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We analyze the relationship between the conventional one-boson-exchange model (OBE) for nuclear
forces with the description of the nucleon as a soliton within the context of the two-dimensional sine-
Gordon model. We find that the soliton-soliton S matrix contains poles and residues compatible with
the ones used in the OBE. Implications of this result for the four-dimensional case are briefly discussed.
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I. INTRODUCTION

The idea that the nucleon is a chiral soliton has attract-
ed considerable attention in the past few years [1]. While
the exact effective meson dynamics of which the nucleon
is a soliton is not known, the generic character and prop-
erties of the low-lying baryons can be understood from
simple chiral models of the Skyrme type [1]. In the semi-
classical approximation, the models provide a natural set-
ting for analyzing systematically dynamical issues related
to meson-nucleon and nucleon-nucleon scattering [2].
This is a distinct advantage over relativistic bag models
and nonrelativistic constituent-quark models.

Overall, semiquantitative success has been obtained for
the bulk properties of the nucleon and pion-nucleon
scattering. If some early failures of the model predictions
can be overcome [3,4], there are still persisting funda-
mental deficiencies that are understood if not cured [5].

The nucleon-nucleon scattering amplitude has been
more of a challenge since the classical two-soliton solu-
tion is not known. A product ansatz yields a nucleon-
nucleon potential which compares favorably with the
empirically motivated potentials at short and long dis-
tances, but fails to reproduce the intermediate-range at-
traction in the scalar channel [6]. A recent reanalysis of
the nucleon-nucleon potential beyond the product ap-
proximation yields, however, a more favorable result in
the intermediate range [18].

Recently two of us [7], following on previous attempts
[8], have argued that the nucleon-nucleon problem in the
context of Skyrme models can be systematically analyzed
using a double expansion in both the range and #. The
ambiguities related to the ansatz dependence can be lifted
through the pion fluctuations. As a result, an attractive
component is seen in the central potential at the two-pion
range.

Undoubtedly, this is a step forward in the process of
describing unambiguously the two-nucleon problem in
the context of soliton models. What is unclear, however,
is to what extent this soliton description is compatible
with the conventional one-boson-exchange (OBE) ap-
proach. Put differently, can we deduce that the nucleon
is or is not a soliton directly from its .S matrix?

To address some of these issues, we have turned to the
two-dimensional sine-Gordon model, where exact form
factors [9] as well as S-matrix elements [10] are now
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known. It should be stressed, however, that the two-
dimensional case is particular, since bosonic theories such
as the sine-Gordon model can be exactly fermionized and
vice versa. This is not the case in four dimensions. This
is an important difference to be kept in mind throughout.

The paper is organized as follows. In Sec. II, we ana-
lyze the meson-soliton form factor. It exhibits a pole at
zero momentum transfer even though the mesons are
massive, in contrast with conventional models of the Yu-
kawa type. We also extract the meson-soliton coupling,
and check the semiclassical expansion against the exact
result to one loop. In Sec. III, we analyze the soliton-
soliton S matrix. We find that the S matrix contains
poles and residues similar to the ones expected from
OBE. Implications of these results to the original
nucleon-nucleon problem are discussed in Sec. IV. In the
Appendix, we discuss the nonrelativistic reduction of the
exact meson-soliton scattering amplitude for the sine-
Gordon model.

II. MESON-SOLITON FORM FACTOR

Consider the sine-Gordon Lagrangian

L=fdx

1 m?
E(a#¢)2+ —g—z—cos(gqﬁ)

with the classical one-soliton solution
¢S(x)=§arctan(e+’"") . )

Besides the soliton, there are (composite) meson states
with masses in the range g®—g 2

m,=2Msin 2L | n=1,2, n<S 3
16 g?
where M is the renormalized soliton mass and

7/=g2(1—g2/ 87)”!. The semiclassical expansion is
justified for small g.
The relevant quantity in our case is the meson-soliton

form factor
F(Q)={p,l¢(0)lp,) , 4)

where |p) refers to a momentum eigenstate of the soli-
ton, and Q =p, —p, (Breit frame). An explicit evaluation
of (4) can be obtained using either the Kerman-Klein
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method [11] or the collective-quantization approach [12].
The form factor to lowest order is simply the Fourier
transform of the soliton profile (2)

Fg=[""e

igxp (—x)dx = Zim 1

(5)

Note that to leading order, the form factor is strong (or-
derg 7).

In the complex g plane, the right-hand side exhibits
poles at g =0 and g, =im(2n +1) with n=0,1, . ... The
pole at ¢ =0 does not arise in models with a conventional
Yukawa coupling with massive mesons, and is charac-
teristic of solitons. This may be readily understood, if we
note that

lim igF(q)= [ dx {(x)=6,(+ @) =¢,(—)#0. (6
q—b

The poles at g =g, correspond to poles in t =Q%=—g?
and arise in conventional Yukawa models with derivative
couplings as well. In particular, the positions of the poles
are in agreement with (3) for small g. Hence, we may
define the meson-soliton coupling constant to lowest or-
der [13] as follows:

f1= lim (g>—g?)[—igF(g)]=—= . @)
9—9, 4

The occurrence of only odd poles suggests that the origi-

nal meson field is odd under charge conjugation.

To estimate the role of the quantum effects on the
structure of the meson-soliton form factor we will evalu-
ate the one-loop correction to (5). For that, we will use
the collective-quantization method discussed by Tom-
boulis [12]. For the sine-Gordon model, the renormal-
ized Hamiltonian to order g2 reads

H=M,+H,+H,+0(g?, (8)

where

9)

sinh(mx)

1
Hy=—gm’ [dx £ |&

T f V'k24+1 | cosh¥(mx)
In H,; the term linear in the meson coupling is the mass
counterterm following normal ordering in the meson sec-
tor. To this order, the soliton does not recoil. The meson
field is quantized in a box of length L,

E(x,1)= (x)e "“"'+blyrx)e’ ] (10
with w2 =m?+(mk,)?, and

)

mg qz ®

(palsolp = [ e[ i

——=———sech(qm/2m) .
g 9

sinh(my )
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imk, x

[tanh(mx)—ik, ]e
[(14+k,)*L —(2/m)tanh(mL /2)]'/?

P, (x)= (11)

for a discrete set of momenta mk,,.

The one-loop correction to the semiclassical expression
(5) for the form factor can be obtained using time-
dependent Rayleigh-Schrodinger perturbation theory.
Generically

(p,|HIm){m|d(x)p,)
E,—E,

+ <p2|¢(x)|m ><m|HllP1)
E,—E,

(P2lo(x)p )=

m

(12)
Using the usual decomposition for the full quantum field
together with the quantized meson fluctuations (10) and
(11), we obtain

(p2lo(x)lp, )= Llimw fdz dy e'%sin(g¢,(y))

X AL(X,y,Z)BL(y) » (13)
where the integrands are given by
A= 2 2 2 [Ynx—2)n () +9, ) (x—2)],  (14)
_m’g 1 .
BL="0 2 g, () f sz (15)

and ¢ is the soliton profile (2). In the continuum limit
(L — o) the discrete sums can be turned into continuous
integrals with the proper weight for the meson density of
states around a nonmoving soliton, i.e.,

plk, )—"’—L— L, , (16)
27 27

where 8(k, )= —2arctan(k, ), denotes the phase shift of

the box eigenfunctions (11). As a result

mlg dk
(k241)372

Note that the result is finite (as it should be) following the
cancellation between the divergence in the mode sum and
the mass counterterm in (9). This provides an additional
check that mass renormalization in the trivial vacuum
sector is sufficient to renormalize the model in the non-
trivial topological sector as well. Similarly,

B, =

[tanh*(my)—1] . 17

imk(x—y—z)

1 e
A= G J O (k*+1)

[k +itanh(m(x —z))]

X[k —i tanh(my)]+c.c. (18)

Inserting (17) and (18) in (13) and performing some alge-
bra, we obtain

G(x,z,k,y), (19)

cosh*(my)
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where
G,(x,z,k,y)=[tanh(m (x —z))tanh(my )+k2]cos(mk(x —z—y))
—k[tanh(m (x —z))—tanh(my )]sin(mk(x —z—y)) . (20)
[

The integrations are performed in the order indicated, so
that no spurious divergence is generated. Using the re-
sult

[di cos(at) _ 2"7? rl|y,a v ai
0 cosh”(br) bI(v) 2b 2 2
2D
and integrating by parts, gives
; 2
— |8 igx ™
(pald(x)|py ), = e%sech —2‘1; ;’;—2 22)

Combining (5) with (22) yields the form factor to order g

qm

2m

(le‘b

27
)py ) =—+Tsech
: q

+L+O(g )
g 16w

(23)

While the pole position has not changed, the residue has
been modified. The quantum effects are expected to re-
normalize the bare position of the pole (here meson mass)
and affect the strength of the residues. In fact we expect
this result to hold true to higher orders in perturbation
theory around the soliton background and even in higher
dimensions.

The semiclassical description of the meson-soliton
form factor and the one-loop correction are consistent
with the exact result derived in [9,10], in the form

J6_)
i - cosh@, /2
F(Q)=— 27 e +
q 1/ coshf,coshb,
y cosh(6_/2) 24)
cosh(4m6_/y) ’
where

7o) © dx sin%(x0_ /2)sinh(x(7—¢£)/2) 25)
—f x cosh(mx /2)sinh(7x )sinh(3x /2) ~

Here 6 are the rapidities

=M (cosh8, ,,sinh6 ;) . (26)

0.=0,%6,, Py,

The large parentheses in (24) involve a relativistic kine-
matic factor (numerator) and energy normalization fac-
tors (denominator). The combination of these factors and
1/q is relativistically invariant. In the region
0<Im6_ <2, the function J(6_) is regular, so that the
exact poles of the form factor follow from the position of
the poles in arccosh(476_/y), i.e.,

9,,=i§’—<2n+1), n=0,1,... @7

in agreement with the poles derived using the semiclassi-
cal approximation.

Using the substitution 6—v =p /M in the semiclassical
limit, we have

g’ | ¢° 4
J(O_)= 167 | m? +0(g"), (28)
—_ == —q
cosh 2% cosh > +0(g*) . (29)

Inserting (28) and (29) into (24) we obtain after a little
algebra

a7

2m

(P2|¢

)p,)= —Lsech
q

+—L+0( %)
g 16mm?

(30)

in agreement with (23). This result shows agreement be-
tween perturbation theory in the presence of a single-
soliton background and the exact result to one-loop level,
extending the lowest-order check first done in [14].

III. SOLITON-SOLITON SCATTERING

The exact relativistic S matrix for the sine-Gordon
model has been derived by Zamolodchikov and Zamolod-
chikov [10]. The form of the S matrix follows from fac-
torization (absence of pair creation), unitarity and cross-
ing. It depends only on the relative rapidities 6=6_, and
is a meromorphic function of € in the strip 0 <Imé <,
following the mapping s =4M2cosh*(0/2). The edges of
the strip correspond to the cuts in the s plane. Crossing
symmetry follows from 6-—iw—6. The one-boson-
exchange (OBE) pole at t=m? corresponds to
6=i&=iy/8.

The explicit form of the S matrix may be taken as
S(0)=S,(0)+S,(6) where [10]

4mé 410

S;3(6)=1i coth coth S,(0) . (31)

Here & is a parameter equal to 7 when crossing is en-
forced. S,(60) has a simple pole at 6= as shown below,
and the hyperbolic cotangent has a simple zero, so S;(8)
will not contribute to the residue. S,(6) may be written
as [10]

2

sinh A6

52(9)———sm
T

Am(im—06)

Xsinh v, (32)

where
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87 86 87 80 | = 2(O)R, (iT—0)
U@=r |<Z |r |[1+i>Z |r |1- 22 ;22 ,
@ Ty y v [ TR (OR,(m
R,(6)= T'2n(8w/y)+i(80/y I (1+2n(8w/y)+i(86/y)) 33)

For 6=i{ the string of products

2
< (&/m)+2n—1 |2n—1 | 2n+1—(&/7)
34
,,I;II (&/m)+2n—2 2n 2n—(&/m) (34)
is finite. At weak coupling y —0
3
I 2n —1 2n+1 _ 37 | 32
— —_— | = == 35
Y nI=I2 2n 2n—2 y |37% (33)

The prefactor which converts this to U(8) has a simple
pole

1 1—7w/§ T
r —TI(2— = 36
(m/€) 1+i6/¢ T2=n/t) 1+i0/¢ sin(w?/¢) Ge
and the prefactor that converts U(6) to S,(6) gives
1 .
—sin R (37

Collecting all the pieces, going to the weak-coupling lim-
J

(PP 1(S—1)|pp, Y =(2m)*[8(py —p)8(p5 —py)—8(pi —p,)8(ps—py)]

with  p,=—p,=p, E,=E,=VM?>+p?  and
t=—(p,—p,)? (center-of-mass frame). There is a pole at
t=m? (one-meson exchange) with a residue that matches
the residue in (38) in the semiclassical limit.

In a way, this is a nice surprise. Indeed, in soliton
models the meson field ¢ and the soliton field ¥ obey a
nonlocal commutation relation,

27
[¢(x,t),¢(y,t)]——?O(x—y)tll(y,t) 42)
following from the fact that the creation of a soliton must
change the vacuum at infinity. One would have thought
that since locality properties are altered, so will analytici-
ty properties. Our explicit calculation shows that this is
not the case.

We note, that the soliton-(anti)soliton S matrix does
obey crossing, since 1 is local with respect to itself as well
as Y. So, if the meson is considered as a soliton-
antisoliton bound state, this will generate an s-channel
pole and, by crossing, a r-channel pole. So the appear-
ance of poles in the exact S matrix is rather natural.

This simple argument also implies the existence of
poles for t =(nm)?(n >2). To exhibit these higher-order
poles, and as a further check on our preceding derivation,
we will use an alternative analysis borrowing on some re-
sults for the exact S matrix established by Smirnov [9].

((2n+1)(87/y)+i(80/y )T (1+(2n—1)(8m/y)+i(88/y))

[

it, and converting to the Mandelstam variables yield the
pole

8M?
t—m

» (38)

On the other hand, the Yukawa Lagrangian consistent
with the coupling (7),

L= —i'gtz-yu}/5¢a”¢ (39)

gives the S matrix

(pip3l(S=1Dlpyp,)
8% pi+py—p1—p,

)
——————~T(s,t,u), (40)
V/2E |2E,2E2E,

=(2m)?

where the T-matrix amplitude follows from the Born dia-
grams. The restricted character of the kinematics in two
dimensions and the mass-shell condition yield in the ¢
channel

2p/m 8M?
V1—t/4M?* t—m?

(41)

[

For that, consider () to be a regular function in the
strip 0 <Im6 < 27 and such that

S(—0)=Q(0)S(6)=Q(8—i27),
QUOQUO—im)=n"Y0+inm/2),

(43)
(44)

where 7)(6) is an even function with simple poles at
6,=im/2+in{ with n =20 and zeros at 6,=i3w/2+in{
with n = 1. The auxiliary function 7(0) satisfies the prop-
erty [9]
cosh((0+im/2)/2)

cosh((0—im/2—i£)/2)
In terms of (43)—(45) we can rewrite the scattering ampli-
tude in the following form:

S(9)= (0+im/2)

n6—if)=n(6) (45)

n0—im/2) “6)
Using (45) we obtain
S(0)=S8(0—i)coth(8/2)coth((6—if)/2) . 47)

Iterating (47) we easily find

S(6)=S(6—in)coth(6/2)H2(0)coth((0—in&)/2) ,
(48)
where we have defined
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n—1
H,(0)= [ coth([6—i(n—k)£]/2) . (49)
k=1

Expression (48) for the scattering amplitude displays a
string of simple poles at 8, =in{=iny /8 with residues
given by
R,=—2coth(6, /2)H2(6,) . (50)
In the semiclassical limit the S matrix near the nth pole
reads (¢ channel)
Su

t—m,

(51

with the location of the poles and residues given, respec-
tively, by
(—y +1 2(n—1)

[(n—1)7?

—_— Sn —_—
m,=nm, e

16
— (52)

g

For n =1 this result is in agreement with (38).!

It is not hard to show that additional Yukawa cou-
plings corresponding to the breather modes (bound-
meson states) with couplings commensurate with their in-
trinsic charge conjugation, reproduce the scattering am-
plitude (51) in the semiclassical limit. This description is
consistent with the OBE approach using higher-mass res-
onances.

IV. DISCUSSION

We have seen that in two dimensions, form factors and
scattering amplitudes exhibit the same analyticity proper-
ties as those derived with conventional Yukawa cou-
plings. In other words, the OBE description is compati-
ble with the soliton-soliton S-matrix element in the semi-
classical limit. The question then becomes: How much
of this carries to four dimensions? Unfortunately, analyt-
ic expressions are not known for Skyrme models, even in
the semiclassical limit. Moreover, the exact integrability
of the sine-Gordon model together with the fact that it
can be fermionized exactly, are important features of two
dimensions that may limit considerably the relevance of
the preceeding arguments to four dimensions.

However, there are reasons to believe that the meson-
soliton form factor behaves more similarly to those of
conventional Yukawa models. For definiteness, we may
take the classical partially conserved axial-vector current
(PCAC) pion field to be

b
M%x)=f_R “b%sinﬁ)(r) , (53)

where f, is the pion decay constant, and R is a spin-
isospin rotation matrix that is unimportant for the
remainder of the discussion. Since the chiral angle obeys
the boundary conditions

IWe have checked that a rerun of the first argument yields also
the same higher-order poles.
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O0)=m O(r)=0(e™™) (r—w) (54)
it follows that the form factor
F¥q)= [d’x e "9 I1%x) (55)

has a singularity at q2>= —m?, but no pole at q=0. The

latter is due to the fact that 9,I1? is related to the axial-
vector current rather than the topological current as in
two dimensions.

For the soliton-soliton S matrix, we expect a pole at
t=m? from the general dimension-independent argument
of Sec. III. This is consistent with the fact that the classi-
cal interaction energy of two solitons falls off exponential-
ly with their distance. Moreover, the above two-
dimensional results encourage us to believe that the resi-
due relates naturally to the pion-nucleon coupling. We
note that in nature, the pion-nucleon coupling can be ob-
tained from pion-nucleon dispersion relations, and OBE
can be tested in the higher partial waves of the nucleon-
nucleon scattering amplitude. Experimentally, the two
are consistent.

The assumption that analyticity properties hold true
for the chiral soliton is actually nontrivial, if we recall
that in four dimensions the meson and soliton fields obey
nonlocal commutation relations, while in QCD gq
(meson) and gqq (baryons) fields obey local ones. We
note, however, that the pion (meson) field in Skyrme
models is a coarse-grained version of gg, so nonlocality is
in fact expected on a length scale of the order of #°. Un-
fortunately this argument breaks down in the chiral limit,
where the nonlocality extends over an infinite range.

Finally, we would like to add that besides the positive
result of the two-dimensional analysis presented above
with its suggestive implications for four dimensions, there
are also strong reasons to favor the idea that nucleons are
chiral solitons, and this independently of the phenome-
nology. Indeed, chiral symmetry dictates that the
effective low-energy theory of pions is given by the non-
linear o model [15], and once we add vector mesons,
especially the w, it is difficult not to wind up with soli-
tons. Moreover, it is hard to believe that the relationship
between the chiral anomaly and the spin statistics of the
soliton [16] is just a mere coincidence.
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APPENDIX: MESON-SOLITON SCATTERING
AMPLITUDE

The exact meson-soliton scattering amplitude is given
by [10]
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sinh@_ +i cos(y /16)
sinh@_ —i cos(y /16) *

S(6_)= (A1)
In the meson-soliton center-of-mass frame p +k =0, the
scattering amplitude (A1) can be rewritten in momentum
space

k(Vm?+k*—V M*+k?*) —imM cos(y /16)
k(Vm?>+k2—V M2+ k2)+imM cos(y /16)
(A2)

S, (k)=

In the semiclassical (nonrelativistic) limit ¥ ~g?2 and (A2)

reduces to

2imk —2m?
k*+m?

On the other hand, the process of a meson scattering

off a soliton in the semiclassical description corresponds
to background field scattering off a static soliton. If

S, =1+ +0(g?) . (A3)
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¥ (x) designates the continuum scattering wave function
of the meson, then from (11) we have

B(x)=—ie K ik [1+i"ltanh(mx> . (A%

V2 (0% k
where o, =V'm2+k2,— o <k < ®. The S matrix to or-
der g? follows from (A4) through the identification
(modulo the plane-wave phase factors)

ll)k(+°°)
S Ye(—0)

A little algebra shows that this agrees with (A3). Here,
we point out that with the Yukawa coupling defined as in
(39), it was shown in [17] that the Born diagrams for
meson-soliton scattering give the same result as potential
scattering (A5). Our result, while in agreement with [17],
shows that (A5) follows directly from the exact scattering
amplitude in the semiclassical limit, as it should.
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