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Baryon magnetic moments and the spin of the proton
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I derive a set of generalized Sehgal equations (GSE) which link octet-baryon magnetic moments to
quark axial-vector currents in the proton. The equations are shown to be valid in a class of shell models,
containing both nonrelativistic and relativistic quark models. The GSE fit magnetic-moment data better
than naive quark model formulas, but not perfectly. In best fits to magnetic moments quarks carry a
small fraction of the angular momentum of the proton. The precise value of this fraction is poorly deter-
mined by these fits: Lu+ Ed+As =0.27+0.23; this fraction is small compared to unity, but consistent
with the recent European Muon Collaboration experiments.

PACS number(s): 13.40.Fn, 12.40.Aa, 13.88.+e

It has been known for a long time that the proton is a
composite system containing quarks. This raises immedi-
ately the question of how the spin of the proton is shared
among these constituents. In the last few years, this
question has led to a "spin crisis" which was triggered by
the important polarized muon (deep-inelastic} scattering
experiments at CERN by the European Muon Collabora-
tion (EMC) [l]. This experiment, with information from
baryon semileptonic decays, led to the surprising con-
clusion that only a small fraction of the spin of the pro-
ton is carried by the spin of the light quarks (and anti-
quarks) it contains.

This conclusion contradicts much prejudice enshrined
in the naive quark model (NQM), where it was assumed,
on the contrary, that the entire spin of the proton was
carried by three (valence) quarks. Models for the baryon
magnetic moments have been constructed which (using
this assumption) fit the experimental data quite well [2].
One can therefore ask the question whether or not there
is a contradiction between baryon magnetic moments and
the EMC results, which might perhaps occur because
there is some error in these new and dif6cult measure-
ments. This is the subject of our paper, and we find that
not only is there no contradiction, but the best fits to the
baryon magnetic moments and semileptonic decay data
are in remarkable agreement with analyses based on the
EMC measurements.

To start with we discuss how to link baryon magnetic
moments to quark axial-vector currents in the proton.
The magnetic moment of a system is more model depen-
dent than axial-vector currents, and therefore one is
forced to consider models or classes of models if one
wishes to link these quantities. I derive a set of equa-
tions, generalized Sehgal equations (GSE), which are val-
id in a class of (relativistic and nonrelativistic) quark
models; this class is defined in detail in the next section.
The class of models used is a simple generalization of the
naive quark model and a version of the bag model.

In the second part of this paper this set of equations,
together with experimental data on baryon magnetic mo-
ments and semileptonic decays, is used in an error
minimization procedure to obtain a "best" fit to the data,

which determines a favored set of parameters. We dis-
cuss how well the various parameters are fitted and also
compare the best fit obtained in this fashion with fits con-
strained to follow the naive quark model. We compare
the parameters obtained from magnetic moments with
those obtained using the EMC measurements. We also
discuss alternative ways of analyzing the information
from the magnetic moment and semileptonic decays. We
present a summary of our conclusions and a discussion at
the end of the paper.

I. LINKING MAGNETIC MOMENTS
TO QUARK AXIAL-VECI'OR CURRENTS

M, (p) =M, (p; u)+M, (p;d)+M, (p;s),
where

M, (p; )=u[n( &)u—n(u $) n(u&)+—n(ui)]P„, (2)

where p„ is the expectation value of the one-body
magnetic-moment operator of u quarks in the mode
chosen, and n (u

&
) is the occupation number of u quarks

with J,=+—,', n (u
&

) the number of u antiquarks with

In general the magnetic-moment operator and the
axial-vector-current operator are unrelated. However,
we describe a class of shell models in which the matrix
elements of these operators are closely connected. This
class of models will then be used throughout the paper.

We assume that the proton contains quarks, anti-
quarks, and other electrically neutral particles. Only
quarks and antiquarks contribute to the magnetic mo-
ment, and we assume only three fiavors of quark. The
magnetic-moment operator of the proton M, (p} is a sum
of one-body operators, representing the contribution of
every quark or antiquark. We assume that all quarks and
antiquarks of a given flavor, say u, are in a single mode of
angular momentum one-half of some potential, or spheri
cal cavity. The quarks and antiquarks may be at rest, or
moving relativistically or nonrelativistically. Then the
contribution of these quarks and antiquarks to the expec-
tation value of the magnetic moment of the proton is
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where the antiquarks contribute with different signs than
in the magnetic moment (2) because of the difference un-
der charge conjugation. In Eq. (3) a„ is the one-body ma-
trix element of the axial-vector current for a u quark in
the model. We can now use Eqs. (2) and (3) to rewrite the
magnetic moment M, (p, u) in terms of b, u, if we do a lit-
tle algebra. We denote the ratio of antiquark to quark
polarizations by A,„,

n (u 1 ) n(u —
i ) =it„[n (u i )

—n (u i )],
so that we have

bu = A, (p;u)=[n (u
&

) n(u —
i )](1+A,„)a„.

We then substitute (4) and (5) into Eq. (2), to obtain

1 —
A,„p„

M, (p;u) =hu =p„hu,
1+A,„a„

where we introduced the notation

(4)

(5)

(6)

for the "effective" magnetic moment p„per unit axial-
vector current. Note that Eqs. (6) and (7) are not valid in
the special case A,„=—1, when the axial-vector current
Au vanishes. If Au vanishes, the equations are invalid,
since the magnetic moment M, (p; u) need not vanish.

If we now add the contribution of the other two quark
flavors, we obtain the total magnetic moment of the pro-
ton

p(p)= M, (p)—=p„bu+pdbd+p, bs .

The generalization to the neutron is simple, if SU(2) sym-
metry holds,

p(N) =M, (N) =pdhu —+p„bd+p, hs, (Sb}

as is the extension to the other members of the baryon oc-
tet, again assuming that SU{3) symmetry is valid for the
wave functions of the baryon-octet states [such as
n (u

& }~„„„=n (s
&
)-, etc.] in our class of models:

p(X+) =—M, (X+ )=p„hu+p, bd +pdbs,

p(X ):—M, (X )=pdbu +p, bd +p„bs,
p(:- )—:M, {:- )=p, bu +p„bd +pads,
p(" ) —M, (= ) p, bu+p„bd+p„b—s,

(8c)

(Sd}

J, =+—,', etc. The simplest case of Eq. (2} is for static
quarks, when p„ is the actual magnetic moment of the u

quark at rest. But we could instead choose a spherical
cavity, and ultrarelativistic quarks, their p„being the
one-body moment in the J=

—,
' mode chosen.

The contribution of these u quarks and antiquarks to
the axial-vector current A, (p; u) of the proton has a simi-
lar expression:

hu = A, (p, u)=[n(u&) n—(ui )+n(u&) n(u&—)]a„,
(3)

p(A) =M, (A) =—,'(b u +46 d +As)(p„+pd )

+ —,'(4hu —2hd +4bs)p, , (Sg)

Equations (8) will be referred to as the generalized Sehgal
equations (GSE) since their simplest form, for the proton
and neutron, in the limit b,s =0, were given by Sehgal [3].
The NQM equations are a special case: for b,u = —', ,
bd = —

—,'. The formulas (8c)—(Sf) for particles at the
periphery of the octet are obtained by substitutions from
(8a), but the formula (Sg) for A and (8h) for the (AX) tran-
sition moment require Clebsch-Gordan coefficients or
tensor methods for SU(3). We shall not present these
derivations here. As explained above, the GSE hold also
for bag-model wave functions with ultrarelativistic
quarks and antiquarks, provided we keep the same radius
R for all quarks of a given flavor, in all baryons. If the
radius R is allowed to change from baryon to baryon,
however, the resultant breaking of SU(3) violates Eqs. (8).
This example shows that Eqs. (8), while approximate, ap-
ply to both nonrelativistic and relativistic quarks (and an-
tiquarks); it also shows that the class of models we con-
sider is a simple generalization of the NQM and bag
model that allows antiquarks in the proton.

Versions of these equations were published by Bartelski
and Rodenberg [4], Decker, Nowakowski, and Stahov
[5], by Gerasimov (in a reference not accessible to this au-
thor) [5], by the authors of Ref. [6], by Choudhuri,
O'Donnell, and Sarkar [7], and more implicitly by Close
[8]. Carlson and Milana [4] discussed magnetic moments
without these formulas, but in a similar spirit. The
derivation presented here is more general than in these
references.

II. FITTING MAGNETIC MOMENTS
WITH THE GENERALIZED SEHGAL EQUATIONS

In this section, armed with the approximate equations
(8), we shall interrogate the data, and obtain information
about the various parameters in these equations. We first
show that there is no exact solution to Eqs. (8) which fits
all experimental data (within experimental errors). This
conclusion follows from the failure of the experimental
data to obey sum rules which are consequences of these
equations.

The generalized Sehgal equations are formally similar
to the equations for the baryon-octet masses in chiral per-
turbation theory [9]. In the case of the baryon masses,
these are SU(3) mass-sum rules, and the sum rules for
magnetic moments here are very analogous.

The first sum rule is analogous to the Gell-
Mann —Okubo mass formula [10]:

p(X+)+6p(A)+p(X )=2p(p)+2p(n)

+2p(:- )+2p(:- ) .

The left-hand side of this equation is (
—2. 34+0.06)p~

while the right-hand side equals (
—2. 10+0.04)p,v.

p(XA) =M (XA) = —( I /2V3)(b u —26d +As)(p„—pd ).

(Sh}



45 BARYON MAGNETIC MOMENTS AND THE SPIN OF THE PROTON 249

pu = ad (12)

the number of parameters remains unchanged, but we
can now solve for

a'"=au +ad +as (13)

and we have three more parameters: pd, p, and

(14)

Therefore there is no loss of generality in making the as-
sumption (12) for the GSE. There are four independent
parameters which we choose to be a'", a' ', pd, p, while
a' ' is fixed by Eq. (11}.This is to be contrasted with the
NQM equations which have three parameters pd, p„, p,
In the NQM equations the restriction (12) leads to a
reduction in the number of parameters from three to two.
Note that the quantity a"' is called in the literature hX,
a notation I avoid because of possible confusion in the
baryon context.

We now proceed to find a "best" set of parameters to
minimize the error in fitting Eq. (8) to the data. Before
proceeding we recognize that our formulas cannot fit the
experimental data with an accuracy approaching the ex-
perimental error, and therefore we assign a theoretical er-
ror which should express how close we hope to come to
the experimental measurements. We estimate the

The second sum rule is analogous to the Coleman-
Glashow sum rule [11)for the masses, and is

p(tt) —p(p)+p(&+) —p(:-')+p(:- )—p(X )=0, (10)

where the left-hand side of this equation is actually
(—0.49+0.06)pz. The failure of the data to obey the
two relations (9) and (10) shows that there is no set of pa-
rameters in (8) which can fit the data perfectly. This con-
clusion, of course, holds also in the special case hu = 3,
hd = —

—,', hs =0, which reduces formulas (8) to the usual

quark model formulas.
Equations (8) appear to contain six parameters, three

p's and three hq, , which could be extracted from the
eight experimental data points. Because of the symmetric
form of the equations, this counting is wrong. The exper-
imental quantities on the left, depend on five parameters,
one being [7] the product (p„+pz+p, , )(hu+hd+lhs)
while the other four can be chosen to be {4u—hd),
(du+Ad 2hs}, (p„—yd), an—d (p„+pz —2p, ). Howev
er, even this counting is somewhat deficient as it ignores
the bilinear character of the equations: every term is the
product of a p; with a hq;. To avoid the possibility of re-
scaling, we have to Px one of the four quantities
enumerated above. We do this here by choosing [12]

a' '=hu —hd =1.26,
the experimental value of the neutron axial-vector
charge. (This is an arbitrary choice as far as the GSE's
are concerned: we can just as well choose a' '=0.6, or
some other fixed value for p, hq. ) Then we are left with
four parameters: (p,„+pd+p, )(/Lu+hd+lLs), (4u+bd
—2hs), (p„—pz), and (p„+pd

—2p, ). If we make the as-
sumption

a"'=0.27+0.23 . (16)

This result is compatible with analyses using the EMC
effect [1). For example, Ross [1] quotes (0. 12
+0.09+0.14) for this quantity. The value of a' ' we find
from the fits is much better determined and it is

a' '=0.86+0.05 . (17)

This value of a' s' difFers significantly from the values in-
ferred from hyperon beta decay, where typically
a' '=0.60+0.05. The only point to note about the pa-
rameters pd and p„ is that their ratio remains rather
close to 0.6, the value traditionally found in quark model
fits, which equals the constituent mass ratio.

We compare this best fit, discussed above (fit 1) with
the best naive quark model fit (fit 2), where we insist that
a'"=1, a' '=1, g„=—'„ the traditional values. We then

TABLE I. Data on magnetic moments, in nuclear magnetons.

Particle
Magnetic
moment

2.79
—1.91

2.48
—1.16
—1.25
—0.68
—0.61
—1.61

Exptl.
error

20.00
20.00
%0.05
%0.03
40.03
+0.03
40.01
+0.08

Total
error'

%0.10
+0.10
+0.11
+0.10
+0.10
+0.10
+0.10
+0.13

'A theoretical error of 0.1p& has been added in quadrature to
all experimental errors.

theoretical error from the sum rule (10): the best fit can-
not hope to be better than 0.49/6=0. 08pz —-0. 1pN to
any individual magnetic moment if the error is equally
shared among the six baryons. We add this theoretical
error to the experimental error in quadrature, and the
data we fit is shown in Table I.

We search in the four-dimensional space pz, p,„a'",
a ' ' to find the minimum of the quantity y

[Eq. (8)—expt. ];x'= g (15)
(error)z

With the values from Table I we find a best fit (fit 1)
given in Table II, which lists the values of the parameters
obtained, and the fitted magnetic moments. The errors
on individual magnetic moments are at most 0.11pz, in

line with our expectations. The y2 for this fit is 4.36 for
four degrees of freedom {eight data points minus four pa-
rameters). The confidence level for this fit is about 35%.
The most interesting feature is that the minimum is
reached for a rather small value of a'"=0.27. We can
ask how well the magnetic moments determine the value
of a'" by repeating the minimization with different
values of a'", and looking at the change in g . If we take
a"'=0.04 or a'"=0.50 the yz increases to 5.42 (from
4.42}. So we see that a"' is very poorly determined from
magnetic moments, and we write
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TABLE II. Best fits to magnetic moments (in p~). N» denotes number of degrees of freedom.

Particle
Magnetic
moment

2.79+0.10
—1.91+0.10

2.48+0. 11
—1.16+0.10
—1.25+0. 10
—0.68+0. 10
—0.61+0.10
—1.6+0.13

Fit 1

GSE

2.69
—1 ~ 85

2.59
—1.22
—1.33
—0.61
—0.59
—1.53

Fit 2
NQM

2.68
—1.92

2.55
—1.13
—1.40
—0.48
—0.59
—1.60

X'~&DF
g"'=5u+ Ld+ As:
a(8'= Au+Ad —2hs:
gg =ku

0.12+0.17
0.60+0.05
1.26+0.01

4.42/4
0.28
0.86
1.26 (input)

7.53/5
1.00 {input)
1.00 (input)
1.67 (input)

+2.42
—1.21
—0.71

1.76
—1.00
—0.61

search for a minimum of y by varying p„, pd, p, . The
value of g at the minimum is significantly larger,

y =7.53, corresponding to a confidence level of only
17% for this fit. The worst fitted magnetic moment (:- )

is about 0.2pz in error from the experimental value. The
confidence level of this fit is about two times smaller than
that of the best fit. In addition fit 1 has the virtue of hav-
ing the correct axial-vector coupling for the neutron,
g„=1.26, whereas for fit 2 we choose g~ =1.67. If we
would include the contribution of g~ to the y evaluated
in (15), the NQM value would jump by 16 units, making
the confidence level of the NQM fit 0.001, while the
confidence level of the GSE fit would remain at 35%.
With the condition (12) and only two parameters p,d, p,
the NQM equations give a fit with y =10.9 and a
confidence level of less than 10%.

The quantity a'" can be computed also directly from
Eqs. (8) if we form the linear combinations:

p(p)+p(:- )+p(X )=(p„+pd+p, )(hu+bd +As),

(18)

p(pg)+p(g+)+p(:- )=(p„+pd+p, )(bu+bd+bs) .

(19)

These equations lead immediately to the Coleman-
Glashow sum rule (10). Within SU(3) symmetry both
sums in (18) and (19) would have to vanish because the
sum of magnetic moments (p, „+pd+p, ) is proportional
to the sum of the electric charges (Q„+Qd+Q, ) which
vanishes. In actual fact, both sums when evaluated from
the data do not vanish, and are not equal to one another
since (10) is violated. We can evaluate a"', if we assume
Eqs. (8), and estimate (p, —pd) from the diff'erence of
magnetic moments of X+ and the proton, and the axial-
vector matrix element for the semileptonic decay
(X ~N). This gives the formula

p(p)+p(&+)+p(:" )+p(= )+p(& )+p(~)
2[+p(p) —p(&+ ) ] /g „(& ~ n )

(20)

which gives the numerical estimate

(1)
—0.34+0.24

2 X (0.31/ —0.34)
(21)

Au =0.86+0.12,

hd = —0.40+0. 12,
As = —0.20+0.05 .

(22)

These values are quite similar to figures found in the
literature, based on the EMC eff'ect [1].

III. DISCUSSION AND SUMMARY

In the first two sections of this paper we presented a
proof of the CsSE, and used them to extract information
from magnetic moments. Of course, just the fact that we
can prove some equations in the context of a particular
class of quark models does not imply that the models and
the equations are reasonable approximations to real pro-
tons. We stress first of all that the models we consider in-
clude the bag model (in a simple version), the NQM, and
their simplest extensions which contain antiquarks, so
that they are in no way exotic or contrived. Second, the
result obtained for a '" is fairly consistent with informa-
tion based on the EMC. Thus there is a reasonable

where we have used in the numerator of expression (20)
the theoretical error +0.10, for the magnetic moment of
each baryon. The estimate (21) is similar to the estimate
(16), which was obtained from fitting all magnetic mo-
ments.

Before ending this section, we can solve Eqs. (11), (16),
and (17) to obtain the individual hu, b d, b,s:
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chance that these models, and the GSE are on the right
track.

We next ask about the relationship of the SU(3) singlet
a'" extracted from magnetic moments with the gluon
anomaly expected in QCD [13]. The result (16) or (21) is
specific to the models in which the GSE are valid. But
these models are independent of QCD, as they did not
even assume the existence of gluons. And so at first sight
there is no relation to the gluon anomaly. However, one
can make more speculative comments. If these models
are good approximations for the physical proton, some
other, neutral particles must make up the missing angular
momentum, since the quarks and antiquarks have been
fully taken into account. Therefore a sizable fraction of
the angular momentum of the proton even at rest, must
be in neutral particles.

We also mention that we have carried out numerical
fits without the introduction of "theoretical error. " The
conclusions drawn do not change significantly, but the
fits are then better for the baryons with the best measured
magnetic moments, p, n, A, at the expense of the other
baryons. There is no particular merit in fitting data in
this way: one would in fact guess that the GSE should fit
better the ='s which have more "heavy" quarks, rather
than the p, n which have more light quarks.

Our numerical fits may be extended in several ways.
For example, we can include in the data set the quantity
measured in the EMC experiments (4hu +Ad+ &)/9 to
be fitted simultaneously with the magnetic moments.
This gives a slightly tighter determination of the quantity
a'"=0.24+0.21. We do not present this fit, since the
magnetic moments are not changed significantly from the
fit presented in Table II. A more interesting exercise is to
include g„=a' ' and a' ' both into y and as parameters
to be fitted, again assuming some theoretical errors. We
have done this as well, and one obtains a "compromise"
set of values for a' '=1.08, a' '=0.76 which "split" the
error between the two observables: again the magnetic

moments in this fit are very similar to the fit of Table II.
The fit to magnetic moments is only sensitive [14] to the
ratio a' '/a' ', which is about 0.675 in Table II (fit 1),
whereas it is 0.695 for the values of a' ', a' ' given above.
This may also help explain why the NQM (fit 2) is reason-
able, since a' '/a' '=0.60, not too far from the GSE fit.

A summary of our main results is as follows
(1) The magnetic moments of baryons can be linked to

quark axial-vector currents within a well-defined frame-
work.

(2) The magnetic moments of the octet baryons are
compatible with the EMC results.

(3) The best fits to magnetic moments favor a small
fraction of the proton spin carried by quark spins, but the
precise value is badly determined.

(4) These best fits to magnetic moments are
significantly better than the naive quark model fits, even
though the fits incorporate information about axial-
vector currents.

Our main conclusion, Eqs. (16) and (21), are both unex-
pected and unwelcome. They indicate that the source of
the weakness of the NQM as an approximation to
baryons stems from the weakness of the NQM as an ap-
proximation to constituent quarks. It would be interest-
ing to construct models which correspond to fit 1 in
Table II.
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