude larger than cT, .
This last calculation is equivalent to the assumption that
in a three-dimensional lattice, with the total volume
-L, all the Debye modes available are equally sensitive
to the impinging gravitational wave. This assumption,
which ignores all the selection rules, can hardly be true.
It is obvious, for example, that the modes corresponding
to the oscillations along the propagation direction of the
wave do not interact with the wave and do not contribute
to the cross section. Thus, we see the origin of
Preparata's claim of the quantum-mechanical enhance-
ment of the cross section o

&
but we cannot accept his log-

ic and disagree with his calculations.
In addition, it is necessary to make a comment with re-

gard to the experimental problem arising in connection
with the Weber and Preparata statements. If the absorp-
tion cross section of a bar antenna were as large as Weber
and Preparata suggest, it would likely be applicable to the
calibrating signals applied to the antenna. However, all
known laboratory measurements of cr(co, ) are in agree-
ment with the old value of cr(co&), not the new one. Any
attempts to reconcile the laboratory measurements with
the proposed enhanced cross section seem to lead to in-
consistencies [10].
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