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Approaching low-energy QCD with a gauged, nonlocal, constituent-quark model
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We study the minimal constituent-quark model with momentum-dependent quark mass in the pres-
ence of SU(3) XSU(3) external gauge fields V„(x), A„(x), S(x), and P(x). The model generates vertex
functions, for any number of external fields and pseudo Goldstone bosons coupling to quarks, saturating
the Ward-Takahashi identities of QCD. Parameters in the O(p ) chiral Lagrangian are expressed in

terms of the quark mass function X(p) and are surprisingly consistent with low-energy QCD. By use of
the auxiliary-field method we discuss the relation of the model to the improved ladder approximation in

@CD.

PACS number(s): 12.40.Aa, 11.10.Lm, 13.75.Lb

I. INTRODUCTION

Much of what is known about low-energy QCD may be
encoded into a finite number of parameters appearing in a
chiral Lagrangian, expanded to some finite order in an
energy expansion. There have been various attempts to
model the underlying dynamics of QCD to understand
the observed values of these parameters. This involves
modeling the relevant degrees of freedom for QCD at in-
termediate energies, such as the low-lying resonances or
constituent-mass quarks, and then integrating out these
degrees of freedom to obtain the low-energy chiral La-
grangian. Clearly, if a low-energy derivative expansion of
some model is to reproduce successfully the chiral La-
grangian of QCD, the model should be quite QCD-like at
intermediate energies (0.2 —2 GeV).

Our interest here is in the quark-based models [1], as
opposed to resonance models, and their potential to make
more direct contact with the underlying gauge-theory dy-
namics. The simplest constituent-quark models are based
on linear or nonlinear o. models. A nice feature of such
models is that they correctly incorporate the chiral sym-
metries of QCD. For example, they contain the non-
Abelian chiral-anomaly structure of QCD and thus au-
tomatically generate the Wess-Zumino terms. And they
have some hope of incorporating the explicit chiral-
symmetry-breaking effects due to current quark masses
and electroweak interactions.

But a major deficiency of any local o. model lies in its
description of a constituent-quark mass. The latter is
taken to be essentially momentum independent, whereas
the dynamical quark mass in QCD will have significant
momentum dependence in the range 0.2—2 GeV. The
derivative expansion will be sensitive to this rnornentum
dependence.

Closely related to this problem is that some quantities
such as f„turn out to be cutoff dependent because of the
assumed high-momentum behavior of the constituent
mass. Predictions are then limited to those quantities
which are still convergent. Basically, it is rather difficult
to model QCD dynamics in local models with a sharp
cutout'.

A goal then is to build the dynamical mass into
constituent-quark models at the Lagrangian level, by con-
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q(x ) exp[i a(x )+ip(x )ys]q(x ),
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XQcD is invariant if, for infinitesimal a(x ) and P(x ), the
external fields transform as

5V„=d„a+i [a, V„]+i[P, A„],
5A„=B$3+i[a, A„]+i[P, V„],
5S=i [a,S]—IP,P ],
5P=i [a,P]+ [P,S J .

sidering nonlocal effective Lagrangians [2—4]. Our main
emphasis will be on maintaining the chiral symmetries of
QCD. These chiral symmetries will be promoted to local
symmetries by introducing external gauge fields, as is typ-
ical in the study of low-energy QCD. (The model de-
scribed in our previous work [4] was not fully consistent
with this symmetry structure. )

We will see that tree-level vertices derived from this
Lagrangian, involving the couplings to quarks of any
number of pseudo Goldstone bosons (PGB's) and external
SU(3) XSU(3) gauge fields, will satisfy the infinite set of
exact QCD Ward-Takahashi (WT) identities. Thus all
implications of a momentum-dependent dynamical mass
following solely from symmetry considerations are built
into the model at the Lagrangian level.

Consider QCD with three light fiavors q=(u, d, )sin
the presence of external vector, axial-vector, scalar, and
pseudoscalar fields, V„(x ), A„(x ), S(x ), and P(x ):
[A&(x)= A&(x)T', etc., TrT'T = '5, t, ] [5]. T—he gen-
erating functional I ( V, A, S,P) for the Green functions of
the corresponding currents is represented by
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We postulate that another, more complicated represen-
tation of the QCD generating functional can be made in

terms of constituent-mass quark fields. In this represen-
tation Goldstone fields must be introduced to maintain
the chiral symmetries. With explicit symmetry-breaking
effects, these fields are PGB's. But the gluons are as-

sumed to be integrated out of the theory, so the generat-

ing functional has the form

external gauge fields and have the same local
SU(3)XSU(3) symmetry structure as QCD. The model
will be nonlocal, but it will only be quadratic in the
constituent-mass quark field, and it will have no kinetic
terms for the PGB fields at tree order. The action is of
the form

AGNc fd x d y g(x )S,v, w, s,r(»y W'(y } .

~il ( V, A, S,P)

DUD D

X exp i f d x XQcD (g, f, U; V, A, P,S)

S y g s p(x,y) is proportional to 5,d in color space.

AGN& will reduce to the following when the PGB and
external fields are set to zero:

fd x d y f(x)—Z(x —y)8$(y) ——g(x)8Z(x —y)g(y)
2 2

U(x)=e

g denotes a constituent-mass quark field. The PGB fields
n(x ):n'(—x )T' appear in

—2i +x ))y5/f

—P(x )X(x —y )f(y ) (8)

XQcD is some complicated, nonlocal, nonrenormalizable
Lagrangian. XQcD for example, must include nonlocal
four-fermion terms to account for the effects of gluon ex-
change at high energies. And the composite nature of the
PGB's must also be evident at high energies.

Our hope is that there exist simpler constituent-quark
Lagrangians involving the same fields and symmetries
which capture some of the essential physics in the inter-
mediate energy range and, by doing so, help serve as a
bridge between high- and low-energy QCD.

We will first consider a minimally gauged nonlocal
constituent- (GNC-)quark model and show how it gen-
erates vertex functions saturating the QCD WT identities
(Sec. II). By studying the PGB propagator, we are led to
choose a minimal model with g„=1 and with no other
free parameters other than the mass function X(p ). We
then extract the parameters in the resulting effective
low-energy chiral Lagrangian (Sec. III). Although
confinement and the resonance structure of QCD is com-
pletely omitted in such a model, we end up with a
surprisingly close similarity to low-energy QCD. The
effects of a momentum-dependent quark mass will be-
come clear.

In Sec. IV we make some effort to try to bridge the gap
between the QCD Lagrangian XQcD and the constituent-
quark Lagrangian XQcD by use of the auxiliary-field
method. We will find some motivation for the minimal
GNC-quark model in the context of the improved ladder
approximation in QCD. We end with some remarks in
Sec. V.

II. MINIMAL GAUGED
NONLOCAL CONSTITUENT-QUARK MODEL

We construct a GNC model with the following proper-
ties. Most importantly, it will involve the V„,A„,S,P

I

m is the constituent-quark mass scale and we may define
it by m —=X(m }.

By integrating out the quarks and performing a deriva-
tive expansion, we obtain the chiral Lagrangian X,tr.

fd xX ff(77 V A S P)= trlnS y g sp ~ (10)

We will discuss X,|r in the next section. It is sensitive in
particular to the momentum dependence expected in
X(p) forp =m .

The PGB propagator b, (p ) may also be extracted from
the right-hand side (RHS) of (10). The final form of the
model will yield the following behavior (for Euclidean p )

in the chiral-symmetry limit:

'(p) 1 for p ((m
Cg

for p )&m
p

2

This low-momentum behavior of b, (p) is required by
the masslessness of the PGB's, while the soft high-
momentum behavior is desirable in view of the compos-
iteness of the PGB's.

We begin with the following action, which may be con-
sidered to be the minimally gauged version of the terms
in (8) (we will constrain it further below):

In this way the large- (Euclidean) momentum behavior of
the chiral-symmetry-breaking part of the tree-level quark
propagator may be chosen to resemble that of the full
quark propagator of QCD; namely, for the Fourier trans-
form of X(x —y ), we could choose

X(p)= for p ))m~ .c 1n(p )'

A oNc =fd x d y —Z(x —y )[P(x )y" Y(x,y )D„t/i(y }—P(x )y"D„Y(x,y)P(y ) ]

—X(x —y )g(x )g(x )X(x,y )g(y )g(y ) —5(x —y )p(x )[S(x ) i y,P(x )]p(y )— (12)
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R„=V„+A„y5, L„=V„—A„y5, g (x)=U(x), (13}

D„=a„—1 f'„, D„=a„+1f'„, (14)

X( xy )=P exp i—f I (z )dz" (15)

Y(x,y)=P exp i—f I „(z)dz" (16)

I „=—[g'(a„—iR„}g +g (a„iL„—}g]

= V„+ (m-a„n. —(a„n.)m. ) — [m, A„]+
2yz

(17)

&+go

= V„+g„A„y5+(1—g~ )F„(n.)+ .

F„(~)= a„~rs+
'

[~, v„]r5 '[—~ A„]+ ', (~a„~—(a„~)~), (19)

(20)

The constituent-quark field here transforms linearly un-
der SU(3) XSU(3) transformations

g(x ) exp[ia(x )+iP(x )y&]f(x )—:V(x )g(x ), (21)

g(x, a,P, n. )/exp( i a iPy, )— —
= exp(ia iPy5)g—g (x,a, P, n ),

f'„-vf'„v'+iva„v', I „-VI „v'+1va„v',
I „gl~ +iga~, g(x, a(x ),0,~(x ) }=e' '"'

(22)

(23)

(24)

AGNc is also C and P invariant. We note that there
are two parameters in the quark "kinetic term"; one is
the standard axial-current coupling gz and the other, g„,
appears in Y(x,y). gz dependence drops out in the local
limit: Z(x —y ) =X(x —y ) =5(x —y ). There is no analo-
gous parameter in the quark "mass term" because of CP
in variance.

The dependence of the action on the S and P external
fields ensures that the quark condensate takes the stan-
dard form in terms of the quark propagator So(p ) impli-
cit in (8):

S(x )~S(x )+M . (26)

f I'„(z)dz"=I „(y) .
()y

~ x
(27)

Note that this does not modify the PGB couplings to
quarks. In the following we shall mostly be concerned
with the chiral-symmetry limit M =0, unless noted other-
wise.

First, we derive some of the tree-level vertices for
external fields and PGB's coupling to quarks, to be used
in the diagrammatic expansion of the RHS of (10). To
expand the path-ordered exponentials, we use a technique
partially utilized in [4] and described in detail in [6]. [But
note that a locally SU(3) X SU(3) invariant model was not
studied in those references. The vertices derived here will
be difFerent. ] This method involves Fourier transforming
and Taylor expanding the functions X(p ) and Z(p ), con-
verting the powers of momenta into derivatives acting on
the path-ordered exponentials and quark fields, Fourier
transforming back, and then resumming. The property
of the path integral used is

d4
(yy&= = f p—, TrS (p) .

5S v, w, s,r o(2m=. }
(25)

(PGB loop corrections are ignored on the RHS. ) A
current quark mass matrix M is introduced by making
the replacement

The following are examples of a few of the vertices
found in this way (in Minkowski space}. We first give
vertices for the fields I „, f'„, and I „, since by using the
expansions of these quantities in (17) and (18) one finds

contributions to vertices involving m's and the external
fields (p, and pz are quark momenta):

&r(pl q Pz=Pl+q)=G(Pz P1)(P1+Pz}"T

&p"'(p, q,p =p, +q)= —
—,'[Z(p, )+Z(pz)]y"T',

Ar (p1~q~pz p1+q }= zF(pz~p1)(Ii'1+Iiz }(pl+pz}"T

(28)

(29)

(30)
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X(p2) —X(p I )

P2

F(p2&p, )—
P2 Pi

AYr (pl ql q2 p2 pl+ql+q2)

(31)

=G (p2,p 1
)g""T~T'+ G(P2 Pl ) G(P]+ql Pl }

(2P]+q] )&(P2+p]+q] )"T T'+ [(ql p„a ) (q2, v, b)], (32)
(P2+P I+q I ).q2

Ar"r"(Pl ql q2 P2 Pl+ql+'q2)

,'F(p—2,—pl)(gf]+f2)g&"T T'

1 F(p2&P]) —F(pl+ql pl )
(P]+f2)(2p]+q]) (p, +p, +q, )"T T'+[(q, p, ~) (q, v, b)],

P2+Pl+ql 'q2

Af, (p],q-], q2P2=p]+q]+q2)= —
—,'F(p2 pl+ql)r"(P2+Pl+ql) T T F(P]+q2 Pl )r" (2p ]+q 2)'T'T" .

(33)

(34)

In the case of Ap, t, the argumentslindices (q, ]M, a ) are associated with the f' field, etc. Vertices involving V„andlor
A„only are completely determined by these vertices. For example,

A"'= A('+ A"'+ A]"
A j'

&~'=g z &~g'r s+g ~ ~~p'r s

Avv (pl ql q2, p2) AFI (pl ql, q2 p2)+Arr (p] ql q2 p2)+Af'r' pl q], q2 p2 +APf' p] 'q2 ql p2) '

(35)

(36)

(37)

The vertices involving m s also receive contributions from the g(x ) fields appearing in the quark mass term in AoNc.
For example, we find

lfs
A'(p], k,p2 =p] +k ) = — [X(p] ) +X(p2 ) ]T',

A~~(p], k],k2&p2 =pl +kl+k2) =—
2 [X(p, )+X(p2)+2X(p+k, )]T~T' 1

2 G(P2&P])(P]+P2)'(k2 k] )T

(38)
+ [(k„a) (k2, b )],

lgs
A~v' (pl, q, k,p, =p, +q+k)= — [T"Ap(p], q,p]+q)+A"r'(p„q+k, p2)T'],

for gz =1 and g„=l. The additional terms proportional
to g„—1 and g„—1 may be easily found from the f' and
I vertices.

All these vertices are free from kinematic singularities,
and for precisely this reason the A~&' vertex was advocat-
ed long ago by Ball and Chiu [7]. For example, A]v' is
nonsingular when p2=p& and satisfies the original Ward
identity in this limit.

Since the model has the same symmetry structure and
quark propagator as QCD, the WT identities derived
from the model will be identical in content to the WT
identities of QCD. (Since the PGB appears explicitly in

the model, there will be additional terms in the WT iden-
tities for one-particle-irreducible vertex functions which
correspond to the PGB pole pieces of QCD vertex func-
tions. ) And in particular these identities will be satisfied
in the model at zeroth loop order. In other words, the set
of tree-order vertices from the model, involving any num-
ber of external gauge fields coupling to quarks, will satu-
rate the full set of QCD WT identities.

The full vertex functions of QCD may be written as a
sum of our singularity-free longitudinal vertex functions
plus a remainder which includes transverse vertices. But
we will find that our particular set of vertex functions by
themselves account surprisingly well for certain charac-
teristics of low-energy QCD.

Thus far we have a model with suitable high-energy be-
havior for the quark propagator; a reasonable PGB prop-
agator imposes additional constraints. We consider con-
tributions to f 5 '(p) from the diagrams in Fig. 1 and
find that there are cutoS'-dependent contributions in the
present model. The first diagram has a A dependence
proportional to (1—gz ) and independent of Z(p). And
both diagrams have cuto5'-dependent terms proportional
to (1—gz ) and (1—gz ) (1—gz ) involving derivatives of
Z(p }. These also give A dependence if Z(p) behaves
like a power ofln(p } at large p . Clearly, it is difficult to
obtain a reasonable PGB propagator unless gz =gz =1.

Thus, for the final form of the model, we choose
gz=gz =1. Phenomenologically, g„=1 is not a bad



2538 B. HOLDOM 45

~ SESS

FIG. 1. Diagrams contributing to the PGB propagator and

f The v. ertices are momentum dependent.

2 dg q(2~) f„Z(q) q +X(q)
(39)

The second diagram is responsible for the high-energy be-

choice for quark models, and there has been a recent
theoretical argument [8] supporting the notion that con-
stituent quarks should behave like bare Dirac fermions
with g~ =1.

With this choice all the PGB couplings arise in the
mass term depending on X(x —y ), and the high-energy
behavior of X(p ) provides more suitable form-factor
suppression of PGB vertices. The diagrams in Fig. 1 are
now convergent, and the high- and low-energy behavior
for b, '(p )/p is given in (11)with

havior in (11).
We have arrived at a minimal model with a few appeal-

ing high-energy properties; the quark propagator is QCD
like, and the PGB propagator is at least reminiscent of a
physical composite pion. In these respects the model
clearly improves upon local constituent-quark models.
As stated in the Introduction, we wish to model QCD in
the intermediate energy regime, and thus it is appropriate
to consider the model as an effective theory below some
cutoff. The main point is that in comparison to local
models, the model we have chosen with g~ =g~ =1
displays much less cutoff dependence. This is traced to
the physically motivated momentum dependence of X(p ).

III. PARAMETERS
IN THE CHIRAL LAGRANGIAN

We return to low energies and obtain the chiral La-
grangian X,tr from (10}. As a first application, we may
calculate f by taking the small-momentum limit of the
diagrams in Fig. 1. From the normalization

'(p)/p =1 at small p, we obtain the following con-
vergent expression:

&c z 2([XX"—X' ]q +2XX')X +Z ([X' +XX"]q +2X )+2ZZ'q (X—2q X')X+2Z' q X
8 2 (Z2 2+X2)2 (40)

This generalizes the following Pagels-Stokar formula [9].
When Z(q ) =1, (40) is equivalent to, up to a vanishing to-
tal derivative,

f2 — d 2 2g
4 2

( 2+X2)2
(41)

Of course, our knowledge of X(q ) and Z(q ) in QCD is
limited, and it is usual to rely on the Schwinger-Dyson
(SD) equation in improved ladder approximation to de-

velop some feeling for X(q ) and Z(q ). It is common in

this approximation, by choice of the Landau gauge, to set

Z(q ) = l. [In a different gauge, X(q ) and Z(q ) would

presumably change in such a way as to keep the physics
the same. ] We adopt Z(q ) = 1 in the following.

We turn our attention to the standard coeScients
L I

—L Ip of ten terms in the chiral Lagrangian at order p
(See [5] for details. ) In the model these L s are given by
very lengthy integral expressions involving X(q } and its
derivatives. The important point is that they are all con-
vergent, and we evaluate them without a cutoff. We will
then compare these results to the renorrnalized values of
L s in the QCD chiral Lagrangian. For the renormaliza-
tion scale, we find it appropriate to choose p =2m, where
m is the constituent mass.

As noted before [2,4], the Wess-Zumino terms are also
directly determined and the coefficients turn out to be in-
dependent of X(q) as required. But for the L, 's we must.
parametrize our ignorance of X(q ); as in [4], we do this in
terms of one parameter A,

(3+1)mXq=
2

q +Anl

—,'L2 =L4 =L6=0, (43)

consistent with Zweig's rule [5]. Numerically, some of
our results will be the same as found in [4] since the X(q )

dependence of the vertices in the two models is the same
up to the first derivative X'(q ).

In particular, all results related to the current quark
mass matrix M are the same. L4 Ls multiply O(p —)

terms involving M. For the coefficient of the O(p ) M-
dependent term, the model generates the usual M(fg)
combination with (gg) as defined in (25). But (p1() is
sensitive to the high-energy behavior of X(p), unlike the
L, 's. Thus we replace .(PP) by a parameter (PP)„, and
we use this quantity to represent the physical condensate
renormalized at scale p. We also consider M to be renor-

The normalization is such that X(m )=m. This simple
function shares qualitative similarities with solutions of
the improved ladder SD equation, those solutions being
finite, positive, monotonically decreasing functions with
1/q behavior at large q [ignoring the power of ln(q )]
and X'(0) (0.

We follow the procedure in [4]. We calculate the
coefficients of the general set of O(p ) terms and then use
lowest-order equations of motion to eliminate some terms
in favor of the ten L s. The equations of motion intro-
duce a nonzero L7, but
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TABLE I. Results for the coeScients L &,L2,L„L9,L,O appearing in the chiral Lagrangian at O(p )

in the chiral-symmetry limit are compared with the experimental values (first column). The model

yields L, =L2/2. The parameter A determines the form of X(p) in Eq. (42). Li,L9,L,O are

renormalization-scale dependent, and we give their values renormalized at m„. We also give their raw

values, corresponding to a renormalization scale at the matching scale.

X10'

L3
L,(m„)
L9(m„)
L)0(mq)

LO

LO

Lio0

Expt

—3.6+1.3
1.6+0.4
7.4+0.7

—6.0+0.7

A=1
—6.15

2.58
8.88

—7.10
2.31
8.54

—6.76

—5.13
2.17
7.57

—5.72
2.00
7.34

—5.50

A=3
—4.70

1.98
7.02

—5.10
1.88
6.88

—4.96

A=4
—4.45

1.86
6.71

—4.73
1.81
6.65

—4.66

malized at scale p. (Pg)& along with the three quark
masses in M and the constituent-quark mass m makes a
total of five parameters They are determined along with
L4-L8 by fitting to five physical quantities; the resulting
values of all these quantities are found in the erratum to
[4]~

Since L, =
—,'L2, there are four independent num-

bers to be calculated in the chir al-symmetry limit:
L2,L3 L9 L]0 They are independent of the five parame-
ters; in particular, they are independent of m since the
L s are dimensionless. To calculate them we need ver-

tices in addition to those listed above; e.g., for L&, L2,
and L3, we also need A and A, and for L9 we also
need Az . L,o may be extracted from the p term of the
VV-AA two-point function. (The formula for f may be
extracted from the p term. )

We are associating these L s to physical L, 's renormal-
ized at p =2m. Values of L s quoted in the literature are
renormalized at some other scale, in particular p=m„,
and to make the comparison we must run our L, 's ap-
propriately [5]. We determine m for each choice of A

from the Pagels-Stokar formula (41) for f . For that for-
mula we must take a value of f corresponding to the
chiral-symmetry limit; we take f =84 MeV.

Our results for L2,L3,L9,L&0 renormalized at p=m„
are presented in Table I and compared to the experimen-
tal values [5,10]. L3 does not receive a correction from
running; and the uncorrected values Lz, L9,L &0 are also
given. L,o is the same as in [4], but L„L2,L3, and L9
are different.

We see that the A =2 or 3 results compare quite favor-
ably with the data. And it is of interest that a model
based on low-lying QCD resonances also gives values for
L2 and L3 (L2 =2.2, L3 = —5.5 in [11]),which are some-
what larger in absolute value than the present data. We
comment more on the meaning of these results in the
conclusions.

IV. RELATION TO QCD
USING THE AUXILIARY-FIELD METHOD

In this section we discuss the model more in the spirit
of other attempts in the literature to "derive" a nonlocal
quark model from QCD [2,3]. We find such arguments
to be rather crude, but the simplified picture of QCD dy-

But instead of using the bare gluon propagator which
would appear here, let us use instead [2]

d4k k25.—k k.gD'(x)=5' " " F(k)
(2ir) k

k k,"F (k2) eik x
k4

(45)

In this way the effects of a running gauge coupling, in-
cluding those contributions to the P function from gluon
self-couplings previously omitted, can be introduced
through the functions Fr(k ) and FI (k )

We Fierz transform the four-fermion interaction

,' fd x d—yq(y) &q(x);,E(x —y)q(x);dq(y)J, A, ;dA, ;&,

(46)

here (i,j ) and (c,d, e,f ) are flavor and color indices and
E is a nontrivial matrix in Lorentz spinor space. A
Gaussian term of the following form involving a bilocal
auxiliary field y(x,y ) may be added to the action to can-
cel the four-fermion term:

1 Tl
2

—
ECqq I,'E ' —Kqq A,

'
C2 Cq

(47)

C2 is the color Casimir invariant. The resulting action
takes the form

namics they present may at times be illuminating. We
will concentrate on the chiral-symmetry-breaking dynam-
ics responsible for the generation of X(p ) and its possible
effect, if any, on the above results.

We will make use of the nonlocal auxiliary-field
method [12—15]. Let us ignore the cubic and quartic
gluon self-couplings in QCD (we will reintroduce some of
their effects in a moment), thus allowing us to integrate
the gluons out of the theory. We would obtain the fol-
lowing action, with the external-field (V, A, S,P) terms
implicitly present:

fd"x q( x)8q( x) +,' f d —xd y q(x)A, 'y"q(x)

Xg~D„'b(x —y)q(y)A, y"q(y) .

(44)
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1 A,
'

A,
'

Tr(XA, 'K 'XA, ')+q j3+ q
2C2 C2

+ V, A, S,P terms . (48)

(52}

= 165,,X(x —y ) . (53)

tr[~„„X(x,y )]=0,
«[X(x y);k]«[X(y x)kj]+ tr[~ysX(x y)ik]tr[~y5(y x)kj]

tr[y~(x, y ) ]=0,

«[y„y X(x,y)]=0,

(50)

(51)

Now the quarks may be integrated out, turning the
second term and external-field terms into a Trln term.
But an intractable integration over X(x,y ) remains.

It is popular at this stage to consider the tree approxi-
mation and to study the tree-level action
A'"'[X; V, A, S,P]. It is found that the stationary condi-
tion for A '"'[X;0,0,0,0] with respect to X reproduces the
SD equation in ladder approximation, which is "im-
proved" since the bare gluon propagator is replaced with
(45). Let the solution of the SD equation be given by
X(p ) and Z(p ) = 1 (in Landau gauge); then the vacuum
value of g is

(X(x y) j d p)k g sp=o=5; 5d5 pX(x y) . (49)

Diagonalizing the classical quadratic Auctuations around
this stationary point corresponds to solving the ladder
Bethe-Salpeter equations [13,15].

Quantum corrections beyond the tree approximation
will efFectively reintroduce QCD corrections. But this is
not a simple perturbative expansion in the QCD cou-
pling; the new corrections are those not already included
in the sum of ladder graphs inherent in the solution of the
ladder SD equation. Thus the importance of the quan-
tum corrections is related to the reliability of the ladder
approximation.

The above picture is based on A '"'[X;0,0,0,0], and we
must try to extend it in two ways. First, we require non-
vanishing external gauge fields since we seek the generat-
ing functional I ( V, A, S,P). And second we want to re-
tain the PGB degrees of freedom in y as dynamical fields
in the low-energy theory.

Since we are interested in the low-energy theory we
may consider the external fields to be small in magnitude
and slowly varying compared to the mass scale of the
heavy degrees of freedom in y. We are then led to the
following construction. We will set the heavy degrees of
freedom in g in the presence of the external fields to their
vacuum values, as determined in the ladder approxima-
tion with Uanishing external fields. The trick is that this
must be done in a way consistent with the local chiral
symmetry, thus ensuring that this symmetry remains in
the low-energy theory.

We accomplish this by imposing a constraint on
X(x,y), which is chirally invariant. This will constrain
X(x,y ) to depend only on m., V„,A„ in such a way that it
still transforms properly under local chira1 transforma-
tions. Basically, we are generalizing the constraint
U U= 1 in the local nonlinear o. model. The constrained
X(x,y) is proportional to 5,d in color space; with this in
mind, the color indices are implicit below. We consider
the following constraints, where tr denotes a trace only
over the Lorentz indices:

Equation (53) can also be written as

«[X(x,y )~k lr —r X(y~x )k, ]=4&;,&(x

We now note that a solution to these constraints is

(54)

tr[g(x )tX(x,y )g (y )g(y )X(y,x )((x ) ];,

=tr[g(x ) X(y,x) X(y,x )g(x )];,=4&;, . (56)

We have used the fact that I „appearing in the definition
of X(x,y ) is even in y5 and Hermitian. And X(x,y) con-
sidered as a matrix in fiavor/Lorentz space is unitary.

We now insert X""""'"' into A'""[X;VA, S,P]. We
first put the K ' term in a more explicit form. From the
QED result in [14]and by using the constraints (50)—(52),
we find

1

2C
Tr(XA, 'K 'XA, ')

f d x d y[o,,(x,y)[g D(x —y)] 'aJ;(y, x)

where

+ II ~(x,y )[g D(x —y )]

XII,;(y, x)j,

tr(X) tr(iy, X)II=
4 ' 4

(57)

(5g)

and

C~ d~k 3Fr(k )+F1(k )

4 (2n) k
(59)

The constraint (53) then implies that

2 f d x d y X(x —y ) [g D(x —y)]

(60)

This is a contribution to an "effective potential" times the
usual infinite volume factor.

The main point is that it is independent of PGB's, and
it thus makes no contribution to the chiral Lagrangian.
The chiral Lagrangian is therefore completely due to the
Tr ln term in A ""[X;V, A, A, P]. Upon substituting

into this term, we recover our model AGNC de-

X(x,y )
""'""'=X(x —y )[g(x )X(x,y)g(y )], , (55)

where X(x,y) is the path-ordered exponential defined in
(15). To check, insert this into the LHS of (54},and drop-
ping X(x —

y ), we have
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scribed above with Z(q) =1. We note the emergence of
gz =1 from this new perspective.

This truncation of QCD leading to our model is in-
teresting for two reasons. One is that the quantity
X(x —y ) is now determined dynamically; it is no longer
an arbitrary quantity as when we introduced A GNC. The
essential dynamics is introduced by the E ' term. But
with the heavy degrees of freedom in g constrained in the
manner above, we find that this term does not contribute
to the chiral Lagrangian. This suggests that QCD dy-
namics may inAuence the low-energy chiral Lagrangian
mainly via the form of X(x —y), as determined by the
Schwinger-Dyson equation.

The other point of interest is that our truncation of the
theory is related to (but not identical to) the tree approxi-
mation, since the heavy degrees of freedom in y are set to
the vacuum values determined in tree approximation.
But the tree approximation is equivalent to the improved
ladder approximation. Our approach may therefore be
more reliable in those cases where the ladder approxima-
tion is successful. This may be the case for example in
gauge theories having small P functions [16].

V. CONCLUSIONS

The motivation for this study should be made clear. A

priori, our model has nothing to do with QCD. In fact, it
is quite clear that a compelling derivation directly from
QCD, of any such model, does not presently exist. What
we have done is to construct a theory of fermions with
momentum-dependent mass and to determine a minimal
set of nonlocal and nonlinear couplings to Goldstone bo-
sons consistent with local SU(3) X SU(3) chiral symmetry.
As such the model shares a few key features with the
theory of QCD in the presence of external chiral gauge
fields.

We have compared the low-energy effective theory of
our minimal model to that of QCD in the chiral-
symmetry limit. We are intrigued that with a simple
choice of the dynamical mass function X(p), rather re-
markable agreement exists for a number of dimensionless
constants. The model is also amenable to the study of ex-
plicit chiral-symmetry-breaking effects. For example, ex-
plicit quark masses are naturally introduced since the
momentum-dependent constituent mass is clearly dis-

tinguished from the essentially momentum-independent
current quark mass. The values of m„, md, and m, may
then be extracted if the model is to reproduce the physi-
cal decay constants and masses of kaons and pions. Us-
ing the same X(p ) as before, the quark masses obtained
agree quite well with accepted values [4].

All this demonstrates the following fact, which has yet
to be fully explained. Chiral dynamics, at least to O(p )
in the energy expansion, is well described by a loop of
free, or weakly interacting, constituent quarks with a
momentum-dependent mass.

We are induced to consider the other source of explicit
chiral-symmetry breaking: that due to the weak interac-
tions. Again, the standard local four-quark terms may be
directly introduced into the model. The result in the
effective theory is a large set of new terms at O(p ) in the
energy expansion. Work is underway to extract their
coeScients, both to compare with those already known
and to estimate those not yet determined.

Another application of the model is in the extrapola-
tion of results from QCD to other gauge theories, most
notably in the technicolor context. The formula of
Pagels and Stokar [9] expressing f in terms of X(p) has
proven useful in this connection, in particular in studies
of theories which produce a different behavior for X(p),
such as walking technicolor. Our model expresses other
low-energy parameters, as well as f, in terms of X(p).
As an application in the context of technicolor-induced
electroweak corrections, the analogue of L,o plays the
role of the S parameter [17,18]. Our model was used in
[17] to show that S from a walking technicolor theory is
expected to be smaller than the S from a QCD-like tech-
nicolor theory. This tendency has also been noted in a
quite different analysis [19].
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