
PHYSICAL REVIE%' 0 VOLUME 45, NUMBER 7 1 APRIL 1992

Leading radiative corrections in two-scalar-doublet models
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The leading radiative corrections arising from scalar contributions to the vector-boson self-energies,

oblique corrections, are analyzed for extensions of the standard model involving two scalar doublets.
We employ the most general such model which is compatible with natural Qavor conservation, but al-

lowing the possibility of soft discrete-symmetry-breaking terms. Several interesting, special cases are
discussed.

PACS number(s): 12.15.Cc

I. INTRODUCTION

Application of the Appelquist-Carazzone theorem [1]
to a gauge theory suggests that the effects of heavy parti-
cles decouple from low-energy phenomena below thresh-
old. However this is not the case for a broken theory
such as the standard model (SM), where hard couplings
grow in the large-mass limit. In this situation, the under-
lying symmetry ensures that while there is suScient free-
dom to choose counterterms capable of removing ultra-
violet divergences, it is not possible to further subtract
the effects of the heavy particles. Thus we expect that the
effects of heavy particles, associated with potentially new
physics at a large scale A, will be indirectly observable
via radiative corrections in SM-type theories.

In this paper we shall examine those effects due to a
particularly simple extension of the SM containing two
scalar doublets [2—4]. To simplify such an analysis we
shall make the assumption that the leading corrections
are "oblique. " That is, they affect physical observables
via their presence in the vacuum polarizations of the vec-
tor bosons [5]. To justify this assumption note in particu-
lar that, as in the minimal model, all the Yukawa cou-
plings of the scalars to fermions contain a suppression
factor mf /M~. However, in addition enhancement
terms dependent on the ratio of vacuum expectation
values (VEV's) also occur [2]: v/v& and v/v2 for the neu-
tral scalars and ( v

&
/vz )*' for the charged scalar. Thus to

avoid sizable scalar-mediated corrections involving cou-
plings to external fermions (tree, vertex, or box) we must
impose limits on the ratio v, /v2. We use the bounds ( —,

'

or —,', ) ~
vb /v, ~ 120, derived by requiring that the Yu-

kawa couplings of the ( ~89 or ~50) GeV/c mass top
quark and 5 GeV/c mass bottom quark take perturba-
tive values: ~ &4n. Confining ourselves to leptons and
other light fermions, these bounds are quite adequate. '

'For this purpose the b quark ought not to be considered light,
which is in addition to the fact that its corrections inevitably in-
volve its heavy isospin partner, the t quark.

Further additional constraints on this ratio are also avail-
able from the study of scalar corrections to a range of
processes [6,7].

We take the new physics scale A &&Mz=M~ —q
the scale of the relatively low-energy phenomenology.
Now on dimensional grounds we expect the leading term
in a one-loop self-energy to depend quadratically on A as

g Az or g A ln(A /v ), where g is the SU(2)L gauge cou-

pling constant, while successive terms in the q-
MacLaurin series expansion will be suppressed by a fac-
tor v /A, with possible logarithmic ln(A2/v ) factors al-

ways understood. In our analysis of effects due in partic-
ular to large-mass scalar particles in the two-doublet
model we shall consider only the quadratic and constant
(logarithmic) terms.

As an example of this structure the radiative correc-
tions due to the (t, b) quark doublet give rise to a factor
g m, in the self-energies at q =0. These for example
then give a contribution to the Veltman rho parameter p
proportional to [8] g m, ; it is essentially this term's
quadratic dependence which allows the present deter-
minations of the top-quark mass [9,10] within the
minimal SM. At first sight a heavy Higgs particle in the
SM is similar with g MH contributions to the 8' and Z
self-energies at q =0; however in physical observables,
such as p, this leading quadratic dependence always can-
cels leaving only the subleading logarithmic behavior [11]
g ln(MH/Ms ). This cancellation of the leading power
dependence on MH is explicitly known to persist to two
loops [12] and is known as the Veltman screening
"theorem" [13].

The origin of the cancellation of leading terms in

g MH can be traced to the existence of a custodial SU(2)
symmetry [14,15] and occurs to all loops [16]. In the SM
the potential for the scalar field is invariant under both
the usual SU(2)L and an SU(2)z, which after symmetry
breaking, reduces to the custodial vector SU(2)L +„sym-
metry. It should be noted though that both mass split-
tings in the Yukawa couplings of fermion doublets and
the gauging of the scalar hypercharge coupling violate
the symmetry at the tree level, the latter leading to
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Mz&M@,. Under the residual custodial symmetry, the
SU(2)L gauge fields Wl, Wz, W3 form a triplet which,
combined with the existence of charge conservation, im-
plies p= 1 at the tree level [14]. Now it is the vestiges of
this "isospin" symmetry, persisting beyond the tree level,
which ensure that the leading terms in g M~ go into the
scalar field's wave-function renormalization constant and
thus remain unobservable [15,16].

In the case of a two-scalar-doublet model such a resid-
ual custodial symmetry would also lead to the suppres-
sion of corrections to p = 1 [15];but it is not present for a
general scalar potential allowing the possibility of large
quadratic corrections to physical observables [3,17].
However, it still proves helpful to organize our study of
the leading corrections in terms of such an isospin.

The remainder of the paper is organized as follows.
First, the relevant features of our general two-doublet
model are outlined; then expressions for the additional
contributions to the vector-boson self-energies are
presented. The corrections to physical observables are
studied using the three dimensionless parameters j e; ] in-
troduced by Barbieri [18,19] et al. The SM Higgs boson
and (t, b) corrections are given for comparison. We then
discuss these results paying particular attention to the
range of allowed values and certain special cases. Finally
we comment on the relationship to experimentally
favored values [9,20].

fermions. In terms of these physical fields the two dou-
blets may be decomposed as

X'&2
v) +cp . p

~X

0

0
+ (R, , i—s&R, 3)h,

(2)

0 X'&2
+Sp . p +Cp

~X

a+&a
0

0
+ (R(2+ 1ct3R; 3)h;

$ c 0 e
—i8

p p.
(3)

Here p is defined by tanp= u2/u„with c& and stl abbrevi-
ations for cosP and sinP, and R," is a 3X3 orthogonal
matrix arising from the diagonalization of the neutral
mass matrix [2,22]. To aid the interpretation of the fields
present it is instructive to introduce a new basis due to
Georgi [4], obtained from that above by the unitary rota-
tion

II. GENERAL TWO-SCALAR-DOUBLET MODELS

Here we briefly recall the main features of two-scalar-
doublet models; see Ref. [2] for further details. The sca-
lar potential is given by [4]

These new doublets may then be written as

1 0 X+V'2

u+H iy

and (4)

@1&@2) Pl@1@1 812@1@2 P12 @2@1 92@2@2
2 f 2 t 2g f 2

+~1(@1@1)+~2 @2+2) +~3(@1@1)(@2@2)

+A4(C&, 4~)(4241)+—[(4142) +(4241) ].
2

Without loss of generality the [A, , ] are taken real [4,17].
Observe that the hard mass-dimension-four terms are re-
quired to respect a custodial discrete symmetry:
4&~—4&,42 invariant, which when imposed on the Yu-
kawa couplings ensures against tree-level flavor-changing
processes mediated by neutral scalars [21]. However, we
do admit the possibility of a soft symmetry-breaking
term: @12%0. The parameters are chosen such that the
potential's minimum corresponds to symmetry breaking
with aligned VEV's. In general,

(e, )=U'2 v~
' V'2 v2e'

where unless p, 2 is real, 0 will be nonzero and CP is
violated in the scalar sector. The corresponding scalar
spectrum consists of the three would-be Goldstone bo-
sons g—,y; two charged scalars H —,with mass M+ and
three neutrals h, , h 2, h 3, with masses M; which in general
have mixed Lorentz and hence mixed CP couplings to

a+&2
H'+iH

where H, H', and H are in general combinations of the
physical neutral scalars [h;]. It is now clear that 1I1,

plays the role of the minimal SM doublet with H the
analogue of the Higgs field, while %2 represents an in-
dependent extra doublet. In the case 8=0, R;. and the
H' have a particularly simple form [2,3,17]:

s 0

c 0

0 0 1

H'=c. ph, —s. ph, ,

H'=s~ Ph, +c~ Ph2,

H =h
3 )

(5)

where a is a mixing angle determined by the scalar poten-
tial. Note that in this special case h, and h2 are both CP
even possessing sca1ar Yukawa couplings while h3 is CP
odd with pseudoscalar couplings. In general R controls
the form of the Yukawa couplings to fermions while the
H' relate to the couplings to the vector gauge bosons [2].

This model is quite general, subject only to the require-
ment of tree-level, natural flavor conservation. As such it
subsumes several other models, for example: "axion"
models have A. ~

=0 [23] and p12 =0 [24] while the
minimal supersymmetric standard model [25] (MSSM)
has A, , =(g +g' )/8=F2, k, =(g —g' )/4, A4= —g /2,
A, ~=O where g and g' are the SU(2)L and U(1)r gauge
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couplings, respectively, and p, =s p +c&Mz/2,
p2=c&p +s&Mz/2, and p,2= —c&s&(p +Mz/2) for
some p . The presence of the p&2 term in the potential in-
troduces new freedom, when assigning the scalar masses
and the three mixings required to specify the matrix R,
which in turn characterizes the scalars couplings to fer-
mions and vector bosons.

Radiative corrections to p& and p2 diverge quadratical-
ly with the new physics scale A and, on dimensional
grounds, the four soft mass parameters {)M; j might natu-
rally be expected to be 0 (A ). However, we know that
the values of p& and p2 must be fine-tuned to ensure that
v& and v2 take values at the weak scale v. It is further
possible (i) to fine-tune the complex parameter )M[2 to the
weak scale; this latter fine-tuning is technically natural as
it is protected by the discrete symmetry which is only
softly broken. Thus in option (i) all the {)u; j are O(v ),
so that larger scalar masses are obtained by increasing
the hard parameters {A,; j. Restricting the {A,; j to take
finite, perturbative values, we believe, leaves sufficient
freedom to choose an arbitrary set of mixing angles and
scalar mass spectrum below about 10M', =800 GeV/c .
A second option (ii) is to allow the complex parameter

p&2 to take its value at the scale A; this leads, with the ex-
ception of h, =H, to all scalar masses being 0 (A). That
is, inducing large scalar masses, for finite hard {A,j, by
increasing the soft {p;j leads, up to corrections of
O(v /A ), to an effective, one-Higgs-doublet, SM-like
theory for scales below A. This "tree-level" decoupling

I

of the heavy scalars will also be seen to occur in the one-
loop radiative corrections.

In terms of phenomenology the real significance of p, 2

probably lies as a second source for CP violation within
an SM-like theory [22] and its associated role in provid-
ing a potential mechanism for electroweak baryogenesis
[26]. As p, 2 is a soft symmetry-breaking parameter, radi-
ative corrections do not induce the presence of a counter-
term for any neutral flavor-changing Yukawa coupling:
there are no flavor-changing neutral-scalar-boson ex-
changes [27] in the model. CI' violation in KL ~2m. de-

cay arises from the usual complex phase in the CKM
mixing matrix, via charged, vector, gauge boson, and
charged-scalar exchanges [28]; neutral-scalar-exchange
contributions occur at higher order and are expected to
be negligible. On the other hand, CP-violating neutral-
scalar exchange should provide dominant contributions
to the electric dipole moments of quarks and leptons
[22,29]. The two-scalar-doublet electroweak baryogenesis
scenario [26] requires the phase 8 to be of order unity and
consequently an electron electric dipole moment close to
the present experimental upper bound.

III. SELF-ENERGIES WITH
TWO SCALAR DOUBLETS

The various one-loop vector-boson propagators are
decomposed into their transverse and longitudinal parts
as follows:

k —M,

I A, i(k )
5 +

k —Mb

k"k'
k

+ 5 +ab k2 M2 k2
b

(6)

where A,b and 8,b are —i times the transverse and longitudinal parts of the amputated self-energy for a goes to b. The
full expressions for the transverse self-energy contributions A,b arising from the scalar particles in a two-doublet exten-

sion of the SM are now given. In the notation used s and c are the sine and cosine of the Weinberg angle and the H
are introduced via H'=H h;; observe that the H form an orthogonal matrix. The integrals are regularized dimension-

ally. The contributions Ayy and Ayz are

(k2) k2g +k2ln +(4M2 k2)F(k2 M2 M2 )
aEM l, M+ 2k~

4m 3

C2 —$2

2cs

Note the neutral scalars do not contribute to these two terms. The contribution gzz is

(7)

&zz(k')=, , —[(c'—s')'k'+9M'+2k']6
4~ l2c's'

+(c2 $2)2 +I 2ln
+ +(4M2 I 2)y (I 2 M2 M2 )
W

M2

Mt. Mz M$y Mz M. M$y

The detailed definition, for example whether s~, so, or s, is not significant at the one-loop level.
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+g (H; ) 5(M; +Mz) — + [k —(3M; +Mz~)]ln
l

M M2+, , [k' —(3Mz~+M, )]ln

(M; —Mz )+ 2(M +M ) —k — F(k MM )

M2 M+—g (H H H; H—') 5(M;+M )
— + (k —3M —M )ln

l, JWl J W

+ ( k —3M2 —M2)1n
M M

M2 —M2 M2

(M2 M2)2
+ 2(M +M )—k — ' F(k 'M, M )

M—3+M; 1 —ln
M~

The factor —, in the term g, ,&,. is included to compensate for double counting. The contribution A~~ is

+EM M M
A ~~(k ) = —3(3M~+ k )6~ —12M~ g (H, ) 1 — ln +F(k;M;,M~)

+g(H, ) 5(M;+M~) — + (k —3M; —M~)ln

(M2 M2 )2
2(M2+M2 ) k2 ' F(k2.M2 M2 )

5k 2 M2 M2
+g[(H )'+(H')'] 5(M'+M' )

— + ' (k' —3M' —M' )ln+ nM'

M+ M+
( k —3M —M )1n

M —M ' M+ i 8'

(M2 —M2 )2
2(M2+M2 ) —k2 — ' F(k M. M )

M—3+M 1 —ln
l Mw

M+—6M 1 —1n
Mg (9)

Here,

2 Mw—y —ln
4—d 4~p2

where d is the space-time dimensionality, yE is the Euler-Mascheroni constant, and p is the t Hooft mass introduced to
keep track of dimensions. The function F(k M1 M2) arises from the evaluation of the two-point scalar loop diagram
and is given by

2 2 2
x k —x(k +M1 M2) ™1F(k;M1,M2) = — dx 1n

0 1 2

M1+M2 M1—1+ 1n
M1 —M2 M2

(10)

It is symmetric in M, and M„and normalized so that F(0;M1,M2) =0. It will be helpful for later use to know the small-
k' behavior
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M'+M'
F(k;M, M )=

(M —M )

MM M
M2 M22M21n

k4 1 2M 1M~+ —+
(M& —M& )& 6 (M& —M& )&

M~M~ (M~ +M )1 2 1 2
1

1

(M —M) M

k kF(k~.M~ M~) = + +
6OM

which allows us to expand out the self-energies. Observe
that in the special CP-invariant case, Eq. (5), the more
general expressions given for the self-energies reduce to
the known results [17,30].

IV. THE LEADING OBSERVABLE CORRECTIONS

As indicated previously we believe the leading effects of
the heavy scalars are contained within the first two terms
of the MacLaurin series for the A,b, thus we write the
self-energies as

A.,(k') = A.,(0)+k'II„(k') . (12)

[II, (0)—11„(0)]
C

e3 = 113O(0)

(13)

Here W3=cZ+sA and Wo= —sZ+cA refer to the
fields of the unbroken Lagrangian. From these
definitions it is clear that e& and e2 are proportional to the
residual SU(2)I+„-symmetry breaking and, unlike e3,
will vanish as it is restored. From the above remark we

I

Any quadratic dependence on heavy particle masses
should appear in A,b(0) and not in II,b(k ). Note that
Arr(0)=0 is required by current conservation while
A rz(0) only receives one nonzero contribution
—(aE~2MII, /4Ircs)b, ~ from the W loop; new physics
contributions to A rr(0) and A r, (0} vanish. Further
below the particle thresholds their contributions to all the
A,b are real. After defining the necessary counterterms
the remaining free A,b(0) and II,b(0) may be combined,
adopting a similar notation to Barbieri et al. [18,19], into
the following combinations based upon the custodial
SU(2) "symmetry" of the SM:

A+ (0)—A33(0)

M W

expect at most quadratic dependence in e& and logarith-
mic dependence in e2 3 on heavy particle masses.

We now present the expressions for the Ie;] arising
from a heavy (t-, lI )qua-rk doublet, the minimal SM
Higgs boson, and the new expression for the two-doublet
case.

A. Heavy quark doublet

The exact formulas are [8]

aEMeI=, , f(m, , mb},4~ 2s 2M~2

aEM N.
g(m, , mb),4~ 3s'

2
aEM N, m,

3 —ln
4~ ]8s m

(14)

m m
f(mI, m3)=

2

m2m2 m2
1 2 1

ln
m —m m1 2 2

2m &m2
2 2

g(mI, m3)= ——+
6 (mI —m~)

(m +m )(m —4mm +m ) m
ln

2(m —m ) m

(15)

Note that for m
&
=m

2 both functions vanish being pro-
portional to (mI —m~) . So that when the custodial
SU(2) symmetry is respected by the Yukawa couplings
m, =mb, then eI =0=ez, however, e3= —(aEbt/
4Ir)(N, /6s ). Further f (m I,O)=m1/2 while
g(m „m&~0)-ln(m, /m3) —

—,
' diverges logarithmically

to + oo, so that for m, » mb the [e; ] behave as

Here N, =3 is the number of quark colors and we have
introduced two positive functions f(mI, m3) and
g ( m I, m 3 ) which naturally arise in our formulas:

aEM N, 3m, 5 ] m,
2 2

[6I,EI,E3]=''; 1114~ 3s 2 4M~2 6 2 mb
'6

m
3—ln

2
mb

The strong quadratic dependence of eI on the mass [8] ensures that quantities involving it lead to the best predictions
for m, ; currently [9] m, = 130+35 GeV/c . While in e3 and e3 there is only logarithmic dependence it should be noted
that (at least within the minimal SM [31])the large bound on the ratio [32] m, /mb & 325 implies that they are both nu-
merically significant, though relatively constant.
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B. Single Higgs particle

For the single Higgs particle, with a mass MH, of the minimal SM we have the exact expressions [11]

&EM 3 M

(es M)(M 2)

M 12M

4~ 12s 2 Mw (MH —Mw)

+EM 1 1 MH 1 Mz2 2

b, w
—g ( MH, Mz )

——ln ——ln
4~ 12s 2 Mw 2 Mw

These expressions can be greatly simplified if terms of order Mz/MH are neglected:

&EM 1 9s MH 5
2

e, ;e2, e3]=;0;—1 . bw —ln +— (17)
4m 12s' c' ' '

Mw

Here e, only depends logarithmically on MH, while the leading behavior in e2 is suppressed as Mz/MH. As noted this
is not because quadratic dependence on MH does not occur in the self-energies; for the 8'—and Z both the physical-
scalar —would-be-Goldstone-scalar and physical scalar "tadpole" loops depend quadratically on MH. However in E'& the
latter contributions cancel exactly and due to the similarity Mw=Mz the former partially cancel, leaving only a loga-
rithmic dependence. This is an example of the screening theorem, and has the immediate consequence that inferring
the Higgs-boson mass from experiment becomes rather difficult. At low values of MH quadratic behavior does occur
and in particular t..2 is non-negligible.

Note also that e& and e3 are not ultraviolet finite, but must be taken in conjunction with the other boson loops, with
which they form a gauge-invariant set, to give a finite result. This cancellation can be checked using the results for the
remaining bosons:

A+ (k )
—A23(k )

Mw

+EM 3 . c &EM 1
b, w+finite, ——1130(k )=

2
hw+finite .

4m 4c' '
s '

4m 12s'

C. Two scalar doublets

In the case of two scalar doublets we find

y (HO)2e(sM)(M2)+ y [(Hl)2+(H2)2]f(M2 M2 ) y (H1H2 H2H1)2f(M2 M2)
l W i 11J

g (HO)2e(sM)(M2) g [(H 1 )2+(H2)2]g (M2 M2 ) g (H1H2 H2H1)2g(M2 M2)
l

7T
1,J

(19)

y (HO)2e(sM)(M2) y [(H 1)2+(H2)2]ln&EM 1 M+
4~ 24s M

—g(H'H HH') g(M,—M ) (20)

In considering these corrections it is useful to adopt the separation of fields as indicated in the Georgi basis Eq. (4). 4,
containing the combination of physical scalars H is, by design, analogous to the SM's single doublet containing the
Higgs particle; in particular it has the same couplings to the gauge bosons. Thus the first contributions, coming from
1p1, to the [E; ] are equivalent to those of the SM. More interesting are the contributions from the additional doublet F2
which contains H* and the two combinations of fields H'+iH In what .follows we shall study I e', "'"] defined as the
difference between e, (2 doublets) and e, (1 doublet). In the large-mass limit this introduces a factor proportional to

g, (H, ) ln(M, . /MH ) into e„w ehre it is subleading, and e2.

V. DISCUSSION OF RESULTS

To gain an insight into the e'"" we begin by considering the size of the corrections in the large-mass limit of the CI'-
invariant case 8=0, given by Eq. (5). In this situation,

&EM
e',"2~'=

2 Is~ &[h (M1,M+ )+h(M3, M+ ) —h(M1, M3)]12s'

+c'. ,[h (M'„M' )+h(M,', M', )
—h (M,',M,')]], (21)
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where C=3/M~, h =f for e, and C= —l, h =g for e2 and

EM 1 M2 2 2 1 M2 2

s &
ln +g(Mi, M3) ——ln

4~ 12s M 2 M,

M+——ln
M

2 2MI M++c
&

ln +g(M2, M3) ——ln
MH 2 M2

M+——ln
M

(22)

We shall now examine the range of these additional corrections given by Eqs. (21) and (22), to find their maximum and
minimum values and how they can be made to vanish.

We start by studying eI"'". It is significant to note that e;"'"can contain quadratic dependence on the scalar masses

[3,35], unlike the situation in the minimal SM; thus we can anticipate larger corrections. Previously it has been noted

[17] that e|""'is positive for M& z 3
)M+ or M+ & M& z 3 with the maximal positive corrections being given by the fol-

lowing two basic configurations according to whether M+ is the smallest or largest mass:

s &=O,MI free: 0=M+ «M2=M3—=M, or O=M2=M, «M+,
c &=O,M2 free: 0=M+ «M, =M, or O=MI =M3 «M+
M, =M„(a—p) free: 0=M+ «M, =M, or O=M, =M, «M+ .

In this case eI"'"behaves as

&EM 1
2

~mRX—
2 2

Or
4~ 4s Mw

M+

M~
(23)

Physically these configurations correspond to the doublet %2 having the charged-scalar mass either much less than or
greater than the mass of the CP-even and -odd neutrals, which are mass degenerate.

Commonly new particles contribute corrections to el which are positive [33], though not necessarily [34]. For exam-
ple, in the regions M, 2 & M+ & M3 and M3 & M+ & M» the extra scalar contribution may be negative [35],a possibili-
ty which can be used to weaken the upper bounds on m, which gives a positive contribution to el, see Eq. (14). The
mass configurations which minimize e',""'are basically all of the same form [35]:

s &=O,M, free: M3=0, M+ =a(M2 —=M;) or M2=0, M+ =«(M3 ——M;),
c &=O,M2 free: M3=0, M+ =KMI or MI =O, M+ =KM3

M& =M2, (a P) free: —M3=0, M+ =~M| or M| =O,M+ =aM3

the constant K being chosen to minimize the form of E'I"'",

~CXtI'8— &EM
E'I

16s n.
K

M;ln—
1 —K2 K2 M2

~ EM
2

K '"=0.562, E'&
'"=

2
X0.216

216s ~ Mw
(24)

Physically this situation obtains when the massive, neu-
tral component of %2 has a definite CP and the mass of
the charged component is a fraction K of the neutral's
mass.

Finally we note the intermediate possibility that E''I"'"

can be made to vanish in a number of ways. This hap-
pens if M, =M+ and c &=0 (M2 arbitrary), or
Mz =M+ and s &=0 (M, arbitrary) or M, =M+ =M&
and a —p arbitrary; in each of these cases the CP even-
scalar in %'2 is mass degenerate with the charged field.
Also e',""' vanishes if M3=M+ for all M& z and a —P.
An explanation for this last option can be found in the
existence of a residual SU(2) symmetry for the two-
doublet model [15]. This occurs when A,4=A, 5 and p, 2 is
real, which implies that M+ equals the pseudoscalar's
mass M3. In the light of this observation, it is interesting
to note that the most positive values for E'I occur when

5

3
(25)

while the maximizing configurations are of the form

s =0, M, free:

M3 »M+ ™2or M2 M+ &M3

c =0 M free:

there is the largest mass splitting between the neutral and
charged components of %2.

Next we turn our attention to e2""', which given its
definition, behaves in a similar way to 6I . In particular
the minimum value of ez"'" occurs for the same
configurations as those which maximize e'I""', with the
limiting value given by

EM 1 M+2min ln
477 12@
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M3 ))M+»iV, or M, »M+»M3
M, =M2, (a —P} free:

M, »M+»M, or M, »M+»M3
and yield

1 5

4~ 12s 6
(26)

Finally we note that the same spectrum of masses which
causes E'&

' to vanish also gives e2"'"=0.
Lastly we consider e3"'". The maximum values of e3"'"

occur when the pattern of particles and their masses take
the form

s~ &=0: M, =—M, ))MH and 0=M+ &&M2=M3:MJ.

c &=0: M2))MH and 0=M+ «M& =M3

M, =M&, (a —P) free:

M& ))MH and 0=M+ «M& =M3

In this situation e3"'"behaves as

aEM 1 M; M+2 2

ln —ln
4~ 12s M MH J

(27)

VI. NUMERICAL EVALUATION

Numerical estimates of the potential sizes of the radia-
tive corrections [e, ]are clearly sen. sitive to the limits
placed on the maximum and minimum allowed values for

This can be understood as follows: the first inequality
says that the mass of the neutral scalar in 4'&, which plays
the same role as the SM Higgs boson, should be as large
as possible. This is the exact analogue of the SM,
whereas the second inequality refers to the fields which
make up 02 and so maximize the extra contributions.
These contributions are always positive for M+ ~ [M; j
with the extremal configuration being that in which the
charged component's mass is much less than that of the
mass degenerate CP-even and CP-odd neutral com-
ponents. To obtain the minimum value of e3"'", simply
reverse the inequalities in the maximizing configuration
and use the expression in Eq. (27) to give e3'". In order
to make the extra contribution vanish we require s &=0
and M+ =M2=M3 or c &=0 and M+ =M& =M3 or
M+ =M, =M& =M3 for arbitrary (a —P). Note that set-
ting M+ =M3 is not suScient to make E3""'vanish, since
it is not proportional to the custodial vector isospin split-
ting.

In the above analysis we have identified those
configurations of masses and mixing angle a which max-
imize and minimize the [e',."'"j subject to the constraint
that 0=0. However we also find that when we remove
this requirement, so that in general [2] there are three
mixing angles a, 2 3, it is the same configurations which
extremize the [e;'"'"j. That is, the presence of a complex

p, 2 in the scalar potential does not give rise to larger ra-
diative corrections, for a given allowed range for the sca-
lar masses.

the particle masses. As such experimental considerations
impose important restrictions. In the case of the minimal
SM Higgs boson [36], or a particle with equivalent cou-
plings to the Z, direct searches at the CERN e+e col-
lider LEP give the lower bound 48 GeV/c . In the two-
doublet model lighter scalar masses can be accommodat-
ed by reducing this coupling. Similarly the lower-mass
bound for the charged scalars is also [36] 48 GeV/c .
Further constraints are implied by the failure to observe
the scalar-pseudoscalar decay mode: Z ~h, 2+ h 3,
which we shall take to be kinematically forbidden. In ad-
dition we do not allow scalar masses below M~/10=8
GeV/c where constraints are dependent on details of the
Yukawa couplings [7]. In the case of the top quark a
direct search at LEP [37] provides the lower bound 45.8
GeV/c while from hadron colliders the 8'—+ decay width
implies [38] the bound is 51 GeV/c . Note that the limit
89 GeV/c from the Collider Detector at Fermilab
(CDF) Collaboration [32] is only valid within the stan-
dard model; in particular it need not hold in a two-
doublet model [31]. Likewise the upper limits to the
top-quark mass of =210 GeV/c inferred from radiative
corrections [9,10] are also model dependent and can be
significantly weakened in a two-doublet model [35].

We now indicate the range of contributions to [e; j cal-
culated using the exact expressions Eqs. (14), (16), and
(18)—(20); in the case of the scalar contributions these are
extra with respect to the contributions of a 200 GeV/c
SM Higgs boson and for the top quark with respect to a
150 GeV/c fixed mass top quark. The top-quark mass
range is taken to be 50 to 350 GeV/c, with mb=5
GeV/c, and the SM Higgs boson taken to lie between 50
and 10M~=800 GeV/c . To begin with we look at op-
tion (i) of Sec. II for the two-doublet model in which all
the [p; j are O(v ) so that large scalar masses are gen-
erated by increasing the hard couplings [A, , j. After satis-

fying the experimental limits discussed above, this option
permits sufficient freedom to choose an arbitrary mass
spectrum below about 10M~. (The above mass bounds
should not be regarded as strict, but rather as illustra-
tive. ) Table I shows our results: using aFM/4~s
=0.2737X10, Mz=91. 17 GeV/c, M~=80. 22

GeV/c, and c =M~/Mz.
Next we look at option (ii) of Sec. II, in which the hard

couplings [A,; j are held fixed and larger scalar masses are
induced by increasing the soft [p,. j or equivalently M+.
This encompasses several particularly interesting special
cases: the MSSM [25], fixed-point models [39],and the re-
lated heavy-quark condensate models [40,41]. In this sit-
uation [2] the spectrum for the neutrals contains two sca-
lars nearly degenerate in mass with the charged scalar
Mz 3 =M+ + O(v /M+ ) and a low-mass particle h, :

Mz =2v [A.&c&+Azs&+(A3+A4+A5cos20)cy~], (28}

which basically separates out: H, =6&, and H&' =O.
The particle h &, which in general has mixed CP couplings
to fermions, is found in 4', and behaves like the SM
Higgs boson. Using this spectrum of scalars it is easy to
see that all the [c;'"'"j vanish in their respective leading
orders. That is, the corrections arising from the extended
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TABLE I. The maximum and minimum values of the e';"'" arising from the scalar and heavy-quark
sectors. A common, overall factor of 10 has been extracted.

Source: Two scalar
Doublets

One scalar
Doublet

Heavy-quark
Doublet

Range: max

6.675
0.032
0.184

min

—1.613
—0.150
—0.165

max

0.065
0.014
0.058

min

—0.134
—0.057
—0.034

max

3.187
0.296
0.100

min

—0.635
—0.231
—0.077

scalar sector (%z) are expected to be numerically small

for large masses: decoupling occurs. The only scalar
particle contribution to the [ E; [ comes from the relative-

ly low, fixed mass h&. This behavior can be seen in the
MSSM [18], for example, where M& =Mzcos28. The

1

reader should be cautioned, however, first, that in a
larger theory such as the MSSM, further new particie
contributions may have to be included; second, that the
expression for the low-lying scalar mass is based on the
tree-level formulas which may be significantly modified

by loop effects: again in the MSSM [42] a sizable top-
quark mass can lead to the estimate for M& being larger

1

than Mz, while in the fixed-point approach [39,43] new

renormalization-group equations for an effective theory
containing only the light scalar's self-coupling (with
boundary condition at M+ determined by the IA, ; ] ) and

any large Yukawa couplings should be used to evolve
down from the scale M+ to the appropriate, low scale U.

Having chosen to work within the approximation that
only oblique corrections are important, then the Ie';"'"]
of the two-doublet model may be directly added to the
SM predictions for a Higgs boson of mass 200 GeV/c
and a top quark of mass 150 GeV/c . These SM predic-
tions are given below, together with the experimental
values for the [ e; ]:

Theory (m, =150, MH=200)
E'& = +0.45+0. 10X 10
@2=—0.39+0.03 X 10
63 = +0.42+0.08 X 10

Experiment
E'& = 0.07+0.50 X 10
@2=—1.00+0.97 X 10

0.05+0.79 X 10

(29)

The experimental values are based on the results quoted
in Ref. [9]; see also Ref. [20]. These experimental results
were derived solely from the leptonic decays of the Z .
Including the low-energy data on neutrino-nucleon deep-
inelastic scattering or atomic parity violation in cesium
slightly alters the central values of the [e, ], in particular
favoring a (more) negative e3, but this is well within the
quoted errors. In fact observe that the maximum and
minimum contributions to e2 and e3 are less than a third
of the experimental uncertainties in these quantities. The
theoretical values are also taken from Ref. [9], where the
Ie;] are defined in such a way that certain nonoblique
corrections arising from the minimal SM are incorporat-
ed.

VII. CONCLUSIONS

Compact expressions for the leading radiative correc-
tions I e; ] in the two-scalar-doublet extension of the SM
have been given, in terms of a general notation designed
to accommodate the CP-noninvariant situation. In the
special situation when CP conservation in the scalar sec-
tor is imposed the formulas reproduce the previously
known results [3,17,30]. As anticipated the scalar contri-
butions to e& can be relatively large, in general showing
quadratic behavior, while ez and e3 are smaller with at
most logarithmic dependence on large scalar masses. The
inclusion of CP violation in the scalar sector does not
lead to increased radiative corrections; as shown the ex-
tremal values of the [e;], within a given mass range,
occur for CP-invariant configurations.

As noted the only concrete lower bound to the top
mass is around Mz /2. Also the upper mass bound [9,10],
based on the size of the radiative corrections it induces, is
not in general valid; specifically not in two-doublet mod-
els. This bound is obtained by considering any observ-
able whose radiative corrections are dominated by e& and
so depend quadratically on m, . However [35], the effects
of a heavy top in e, can be compensated by arranging for
the scalar sector to give a large, negative contribution to
E~ behaving as M; . Furthermore since the scalar contri-
butions to e2 and e3 give numerically small, subdominant
corrections such a choice cannot give rise to "unwanted"
consequences in any other observable. This is particular-
ly true at the present moment [9,20], when the experi-
rnental errors on e2 and e3 are so dominant. Suppose for
example that within the SM a fit to the data yields the
preferred values m,' ' and M&. Now consider a two-
doublet theory with the following specially selected pa-
rameters: s & =O=M3, M, =MB, M2 large, and

M+ =0.562M2, then using Eq. (24) the new, preferred
value of m,' ' would be given by

m (2D) —Q(m (sM) )2+(}072 XM2

As an illustration, taking M&=10M~ would entail re-
placing m,' '=150 GeV/c by m,' '=262 GeV/c .

Interestingly when the contribution to e& from the
two-doublet scalar sector is positive, experiment does im-
pose relatively strong constraints on the mass spectrum,
as compared to the situation in the minimal SM. This is
due to the possibility of quadratic mass dependence lead-
ing to significant radiative corrections. It is clear from
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the experimental value given in Eq. (29) that any sizable,
additional, positive contribution to e, is strongly dis-
favored, which in turn may be used to place limits on the
allowed parameter space. For example suppose we are
given that the top quark weighs at least 150 GeV/c .
Then a set of scalar particle masses similar to those in the
maximizing configuration, for which e, is given by Eq.
(23), would require the largest scalar particle mass no
greater than about 2M~.

Such large corrections coming from the scalar sector
only occur for large masses generated by increasing the
hard coupling parameters I A, ; I. If on the other hand the
large masses were achieved by increasing the soft param-
eters I p, I then the heavy scalars would essentially decou-

pie and give vanishing contribution to the radiative
corrections [e; I. In effect the theory would behave like
the SM with a comparatively light, fixed-mass Higgs bo-
son.
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