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A consistent framework is developed for studying hadronic form factors of heavy mesons using QCD
sum rules in the heavy-quark effective theory, including the next-to-leading-order renormalization-group
improvement. Sum rules are derived for the asymptotic value of the meson decay constant fr and for
the universal Isgur-Wise form factor. It is shown that renormalization-group effects considerably
enhance the prediction for fr and bring its asymptotic value in accordance with recent lattice results.
Including finite-mass corrections, the dependence of the physical decay constant on the meson mass is
investigated. We obtain fv ——170+30 MeU and fs =190+50 MeU. The origin of the breakdown of the
heavy-quark expansion for fo is analyzed. In the case of heavy-meson transition form factors, both the

QCD and 1/m& corrections are moderate and under control. A sum rule for the renormalized Isgur-
Wise function is derived and evaluated. The theoretical result is compared to experimental data.

PACS number(s): 11.50.Li, 12.38.Cy, 12.38.Lg, 13.25.+m

I. INTRODUCTION

There is recently intense interest in the hadronic form
factors of particles containing a heavy quark. The reason
is that, in the limit of infinite quark mass, QCD reveals a
spin-flavor symmetry that is not explicit in its Lagrangian
[1—6]. It implies that the spin and mass of a heavy quark
decouple from the hadronic dynamics. This symmetry
becomes manifest to lowest order of an effective field
theory describing the strong interactions of heavy quarks
[7—9]. In this effective theory, Green's functions are ex-
panded in powers of I/m&, with m& being the
renormalization-group invariant "physical" pole mass of
the heavy quark.

The simplest type of a form factor is that describing
the current-induced generation of a heavy meson out of
the vacuum. Consider, for instance, the coupling of a
pseudoscalar meson P =(Qq ) with momentum p to the

axial-vector current

m+
(1.2)

as m~ ~ Oc . In the framework of the heavy-quark expan-
sion, such a behavior can be shown to be a general conse-

The decay constant fp is a measure of the strength of the
quark-antiquark attraction inside the bound state. It is,
therefore, a hadronic quantity of primary theoretical in-
terest. Governing the strength of leptonic and nonlep-
tonic weak decays of heavy mesons as well as phenomena
such as B-B mixing, which provide information on the
mass of the top quark and on the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, decay constants are also of con-
siderable phenomenological importance. Based on the
nonrelativistic constituent-quark model, it was known for
a long time that, up to logarithmic corrections, fp obeys
the asymptotic scaling law

quence of QCD. Furthermore, the leading and next-to-
leading logarithmic corrections to (1.2) have been calcu-
lated and summed to a11 orders in perturbation theory
[4,10—12]. The asymptotic dependence of ft, on the mass
of the heavy meson is thus well understood. A study of
the mass dependence of physical decay constants pro-
vides, therefore, an estimate of the corrections to the
infinite-quark-mass limit. In the absence of experimental
information, considerable attention has been devoted to
the theoretical calculation of ft and its dependence on
mp. Besides QCD-inspired potential models [13,14], the
sum-rule approach of Shifman, Vainshtein, and Zakharov
[15] and lattice gauge theory are the tools that have been
most extensively used for this purpose. While there is
general agreement (within the intrinsic uncertainties of
each method) on the value of fD, recent lattice results in-

dicate an unexpectedly large value ftt )fD in vast con-
tradiction to the scaling law (1.2) [16—19]. This has been
interpreted as a signal for a breakdown of the I/m& ex-
pansion for the case of charmed particles. QCD sum-rule
calculations, on the other hand, yield smaller values for
fn [20—28]. One of the purposes of this paper is to com-
bine the sum-rule technique with the heavy-quark expan-
sion and to understand and resolve the discrepancy be-
tween sum-rule and lattice calculations.

Probably, the most fruitful application of the heavy-
quark spin-flavor symmetry is encountered in weak de-
cays of heavy hadrons. Isgur and Wise have worked out
the symmetry relations imposed on the various hadronic
form factors describing current matrix elements between
two heavy mesons or baryons [6]. For instance, they
have shown that as mb, m, ~ ao, all the many form fac-
tors describing transitions between any two of the mesons
B, B *, D, and D* become related to a single universal
function g(v. v'). This so-called Isgur-Wise form factor
[6,29] is a universal function of QCD, summarizing all
long-distance effects active in the weak transition. It only
depends on the velocities of the heavy particles and is
normalized at zero recoil, where v.v'=1. The reduction
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of form factors implies a significant simplification of the
theoretical description of semileptonic weak decay pro-
cesses, as has been extensively discussed in the recent
literature [30—36].

In this paper we develop a consistent framework for
studying hadronic form factors of heavy mesons by com-
bining QCD sum-rule and renormalization-group tech-
niques with the effective theory for heavy quarks. The
method is applied to calculate the asymptotic value of
f pram p and the Isgur-Wise form factor. In Sec. II A we
rewrite the standard Laplace sum rule for fp in a form
which is suitable for a 1/m& expansion. We then
present, in Sec. IIB, a rederivation of the asymptotic
form of this sum rule (valid for infinitely heavy mesons)
by using the effective-field-theory formalism of Georgi
[7]. One advantage of this second approach is that the
sum rule in the effective theory only depends on low-
energy parameters, which are independent of the heavy-
quark mass. These parameters are a priori not known in
the standard approach. The most important advantage
of the effective theory is, however, that a
renormalization-group improvement can be performed by
summing the large logarithms (a, Inm

&
)" and

a, (a, lnm&
)" to all orders in perturbation theory. In par-

ticular, the scale ambiguity associated with the leading
QCD correction is resolved. These renormalization-
group effects, which have not been taken into account in
previous calculations of the asymptotic value of fp "(/mp
[21,37], turn out to be very significant. They bring the
sum-rule result in accordance with lattice computations.
In Sec. II C the expressions derived in the effective theory
are combined with the standard Laplace sum rule for fp
to obtain an improved calculation of the physical decay
constant as a function of the heavy-meson mass. Devia-
tions from the m&~00 1imit and from the scaling law
(1.2) are investigated in detail.

The second part of the paper is devoted to the calcula-
tion of the universal Isgur-Wise form factor. After a
short introduction into the effective-field-theory forma1-
ism, we derive the Laplace sum rule for g(U U') in Sec.
III B and discuss its renormalization-group improvement
in Sec. III C. This completes two recent calculations of
the universal form factor, which have ignored renormal-
ization effects [36,38]. The Isgur-Wise function is given
by the ratio of a sum rule for a three-point correlator and
a sum rule for a two-point correlator. A Ward identity
ensures its correct normalization at zero recoil. It is
shown that, unlike the situation encountered for fp, the
sum-rule calculation of g(U. U') is not affected by unusual-
ly large QCD corrections; nor does one expect large
1/m& corrections to the infinite-quark-mass limit. Our
theoretical prediction for the Isgur-Wise form factor
compares well with a recent extraction of this function
from experimental data on B~D*lvl decays [34]. Sec-
tion IV contains the conclusions.

phenomenological tool in the study of low-energy param-
eters of hadrons, such as their masses or couplings to
currents. The idea is that hadronic properties may be
studied in a self-consistent way by equating an integral
over a physical spectral function to an approximation of
the operator product expansion of the time-ordered prod-
uct of two (or more) local currents. QCD sum rules for
the pseudoscalar decay constant fp have been first con-
sidered in Refs. [20,21] and [23]. One studies the two-
current correlator

11( q') =i fd'«""&0I&I ~,(x), ~,(0)'] Io&, (2.1)

with A ~
= im&qy5Q =8"(qy„ysg) being the divergence

of the axial-vector current in the limit where the light
quark is massless (I =0). Since this current is partially
conserved, IIs(q ) is a renormalization-group-invariant
quantity.

According to the philosophy of SVZ, the correlator is
evaluated in two ways. In the Euclidean region q (&0, it
can be calculated perturbatively because of asymptotic
freedom of QCD. Short-distance effects are taken care of
by Wilson coefficients, while long-distance confinement
effects are included as power corrections and are
parametrized in terms of vacuum expectation values of
local operators, the so-called condensates [15]. Hence

II (q2)=lip"(qi)+II""d(q ) (q «0) . (2.2)

+subtractions . (2.3)

Equating the two expressions for II~(q ) yields the sum
rule, from which fp can be determined. It is necessary,
however, to improve the convergence by suppressing the
continuum contribution to the spectral function. This is
achieved by applying the Borel operator

n

M
lim

n~oo
—+ oo2

M = —
q /n fixed

(q )" d
I(n) dq

(2.4)

to both sides of the sum rule. In particular, this also
eliminates possible subtractions required for the conver-
gence of the dispersion integral in (2.3). The result is the
so-called Laplace sum rule

On the other hand, the correlator can be expressed as a
dispersion integral over a physical spectral function,
which gets contributions from the ground-state meson P
as well as from higher resonances. The residue of the
pole is given by the decay constant fp. Assuming quark-
hadron duality, the resonance contributions are usually
approximated by the perturbative continuum above a
threshold s, . Using (1.1), one thus writes

fpm' 1 „
ImIIP"(s)

115(q )= +— ds
mz —

q
—is ~ '. s —

q
—is

II. DECAY CONSTANTS OF HEAVY MKSONS

A. Laplace sum rule for fp

The QCD sum rules proposed by Shifman, Vainshtein,
and Zakharov (SVZ) [15] have proved to be a powerful

2 4fp p —m IM
e

M

S
ert —s /Mds ImIIP"(s)e

m
Q

IIcond
M

(2.5)
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where the perturbatively calculated spectral function has
a cut starting at s=mg. Explicit expressions for the
functions appearing on the right-hand side of (2.5) can be
found in Ref. [23]. In order to determine ft, in a self-

consistent way, one tries to optimize the value of the con-
tinuum threshold s, in such a way that the computed
value of the decay constant is stable with respect to varia-
tion of the Borel parameter M in a region where the
theoretical calculation of II/" and II5'" is reliable. For
too small values of M, the power corrections blow up,
while the continuum contribution becomes dominant at
large M . One thus aims for stability in an intermediate
region, where both the power and continuum contribu-
tions stay reasonably small.

In its above form, the Laplace sum rule is not suited

for an expansion in powers of I/m&, since the depen-
dence of the parameters M and s, on the heavy-quark
mass is a priori not determined. It is convenient to intro-
duce a set of new parameters by

mgT:—M
2

mgcoc =se mg

mgA:—mp —mg2 .2

(2 6)

In the following section, we will show that the new vari-
ables T, co„and A become constant low-energy parame-
ters in the m&~ao limit. Substituting them into (2.5),
the Laplace sum rule takes the form

Nlp
fpmp

mg

'0 3

8nz o I+zT/m& m T 6 9 3 m&

2Qs 00 Z—(qq )(m&) 1+ 1 —3 f dz
3n m& o 1+zT/m&

mo'&qq&(m~) 2T
'

4~ a, &qq&' 3T+ + 1+
4T mg 81 T3 Plg

(a, GG )+
12amg

12T2
2Plg

(2.7)

where m 0 is defined as ratio of the so-called mixed con-
densate and the quark condensate, g, (qo„,G""q)
=mo(qq). The ellipses stand for power corrections
from high-dimensional condensates (d )6). These are ex-
pected to be very small. Already, the four-quark conden-
sate is suppressed by a factor of 10 compared to the
quark condensate.

In (2.7) we have included the radiative corrections to
the dispersion integral and to the contribution of the
quark condensate. The first one has been calculated in
Ref. [39]. In our notation the function E (x) is given by

(p) m

m&(p)=m& a, (m&)

12
33 2)if

4a, (m& )1— 3'

&qq &(~)

&qq)(mg)

(p) m

a, (m&)

The running of the quark condensate is given by

(2.9)

(2.10}

K (x)=2 Li2( —x)+lnx ln(1+x)—x lnx
1+x

+ ln(1+x) —1
1+x

= ——x+ —+ x +O(x ),3 1 lnx
2 3 2

(2.8)

with Liz(z)= —J o(dt/t}ln(1 t) being the dilogarithm- .
The correction to the quark-condensate contribution is
new. In (2.7), m& is the physical heavy-quark mass
defined as the pole of the renormalized propagator. This
renormalization-group-invariant quantity is related to the
running mass of the modified minimal subtraction (MS)
scheme by [40,41]

(qq)(1 GeV)= —(230 MeV)

(a,GG) =0.038 GeV

7yg 0 0 8

a, (qq ) =6X 10 GeV

(2.11)

as well as the Qavor-independent value A=1 GeV, corre-
sponding to the pole masses m, = 1.44 GeV and
mb -—4.80 GeV. The effect of a variation of A is dis-

and is such that the product m&(qq) is
renormalization-group invariant. In the sum rule (2.7),
the condensate is to be evaluated at the scale of the heavy
quark.

Equation (2.7) is completely equivalent to the more fa-
miliar form (2.5) of the sum rule, which has been first in-
vestigated in Ref. [23]. For its evaluation we use the
standard values of the vacuum condensates [15,42],
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B.Sum rule in the effective theory

A convenient framework for systematically analyzing
both the QCD and 1/m& corrections to the infinite-

quark-mass limit is provided by the so-called heavy-quark
effective theory developed by Georgi [7]. The basic ob-
servation is that as m& ~~, the velocity U of a heavy
quark becomes a conserved quantity with respect to soft
processes. It is then possible to remove the mass-
dependent piece of the momentum operator by the
velocity-dependent field redefinition

h&(v, x)=e ~ g&(x),

such that

i'(())hg(v, x)=khg(v, x), k„=P„—mdiv„, (2.13)

where P is the total momentum of the heavy quark, m& is
its physical pole mass, and k denotes the residual "off-
shell" momentum, which is typically of order AQcD In
terms of the new fields h&(v, x), the effective Lagrangian
consists of an infinite series of operators with increasing
canonical dimension, multiplied by increasing powers of

cussed below. The only free parameter in (2.7) is the
threshold energy cu, . Evaluating the radiative corrections
at the scale of the heavy quark, one finds good stability in
the wide region 0.5 & T &2.0 GeV for co, =2.4 GeV for

fD and (v, =2.0 GeV for fs, corresponding to s, =5.5

GeV and s, =33 GeV, respectively. Unlike the contin-
uum thresholds, the optimal co, values are rather insensi-

tive to the mass of the heavy quark. In the stability re-
gion, the values of the decay constants are fD -—170+30
MeV and fli ——140+30 MeV. They agree with those ob-
tained in Ref. [23]. Variation of the QCD parameters
within the standard limits does not significantly change
these results.

Under the premises that T, co„and A are indeed low-
energy parameters, one can immediately perform the lim-
it m&~ ~ in (2.7). This nonrelativistic form of the sum
rule was investigated as early as 1982 in a paper by
Shuryak [21]. Recently, it has been rederived and dis-
cussed in Ref. [37]. At this point it is worth noting that
the right-hand side of (2.7) shows a logarithmic depen-
dence on the heavy-quark mass both in the radiative
correction to the dispersion integral and in the running of
the quark condensate. Eventually, one would like to
separate this dependence from the sum rule and sum the
large logarithms (a, lnrn&)" to all orders in perturbation
theory. It is also obvious that the radiative correction to
the dispersion integral is dangerously large, even if the
strong coupling is evaluated at the scale of the heavy
quark. However, it is not obvious that p=m& really is
the appropriate scale to use. For this reason a next-to-
leading-order calculation, which resolves the scale ambi-
guity problem, is most desirable. In the following sec-
tion, we will derive the correct asymptotic form of the
sum rule and perform the complete next-to-leading-order
renormalization-group improvement. To this end it is
necessary to employ an effective theory for heavy quarks.

1/m&. To lowest order in the 1/m& expansion, this La-
grangian explicitly exhibits the spin-Aavor symmetry for
heavy quarks [7—9].

The axial-vector current A„=qy„y~Qcan be expand-
ed in terms of operators of the effective theory as follows:

A =Di(m&/p}(I7'p'~h&(v) —Dz(m&/)M)(Iv„),h&(v)

+ g
n=i mg

y D(n)(~ I+~((,n) (2.14)

&p(in~ I@)=D) (m& Ip, )+Dz(m& Ip)

(ii) md /2

a, (mg }

a, (p) (Z„+5)

(2.15)

where 5 is a scheme-dependent constant. In the MS sub-
traction scheme, 5—s= —', . The constant Z„ is scheme in-

dependent and reads

153—19nf 381—30nf +28m-
Z 3

(33 2nf )~ —36(33—2nf ) 3
(2.16)

where the index i labels operators of the same canonical
dimension, and we have explicitly written down the two
lowest-dimensional operators. The symbol "=" means
that (2.14) is an equality for matrix elements only. In the
full theory, matrix elements of the axial-vector current
depend on the mass of the heavy quark, but are indepen-
dent of the renormalization scale since the anomalous di-
mension of A„vanishes. Matrix elements of operators in

the effective theory, on the other hand, are independent
of the heavy-quark mass. All reference to m& is either in

form of powers of 1/mq that multiply the higher-

dimensional operators A('"), or in the short-distance
coeScients D,.'"'. These functions appear since the prop-
erties of the effective theory under renormalization differ
from QCD. In particular, the effective current operators
have nonzero anomalous dimensions, such that matrix
elements depend on the renormalization scale p. From
the fact that the scale dependence of matrix elements
must exactly cancel against that of the short-distance
coeScients, one can derive the renormalization-group
equation for the functions D,.'"'. In order to solve this
equation to first order in the physical coupling a, (m&),
one needs the two-loop anomalous dimensions of the
current operators in the effective theory. For the lowest-
dimensional operators in (2.14), the anomalous dimension
is the same. It has recently been calculated in Refs. [11)
and [12]. For our purpose we only need the sum of the
coe5cients D, and D2, the complete next-to-leading-
order expression for which is [43]
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&0lqra~(U}IF (U})= " Tr[I P(U)],F(p, )

2
(2.17)

with I' being an arbitrary Dirac matrix. F(p, } is a scale-
dependent low-energy parameter independent of m& and

P(v)= l+mp (I+/) (2.18)

denotes the spin wave function of the pseudoscalar meson
P.

Substituting the expansion (2.14} into (1.1) and carry-
ing out the traces with (2.17), we obtain the following re-
lation between the physical decay constant f~ and the
low-energy parameter F(IJ,}:

1fpmp~~ =CF(m& IIJ, )F(p)+ 0
m&

(2.19)

Since fp is a physical quantity, the right-hand side of this
equation must be independent of the subtraction scale
and of the renormalization scheme adopted for the calcu-
lation of CF. It is thus convenient to define the p-
independent short-distance coefficient CF(m&) and the
renormalized constant F„„by

a, (m& }
C'F(mg)= [a,(mg)] 1+ ' Z„

7r
(2.20)

d. n a(j }F„„=[a,()u}] 1 — (Z„+5)F(p),

such that

where nf is the number of light-quark fiavors. (The value
for Z„quoted in Ref. [11]differs from our result by ——', .
The correct next-to-leading-order correction is only half
as large as stated in that paper. }

Matrix elements of operators in the effective theory
respect the heavy-quark symmetries and can be most con-
cisely computed employing a compact trace formalis~
[29,30). For the relevant matrix elements of the opera-
tors appearing in (2.14), one writes

for the D and 8 mesons, respectively. For the numerical
estimate, we have used m, =1.45 GeV and mb=4. 67
GeV [41]. The running coupling is accurate to second or-
der. In the MS scheme,

12m.
a, (m }=

(33—2nf )lnv

19"f ln lnv
1 —6

(33—2nf } ln v

I' '2
m&

pMS
)if

(2.23)

e(~) 1+ ln~+ + +5
8 ~ 6

(2.25)

where 5 is the same scheme-dependent constant that ap-
pears in (2.15), i.e., 5Ms= —,'. Next, we compute the non-

perturbative power corrections to I 5. The contributions
involving the quark and gluon condensates are depicted

We use A4 =0.2 GeV and adjust the nf dependence of
this parameter such that the running coupling is a con-
tinuous function of m&.

In order to compute the renormalized parameter F„„
using QCD sum rules in the effective theory, we investi-
gate the correlator

r,(~)=i J'd'x e'""«I7I&',"'(x},~'&"'(0)']I0&,

co=—2k v, (2.24}

with %~5"'=qy, h&(u) being the effective pseudoscalar
current. In the rest frame of the heavy quark, co is twice
the external "off-shell energy. " The perturbative contri-
bution to I 5 is obtained by evaluating the diagrams
shown in Fig. 1(a). The Feynman rules of the effective
theory are given in the Appendix. Using dimensional
regularization and the MS subtraction scheme, we find

—'I rP"( )

CF(m& ly)F(IJ) =CF(m& )F„„. (2.21)

These new quantities are renormalization-group invari-
ant. F„„is a universal low-energy parameter of QCD. It
can only be estimated using nonperturbative techniques.
In (2.20) it is to be understood that the number of active
flavors, i.e., the value of nf in Z„andd, changes as one"f
scales down from m& to JM. Explicitly, one has

(a)

C~(m, )=[a,(m, )] 1+ Z3 =1.22,
—6/25a (mb)

C~(mb) = [a,(m, )]a, m,

a, (mb) —a, (m, ) a, (m, )

=1.39,

(2.22)

FIG. 1. Feynman diagrams for the two-current correlator
I 5(co): (a) perturbative contributions, (b) power corrections in-
volving the quark condensate, and (c) corrections involving the
gluon condensate. The heavy-quark propagators are represent-
ed by double lines.
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in Figs. 1(b) and 1(c), respectively. The calculation is
most easily performed in the coordinate gauge
x„A"(x)=0. Including all condensates with dimension
d ~ 6, the result is

~(;,&( )
( )p)

CO 7r 3

1&GG&( ) 0

g, (qo„„G"q )

r& &'( )=' a( )'
27 Q)

m,'&qq )

2c0

(2.26}

where the factorization approximation has been used to
reduce the four-quark condensates to (qq ) [15]. Note,
in particular, the vanishing of I 5 resulting from the
explicit calculation of the diagrams shown in Fig. 1(c).
This is in accordance with the fact that the contribution
of the gluon condensate in (2.7) is associated with a factor
of 1/m& instead of 1/T.

Concerning the pole contribution of the pseudoscalar
meson P to the phenomenological side of the sum rule,

+subtractions . (2.27)

The Laplace sum rule for F (p) is obtained by applying
the Borel operator with respect to co,

n

lim

Q) —+ oo
T= —co/n fixed

1(n)
d

dt's

(2.28)

and equating the different expressions for the correlator.
The result is

we note that according to (2.12} the total external
momentum in (2.24) is P =m&&U+k, such that the propa-
gator of the heavy meson becomes
(P m—p) '~[m&&(co —A)] ', with A as defined in (2.6).
The hadronic matrix elements in the effective theory are
readily evaluated using (2.17). Approximating higher-
resonance contributions by the perturbative continuum
above a "threshold energy" co„which is the analogue of
the continuum threshold s„the phenomenological ex-
pression for the correlation function becomes

I (h&&(~)=
F~( ) 1 „

ImI P"(co')

~c CO CO l 6

37 3 i~ 2Q's 13 2mF2( )
A/T— dzz e ' 1+ In~+ + +5—lnz

8~2 0 ~ T 6 9

2CXs—(qq )(p) 1+ —+5
7T 3

2
mo

4T S1 Z3
(2.29)

We observe that the sum rule in the effective theory pre-
cisely corresponds to the leading term in the 1/m& ex-
pansion of (2.7), showing that the parameters T, co„and
A introduced in (2.6) were in fact properly chosen low-

energy parameters. The only difference is the replace-
ment of the heavy-quark mass m& by the subtraction
scale p and the appearance of the scheme-dependent
terms proportional to 5. These terms cancel if one com-
putes the renormalized quantity F„„.

With the help of (2.20), one can readily perform the
renormalization-group improvement of (2.29). The loga-
rithmic dependence on p can be summed to all orders to—d
produce a factor [a,(p)/a, (T)] ". For the quark con-
densate, this is already known from (2.10). The next-to-
leading-order corrections split into a contribution

I

2[a, (p )/~](Z„+|& ) and a p-independent correction.f
For this latter the running coupling is to be evaluated at a
characteristic low-energy scale of the effective theory.
We choose A for this scale, since it provides a measure of
the average off-shell energy co of the heavy quark in the
meson. An alternative choice would be the Borel param-
eter T. The differences are formally of order a, and
hence beyond the accuracy of the present calculation.
Because of the size of the order-a, correction, the numer-
ical results are not insensitive to this choice, however.
We shall comment on this below.

Putting everything together, we obtain the following
renormalization-group-improved sum rule for the renor-
malized parameter F„„definedin (2.20):

=[a (T)]
2a, (A) 3T' ~ 2 z s 13 2m'

8 2 6 9

2a, (A)—(qq )(T} 1+
3~

2
mo

4T
4~ a, &qq)

81 T3
(2.30)
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where we have used the fact that the number of light-
quark flavors in the effective low-energy theory is nf =3.
In Fig. 2 the function F„„(T) is shown for A= 1.25 GeV
and various values of the threshold energy u, . We find

good stability over a wide range of values of the Borel pa-
rameter T. For other choices of A, the resulting curves
look very similar. The values of co, and T, providing op-
timal stability, approximately scale with A. We obtain

A[b~=1.01+0.06, 1.30+0.20, and 1.57+0. 10 GeV, re-
spectively. This is the range of values covered in (2.31),
and we shall assume that A~&~ is not very different from
the asymptotic value that A acquires in the infinite-
quark-mass limit.

From (2.31) and (2.22), one can compute the so-called
static limit of the decay constant of the 8 meson, which is
given by the first term on the right-hand side of (2.19}.
We find

0.34+0.03 GeV
Eren

' 0.41+0.04 GeV
0.47+0.05 GeV

A=1.0 GeV,
A=1.25 GeV,
A=1.5 GeV,

(2.31)
C'F(mb )f'"= F =200—300 MeV .B ren (2.32)

for the renormalized low-energy parameter. The quoted
errors reflect the variation of the results with respect to
changes in co, and in the values of the vacuum conden-
sates. The intrinsic uncertainty of the sum-rule calcula-
tion might be considerably larger, however. This can be
inferred from the following observation. If the scale A in
the next-to-leading logarithmic corrections is replaced by
T, the running of a, ( T) leads to a suppression of F„„(T)
at large values of the Borel parameter. This effect, which
is formally of order a„is so significant that it changes
the continuum threshold providing best stability from
co, =2.3 to 3.0 GeV (for A=1.25 GeV). As a conse-
quence, the result for F„„increases by almost 20%. This
is in conflict with the SVZ philosophy that the stability of
the sum rule should result from a balance between its per-
turbative and nonperturbative parts. In order to avoid
this effect, we evaluate the next-to-leading-order correc-
tions at the fixed scale A.

Equation (2.31) exhibits a rather strong dependence of
F„„onthe mass difference A, which is a low-energy pa-
rameter that can again in principle be determined using
nonperturbative techniques such as lattice gauge theory
or QCD sum rules. While no lattice results are available
today, an estimate of the pole mass of the b quark can be
obtained from a QCD-sum-rule analysis of the botto-
moniurn spectrum. The extracted values range from
m& =4.80&0.03 GeV [44] to mb =4.67+0. 10 GeV [41]
and mb =4. 55+0.05 GeV [26), corresponding to

F„„=[a,(a ')] 1—a, (a ')
(Z„+5Ms+5„„)"f

XF»«(a '), (2.33)

where 5Ms= —,
' accounts for the matching between QCD

and the effective theory for heavy quarks, while 5h«pro-
vides the matching between the effective theory in the
continuum and on the lattice. For Wilson fermions (with
r =1), the value of this constant is 5»«-—4. 38 [45,46].
For a lattice spacing corresponding to a '=2 GeV, the
relation (2.33) thus reads F„„=048F»«(a '). We note
that in next-to-leading order of renormalization-group-
improved perturbation theory, the correction factor in
(2.33) is 20% smaller than that used in three recent lat-
tice computations of f~«" [16—18]. Rescaling the values
obtained there, we find (the result of Ref. [16] increases to
0.43+0.07 if the lattice spacing is determined without
reference to f and fz)

These sum-rule results can be compared to recent lat-
tice calculations of the decay constants of heavy mesons,
which use the static approximation for the heavy-quark
propagator [1]. In these computations one determines
the parameter F(IJ,=a '} in (2.19) in units of the inverse
lattice spacing a . The numerical result can be con-
verted into physical units by normalizing to the decay
constant of a light pseudoscalar meson (f or fx).
Furthermore, a renormalization factor is required to re-
late the lattice result to the renormalized parameter F„„
defined in (2.20). In next-to-leading order, the relation is

O.S

0.5

I I I

I
I I I I

I
I ~ I I

I
I I I I

u, = 3.0 GeV 0.36+0.06 GeV ~ (Ref. [16]),F„„='0.50+0.08 GeV (Ref. [17]),
0.44+0.07 GeV ~ (Ref. [18]),

(2.34)

0.3

0.5
I . ~, , I . ~

1 1.5
I s s ~ a

2 2.5

T [GeV]

FIG. 2. Numerical evaluation of the sum rule (2.30) for
A = 1.25 GeV and various values of the threshold parameter co, .

corresponding to f~«"=218+36, 302+48, and 266+42
MeV, respectively. Comparison with (2.31) and (2.32)
shows that the values obtained from our improved sum
rule are completely consistent with the lattice results.

Before proceeding, we would like to make a comment
on the size of the QCD correction in (2.30). After the
renormalization-group improvement, the scale ambiguity
associated with the next-to-leading logarithmic correc-
tions has been resolved. The radiative correction to the
dispersion integral is proportional to the physical cou-
pling a, (A) in the low-energy theory and is accompanied
by the large coefficient
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13 4m. 887 + 122 ~
3 9 162 243

(2.35)

which (in the Feynman gauge) is mainly due to the gluon
exchange between the heavy and the light quark. With
a, (A)/~=0. 1, the radiative correction amounts to a
100%%uo enhancement of F«„,corresponding to a 50%
enhancement of fF. We would like to stress that this is a
purely perturbative result not specific for QCD sum rules.
It is rather a general property of the two-current correla-
tor I 5. The physical origin of this effect is likely to be the
Coulomb interaction between the quarks. We believe
that the size of the correction might indicate an interest-
ing nonperturbative enhancement of decay constants,
which could ultimately limit any perturbative approach
to calculate fF. This should be kept in mind when con-
sidering the significance of the sum-rule results (2.31) and
(2.32).

mz
fF+mF

mg
:—C'F(mg )G(mg ),

(2.36}

lim G(m& )=F„„.
mg~ ot)

This function is free of large logarithms and has a well-
defined behavior in the infinite-quark-mass limit. From
(2.30) and (2.7), we obtain the sum rule

C. Improved sum rule for fr
After this caveat we proceed by deriving an improved

sum rule for fF, which allows for a quantitative estimate
of finite-mass corrections to the infinite-quark-mass limit.
To this end we combine the renormalization-group-
improved sum rule (2.30) derived in the effective theory
with the standard sum rule (2.7) by adding back those
term that vanish in the m&~ ao limit. Let us define the
quantity G(m&) by

3/2

G2(m )e
—A/T [a (T)]4/9

2a, (A)
Z3

3T3
X dz

8~2 o 1+zT lm&

2a, (A)—(qq )(T) 1+
377

(a, GG)+ + I ~ ~

12m.mg

f "dz
m& o 1+zTlm&

2mo 1—
4T

2T

r

s 13 2m 2 T
6 9 3 mQ

(2.37)

where we have neglected the tiny contribution of the
four-quark condensate. To first order in a„Eqs.(2.36)
and (2.37) are equivalent to (2.7). In the improved sum
rule, however, the large logarithms (a, lnm& )" and
a, (a, lnm&)" are correctly summed to all orders in per-
turbation theory and factorized into the short-distance
coefficient CF(m&). The leading corrections not taken
into account are of order a, or (1/m&) (a, lnm& ), neither
one of which becomes large as m& ~ (x) .

In Table I we investigate the m& dependence of G (m& )

and related quantities for A=1 and 1.25 GeV. Shown
are the values providing best stability only. The optimal
value of co, is found to slightly increase as the heavy-
quark mass becomes smaller. This effect stabilizes the
mass dependence of G(m& ). As a consequence, we find a
moderate mass dependence of this function even in the
region of the charm quark. Typically, G (mb ) and G (m, )

are 5—10% and 15—20% smaller than the asymptotic
value G(ao)=F„„,respectively. The 1/m& corrections
being of the naively expected order of magnitude
( AQCD /m & },we conclude that the heavy-quark expan-
sion works well for the quantity G (m& ).

The situation changes if one considers the quantity

(m&/mF )3/zG(m& ), which up to the short-distance
correction determines the size of fF+mF. The addition-
al mass ratio amounts to a further suppression of fs by—15% and fD by -40%. Therefore the decay constants
themselves are subject to very large finite-mass correc-
tions. It is important to remember, however, that the ex-
plicit appearance of quark masses is a specific feature of
the pseudoscalar decay constants. Such an effect does not
occur, e.g. , in the case of heavy-quark transition form
factors. The fact that the decay constants are subject to
large scaling violations should therefore not be con-
sidered as an indication of a general failure of the heavy-
quark expansion for the case of the charm quark.

Using the pole masses given in Ref. [41],
mb =4.67+0.10 GeV and m, = 1.45+0.05 GeV, our final
results are fD

—-170+30 MeV and fs ——190+50 MeV; i.e.,
the decay constant of the B meson is indeed found to be
larger than (or at least comparable to) that of the D
meson. The quoted errors mainly reflect the uncertainty
in the value of A and in the scale used in the next-to-
leading logarithmic corrections. Two effects are responsi-
ble for the large value of fs (as compared with the stan-
dard sum-rule estimate at the end of Sec. II A), the most
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TABLE I. Mass dependence of the sum-rule results for (a) A = 1 GeV and (b) A = 1.25 GeV.

(a)

m& (GeV)

m p (GeV)
~, (GeV)
s, (GeV )

G(m&) (GeV'/ )
3/2

G(m&) (GeV /
)

mp

fp (MeV)

m& (GeV)

mp (GeV)
~, (GeV)
s, (GeV )

G ( ) (G V3/2)
' 3/2

m, =1.44

mD =1.87
2.4
5.5

0.286

0.193

172

m, =1.35

mD =1.87
3.0
5.9

0.330

(b)

3.0

3.46
2.2
15.6

0.310

0.251

180

3.0

3.57
2.6
16.8

0.361

mb =4.80

mg =5.28
2.1

33.1
0.317

0.275

166

mb =4.69

mq =5.28
2.5
33.7

0.373

20.0

20.5
2.0
440

0.335

0.323

109

20.0

20.6
2.4
448

0.404

1.9

0.340

0.340

2.3

0.411

mp
G(m&) (GeV / )

fp (MeV)

0.203

179

0.278

196

0.312

189

0.386

130

0.411

important one being that after renormalization-group im-

provement the radiative corrections have to be evaluated
at a low-energy scale instead of at the scale of the heavy-

quark mass. A second increase is due to the different
quark masses used and the strong sensitivity of fr, to
A=2 (mi —

m& ). The decay constant of the D meson, on

the other hand, agrees with our earlier estimate.

dependent function g(v v', p) is the analogue of the low-
energy parameter F(p) in (2.17). By evaluating the
current matrix element for identical mesons, one can
readily show that this function satisfies the zero-recoil
normalization g( l,p) =1. The spin wave function P(v) of
a pseudoscalar meson has been given in (2.18). For a vec-
tor meson with polarization e„,one has instead

III. SUM-RULE CALCULATION
OF THE ISGUR-WISE FORM FACTOR

P( v) = /m~ ( I+/)
2

(3.2)

A. Current matrix elements in the effective theory

We now turn to the study of the form factors describ-
ing current-induced transitions between two heavy
rnesons P& and Pz. Specifically, consider transitions be-
tween any two of the ground-state pseudoscalar and vec-
tor mesons D, D*, 8, and 8 *. In general, the corre-
sponding matrix elements involve a large set of a priori
unrelated form factors. Exploiting the consequences of
the spin-flavor symmetry for the heavy quarks, however,
Isgur and Wise have shown that in the limit mb, m, ~ 00

all these form factors become proportional to a single
universal function g(v v') [6]. This so-called Isgur-Wise
form factor is independent of the masses of the heavy
quarks. It only depends on the velocity transfer and is
normalized at zero recoil.

The relations among form factors that the heavy-quark
symmetries generate can again be most concisely worked
out by using the trace formalism already discussed in Sec.
II B. In the effective theory, the matrix element describ-
ing the transition of a heavy meson P& with velocity v to
a heavy meson P2 with velocity u' is given by [29]

(P (v')~h& (v')I h& (v)~P, (v))

= —g( uu', p)Tr[P ( 2)uI P,(v)], (3.1)

where I is an arbitrary Dirac matrix, and the scale-

(P, (u') ~Q, I Q, ~P, (v) )
= —g„„(y)g C';(m&, m&,y)Tr[Pz(v')I;Pi(u)]

+0
m&

(3.3)

where for abbreviation y=v-v', and I,. are Dirac ma-
trices with the same canonical dimension as I". For the

The current Q2I'Qi of the full theory is related to the
effective heavy-quark current in (3.1) by an expansion
similar to (2.14). In this case, however, the associated
short-distance coeScients C; are not only functions of the
two heavy-quark masses and the renormalization scale,
but also of the velocity transfer [29]. These coefficients
have recently been calculated in next-to-leading order of
renorrnalization-group-improved perturbation theory
[43]. As in (2.20), they can be factorized into scale-
independent functions C';(m&, m&, v u') and a p-

1 2

dependent factor, which is independent of the heavy-
quark masses and precisely cancels the scale dependence
of matrix elements in the effective theory. With the help
of this factor, we define the renorrnalized Isgur-Wise
function in analogy to the definition of F„„in (2.20).
Putting everything together, one obtains for the full QCD
matrix element
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vector current, e.g. , it is convenient to choose
I &=I =y„,I 2= —v„,and I 3= —v„'. The renormalized
Isgur-Wise form factor is defined as [43]

g„„(y)= [a,(p)]
a, (p)

&z(y) g(y, p) . (3.4)

The velocity-dependent anomalous dimension aI (y) is
given by [29,47]

~L, (y)=
33 2

[yr(y) —1]
8

33 2nf

r(y)=, ln[y+(y —1)' ],1

(y' —1)'"
(3.5)

with nf =3 in the low-energy theory. The next-to-
leading-order correction 5z(y) in (3.4) is a complicated,
scheme-dependent function [47,43]. In the MS renormal-
ization scheme, one has

8(109—5nf —9n. )
gMS( )

729 (y —1)+0 [(y —1)'], (3.6)

which is a suKcient approximation for y & 1.5. Note that
both al (y) and 5z(y) vanish at y =1. As a consequence,

the renormalization prescription (3.4) preserves the nor-
malization of the Isgur-Wise form factor at zero recoil,
i.e., g„„(1)=1.The renormalized form factor is an ob-
servable, universal function of QCD, which contains all
long-distance dynamics relevant to the hadronic transi-
tion.

The 1/m& corrections in (3.3) can be systematically
classified using the effective-field-theory approach
[48,49,35]. In particular, Luke has shown that there are
no leading I/m& corrections to (3.3) at zero recoil [48].
This is very different from the case of meson decay con-
stants, where no such restriction holds. As a conse-
quence, the I/m& corrections to b ~c transitions are ex-
pected to be small for basically all values of v u' that are
kinematically accessible. This is indeed confirmed by
model estimates [35], and the heavy-quark symmetries
have proved to be a useful tool in the theoretical descrip-
tion of weak decays of heavy mesons [31,34,36].

B. Laplace sum rule for the Isgur-Wise function

In order to calculate the universal function g„„(vv')
using QCD sum rules, we study the following correlator
of currents in the effective theory:

fd 'x d y e'" " "«'(OiV'[A'" '(x) 9'"' '(0) A", (y) ] iO):—:"(co,co', v v')Tr I
2 2

co"=2k "U"

(3.7)

where 7'r" '=h&(v')I h&(v) and, as previously, A~~"'=qy5h&(v). In defining the three-point function =, we have fac-
tored out the trace which determines its Lorentz structure in the effective theory. Ignoring QCD corrections, the per-
turbative contribution to = is obtained be evaluating the triangle diagram shown in Fig. 3(a). The result can be written
as a double dispersion integral

P( CO, CO, V ' V ):- '"(co,co', v v')= dcodco' ' ' +subtractions .
(CO CO LE)(CO CO lE')

Setting again y = v v', the spectral density is given by [36,38]
/

p(CO, CO',y)=, e(CO)e(CO')e(2yCOCO' —
CO

—CO' ) .
16qr (y + 1)(y —1)'~

For the nonperturbative power corrections to the correlator, we find

( )-(qq)(~ ~

)
W

NCO

(a, GG }
)(CO, CO', y ) = (y —1)IC;(CO, CO', y ),

(3.8)

(3.9)

(3.10)

(CO, CO, y )—
2COCO CO CO 3COCO

The diagram involving the quark condensate is shown in Fig. 3(b). In contrast to the sum rule for the decay constant
f~, we also find a nonvanishing contribution from the gluon condensate. It arises from the diagram depicted in Fig.
3(c) (in coordinate gauge) and is proportional to the parameter integral

u 3u(co+co') 2(1+u)
1+u +2yu (co+uco') (co+uco')

(3.11)

The phenomenological side of the sum rule is as usual obtained by saturating the correlator with the lowest inter-
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the erturbative con-a roximating t e con rih t 'butions of higher resonances by pmediate pseudoscalar-meson states and pp
tinuum. Using (2.17) and (3.1), we find

g(y, P)F (P, ) +f d f(A CO ie}(A CO lE) c
+subtractions .

(CO CO lE)(CO CO lE)
(3.12)

e above ex ressions after applying theur-Wise function, one equates the a ov
1 to the

b
'

the Laplace sum rule for the Isgur- i
an co'. In articular, this greatly simp i es1 fies the contribution proportiona o

d ' th o
' dBo 1g luon condensate. Since e co. S' th orrelator is symmetric in co and co, we se e a

7=7'=2T .
'

nce. The resulting sum rule readsThe factor 2 is chosen for later convenience.

(3.13)

}F2( )e A/T—
3'

— y '+(2 +1) mc (cr GG) y —1

3 "'+' 'e(2yzz' —z —z' )
2'

( +1)( '—1)' '

(3.14)

1 te this equation in the zero-rec
'~ ~

-recoil limitLet us evaua e
of the Is ur-=u u'~1. Because of the normalization o g

th n becomes a suin rule for F (p),Wise function, i t e e o
h' h must agree with that derived in Sec. . sw ic mus

inte ral reduces to—+1, the 8 function in the dispersion in egra
')5( —z') and it is readily seen that,

from ~~CD corrections, one indeed recoversapart rom ~~

tit that relates theThis is a consequence of a Ward identi y a
f t' = to the derivative of the two-pointthree-point function = o

correlator I [50] It was for this reason that we in ro-
or 2 in (3.13). The empirical observation

t a eh t the scaled Borel parameter in a three-poin sum
h ld be chosen approximately twice as gas lar e as that in

in Ref. [51]. In the infinite-quark-mass limit and or
~ '= 1 this relation becomes exact.
It is clear from the above discussion t-ah t if one divides

3.14) b (2.29), one obtains an expression
r the Is ur-Wise function which explicitly o eys

normalization condition g(l, p)=, '
p

value of T. The resulting equation is furthermore in-
and F ( ). This is welcome since the

variation of the decay constants with A was rather strong
(see Table I), an p wd F ( ) as associated with the factor

I

m /ml, ), which induced large 1/m& corrections. In
addition, we sha see m e11

'
the following section that also

f rtabl large QCD corrections to F (p othe uncom or a y
ur-Wise function.ff t the final expression for the Isgur- ise

Before proceeding, however, it is necess y
the sum rule (3.14) in two respects. The first one con-

f hi her-resonance contributions.
The inte ration domain for the dispersion integra is ee in egr

e se aration between"kitelike" area shown in Fig. 4. e sep
the pole and continuum contributio pp

'
ns a ears to be rath-

er crude and to a large extent arbitrary. Performing the
integral over the region specified yb (3.14), one can show

'hise form factor witt a eh t the derivative of the Isgur-Wise
lt which isres ect to u u~

' diverges at zero recoil, a resu
1 One should, therefore, change thecertainly unphysica . ne s

~ ~To this end it is convenient to intro-integration domain. o i
'

bles x=(z+z'}/2 and q=z —z an in-
metric triangle (see ig.

the q integration becomes trivial. Instead o t e ou e

~ =(%+vs i)

c
(v —v'v' —i) ~

(b)

FIG. 3. Lowest-order diagrams for ther the three-current correla-
correction~ u'): (a) erturbative contribution,tor =(co,co, v.u: a p

lvin theinvolving the quar con enk d nsate and (c) correction invo
'

g
gluon condensate. In (c on y e i) 1 the diagram yielding a nonvanish-
ing contribution (in the coordinate gauge) is shown.

T
FIG. 4. Integration domain for the double integinte ral in (3.14).

The origina i e i e ' rl "kitelike" region is replaced by a symmetric trian-
gle. The small (shaded) triangle corresponds to the lower oun
for o.(y) in (3.16), the large (shaded + ruled) one to o.(y) = 1.
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integral in (3.14), we then obtain
1/2

co /T co /T
y —1

dz J
' dz' 4 I

p p y+1

I(z)= f dx x e "=2—(2+2z+z )e
p

CO

o (y)

(3.15)

According to Fig. 4, any choice for o (y) in the range

2

(q( )q(0))=(qq) — g, (q „„G„q)+16
(3.18)

The standard value mp =0.8 GeV corresponds to X=1
fm. For the simple Gaussian ansatz (3.17), the contribu-
tion of the diagram shown in Fig. 3(b) can be calculated
in closed form. Denoting the "double-borelized" correla-
tor by ", the result is

—,
' [y + 1 —(y —1)'~ ] & o (y) & 1 (3.16)

4T = ~~ = —(qq)exp
2

mp y+1
4T 2

(3.19)

(q(x)q(0) ) = (qq )e 16

mp
(3.17)

The damping length A, is chosen to be consistent with the
short-distance expansion

is reasonable. Note, however, that o(1)=1 in any case.
A finite slope of the Isgur-Wise function is obtained, e.g. ,
for o(y)=(y+ I)/2y. The arbitrariness of cr(y) yields to
a significant uncertainty of the sum-rule prediction for
the universal form factor, as will be discussed in Sec.
III C below. Facing the lack of information on the struc-
ture of higher-resonance contributions to the spectral
function =, this uncertainty is unavoidable.

A second modification is required to improve the
large-recoil behavior of the sum rule (3.14). For large
values of y =U U' (corresponding to large negative values
of q ), the Isgur-Wise function should tend to zero,
whereas the nonperturbative contributions in (3.14) stay
constant or even increase with y. Hence higher-order
power corrections must compensate the contributions of
the lowest-dimensional ones. In order to model this can-
cellation and to simulate the effect of higher-order
corrections, one approximates the nonlocal quark con-
densate by a Gaussian distribution in Euclidean space-
time [52—54]:

In contrast to the old result, the contribution of the non-
local condensate becomes exponentially small at large
recoil. Comparison with (3.14) shows that part of the
contribution of the mixed condensate is taken into ac-
count by (3.19). In the following we shall assume that all
nonperturbative contributions have the same exponentia1
damping factor at large values of y. It must be noted that
for physical values of y=u. v' relevant for B~D'*' de-

cays, the numerical effect of the exponentiation is less
than 3%.

Putting everything together, we obtain the following
expression for the universal form factor [36,38]:

g(y, p) =
3T 2 ~cI cr(y) +C(T,y)y+1

3T ~cI +C(T, 1)
8m

(3.20)

where the condensate contributions are given by (the
scale in the quark condensate is chosen for later conveni-
ence)

C( T,y) = —(qq )(T) 1 — +mo y
—1 (aGG)

4T2 y +1 48mT

mo (y+1)
exp

4T2
(3.21)

This result explicitly obeys the normalization condition g(l, p)=1. Since, up to now, QCD corrections have been ig-
nored, our theoretical expression does not yet reproduce the proper scale dependence of g(y, p). The calculation of the
renormalized form factor defined in (3.4) is the subject of the next section.

C. Calculation of the renormalized Isgur-Wise form factor

In order to calculate the renormalized Isgur-Wise function, one has to include the QCD corrections to both the
numerator and denominator of (3.20). The corrections to the denominator have been calculated in Sec. II B and are
given in (2.29). The corrections to the three-point correlator = involve loop integrals in the effective theory with two
heavy quarks, which depend on co, co', and v -v'. As an example, we have calculated the radiative corrections to the con-
tribution involving the quark condensate [see Fig. 3(b)]. After applying the double Borel transformation, we find, using
the formulas given in the Appendix,

1+ 1+35+2[yr (y) —1]ln—+c (y)
(-)( ) T

4T 3' p
(3.22)

where 5—s
=

—,', and c (y) is a scheme-dependent function, which vanishes at zero recoil. In the MS scheme,
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cMs(y) = [yr (y) —1][ln8(y + 1)—2yE ]—(y —1)r (y)+2

[Lz(1—y )—L2(1—y+ )+L2(1—y+ )—L2(1 —y )]
(y2 1)i/2

=~4(ln4 —yE ——,')(y —1)+0[(y—1) ], (3.23)

where y+ =yk(y —1)'/, yE-—0.5772, and r(y) has been
defined in (3.5). The important observations are the fol-
lowing:

(i) At zero recoil the radiative correction is precisely
that encountered in (2.29) in the calculation of the corre-
lator I ~. The equivalence of the sum rules at zero recoil
is preserved by renormalization.

(ii) The logarithmic dependence on p in (3.22) can be
summed to yield

4a, Z.
(qq )(p) 1+ [yr(y) 1]ln——

377 p

( )
—4/9+ai (y)

-&qq)(T)
aq T

(3.24)

The factor [a,(p)/a, (T)] / also appears in the
renormalization-group-improved version of the denomi-
nator in (3.20) and drops out of the ratio. The remaining
p-dependent anomalous scaling factor is precisely can-
celed if one computes the renormalized Isgur-Wise form
factor from (3.4).

(iii) The functions c (y) from (3.22) and 5z(y) from (3.4)
combine to give a scheme-independent result

—,'c (y) —5z(y) = —1.42(y —1)+O[(y —1) ] . (3.25)

As a consequence of the restriction that it must vanish at
y = 1, this velocity-dependent next-to-leading-order
correction stays small for all relevant values of y =v v'.
We shall neglect it from now on.

The radiative corrections to the triangle diagram of
Fig. 3(a) involve two-loop diagrams and are hard to cal-
culate. However, they must exhibit the same structures
as encountered above. The logarithmic dependence on
IJ, /T must be of the same form as in (3.24), and the
correction must reduce to that given in (2.29) at zero
recoil. There is thus no need to calculate the two-loop di-
agrams as long as one neglects those next-to-leading-
order corrections which vanish at y = l. In view of the
uncertainties associated with the simulation of higher-
resonance contributions to the perturbative part of the
three-point sum rule, this is a safe approximation. In to-
tal, we obtain, from (3.4) and (3.14), for the renormalized
Isgur-Wise function

3
'2

3T 2 — ~cI o (y) +r)qcDC( Ty)

g„„(y)= [a,(T)]
3T — cI +gqcDC(T&1)
8m

(3.26)

where

4~'
qcD=1+ ' + =18 (3.27)

is essentially the difFerence of the QCD corrections to the
dispersion integral and to the quark condensate, and we
have introduced the new function

I(z)= f dxx e " 1—
0

2a, (A)
lnx (3.28)

Our final result (3.26) for the universal form factor has
an appealing structure. The normalization condition
g«„(1)=1is explicitly fulfilled. In contrast to the sum
rule for the decay constant fr discussed in Sec. II B, the
large QCD corrections to the perturbative contribution
cancel in the ratio, since they are y independent. The
only remnant is the QCD factor g&cD—-0.6, which leads
to a significant suppression of the nonperturbative contri-
butions. This is still a large correction, but only affects
the small power corrections to the leading perturbative

contribution, which therefore determines the shape of the
universal form factor. The corresponding y dependence
is approximately of the form [2/(y + 1)]z, corresponding
to a double pole at q =(m& +m& ) . Corrections to a

1 2

pure pole behavior arise, however, from the function
cr(y).

As mentioned previously, the final result for the
heavy-quark form factor would be unaffected by mass
factors of the type m&/mr even if 1/m& corrections
were included. In the framework of QCD sum rules, we
therefore do not expect these corrections to be unusually
large. This is very different form the situation encoun-
tered for fr.

For the numerical evaluation of (3.26), we vary the
continuum threshold co, between 1.9 and 2.5 GeU and
the Borel parameter T between 1.0 and 2.5 GeU, corre-
sponding to the range of values providing stability of the
two-point sum rule investigated in Sec. IIB. The radia-
tive corrections in (3.27) and (3.28) are evaluated at the
scale A=1.25 GeV. For the function cr(y) in the disper-
sion integral, we consider the two extreme choices
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o';„(y)=—,
' [y + 1 —(y —1)' ] and cr,„=1 [cf. (3.16)],as

well as pro(y) =(y + 1)/2y, which for all y ) 1 lies in be-
tween these limits. The latter ansatz gives results very
similar to those obtained evaluating the original form of
the dispersion integral in (3.14), but, as discussed earlier,
yields a finite slope of the universal form factor at zero
recoil. The results are summarized in Fig. 5. The three
bands correspond to the three choices for o(y). The
width of the bands arises from the variation of the sum-
rule parameters co, and T in the limits specified above.
Obviously, the dependence on these parameters is very
weak. Also, a variation of (gQCD 1) by +50% changes
the results by less than 4%, indicating that the QCD
corrections are under control. The main uncertainty is
due to the arbitrariness of the choice of o.(y). We consid-
er the band obtained using tro(y) as a reasonable estimate,
whereas the results obtained using cr;„(y) and tT,

„

should be regarded as very conservative lower and upper
limits, respectively.

Also shown in Fig. 5 are "data" for the universal form
factor g„„(uu') that have been extracted from an experi-
mental measurement of the differential branching ratio
for the semileptonic decay B ~D*+Ivl by the CLEO
and ARGUS collaborations [55), accounting for the lead-
ing QCD and I/m& corrections to the infinite-quark-
mass limit [34]. The normalization of the data corre-
sponds to

~ V,b ~r' o =0.044X(1.18 ps)'~ . It is seen that

the sum-rule result obtained using ere(y) nicely compares
to the data. Defining the slope parameter p by
g'„,„(1)= —p, we obtain the prediction psR=1. 13+0.11.
This is in accordance with previous estimates of this pa-
rameter such as p = l.20+0. 17 in Ref. [31] and
p=1. 13+0.23 in Ref. [34]. A simple parametrization of
the sum-rule result in terms of a pole-type function is

P(y)
2

y+1 P(y) =2+ 0.6
gsR( ) (3.29)

It exhibits dipole behavior at large recoil.
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FIG. 5. Sum-rule result for the renormalized Isgur-Wise
form factor. The three bands correspond, from top to bottom,
to a(y) =1, o.o(y), and 0. ;„(y),respectively. The data points are
taken from Ref. [34].

IV. CONCLUSIONS

We have presented a consistent framework for the cal-
culation of hadronic form factors of heavy mesons using
QCD sum rules in the effective theory for heavy quarks.
Since the effective currents have nonvanishing anomalous
dimensions, a renormalization of the form factors is re-
quired. We have included the complete next-to-leading-
order renormalization-group improvement, thereby sum-
ming the logarithms (a, lnm&)" and a, (a, lnm&)" to all
orders in perturbation theory. This procedure resolves
the scale-ambiguity problem associated with the order-a,
corrections. We have applied this technique to derive
sum rules for the asymptotic value of the scaled meson
decay constant fpQm~ and of the universal Isgur-Wise
form factor, which describes current matrix elements be-
tween two heavy rnesons in the infinite-quark-mass limit.

In the case of fp, the renormalization-group improve-
ment turns out to be most important and resolves the
discrepancy between previous sum-rule and lattice calcu-
lations. The large radiative correction to the correlator
of two axial currents has to be evaluated at a low-energy
scale rather than at the scale of the heavy quark. While
this effect is unimportant for the decay constant of the D
meson, it considerably enhances previous estimates of the
value of fz. In the static approximation (i.e., neglecting
1/m „corrections), we find fs"=200 —300 Me V, in
agreement with recent lattice results.

Combining the renormalization-group-improved sum
rule derived in the effective theory with the standard La-
place sum rule for fz, we have investigated the effect of
finite heavy-quark masses. The appearance of an explicit
factor (m&/mp) in front of the sum rule is found to be
the origin of unnaturally large finite-mass corrections to
the decay constant of the D meson. This effect is, howev-
er, specific for decay constants of pseudoscalar particles
and should not be considered as an indication for a gen-
eral breakdown of the heavy-quark expansion for charm.
Taking into account the full dependence on m&, we find
the physical decay constants fD ——170+30 MeV and

f~ ——190+50 MeV. For large values of m&, the decay
constants depend rather strongly on the mass difference
A=2(mp —m&). The quoted value for fs refers to
mb =4.67+0. 10 GeV.

The sum rule for the renormalized Isgur-Wise form
factor g„,„(uu') is obtained from the study of a three-
current correlation function in the effective theory. At
zero recoil a Ward identity relates this function to the
two-current correlator from which one derives the sum
rule for fJ, As a consequence, the . Isgur-Wise function
can be expressed as the ratio of two sum rules in such a
way that its normalization at zero recoil is explicitly
obeyed. This ratio is independent of the parameter A
and, after renormalization-group improvement, is not
affected by uncomfortably large QCD corrections. The
main uncertainty arises from the way in which higher-
resonance contributions to the perturbative part of the
sum rule are approximated. We have given a prescrip-
tion that ensures a finite slope of the universal form fac-
tor at zero recoil and discussed conservative lower and
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upper limits for g„„(vv'). Our final result compares
nicely to data on the form factor extracted from the
differential decay rate for 8~D *lvl decays.
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APPENDIX

The Feynman rules of the heavy-quark effective theory
can be readily obtained from the effective Lagrangian de-
rived by Georgi [7]. The momentum of the heavy quark
is split into an on-shell and an off-shell piece,
P =m&v+k, where k acts as an infrared cutoff and is of
order AQQQ In momentum space the propagator of the
heavy quark is then given by (i/v k)(ted+ I}/2. The
heavy-quark-gluon coupling is ig, U„t,. Master integrals
for the calculation of one- and two-loop integrals involv-
ing only a single heavy quark are given in Ref. [12]. The
master one-loop integral for diagrams involving two
heavy quarks with velocities v, U' and off-shell energies
to =2v k, co'=2v' k' is (in D space-time dimensions)

a p 'r
1 1

co+2V. t co'+2U' t
'D —2a

with (v v'—:cosh8)

=in I(a,P, y) J du +p [Q(u)]P+r
Q(u)
V(u)

Q(u)=to+uco',

V ( u ) = ( 1 +2u v .v + tt
2

)
t /2 —

( tl +e 8
)

t /2( u +e
—8

)
t /2

and coefficients

I (2a+P+y D}I (D/2 —a—)
I (a)l (P)l (y )

It is convenient to apply the double Borel transformation with respect to co and co' before performing the integral over
the Feynman parameter u. Useful formulas are

B,S, , [ —Q(u)]
COCO I a+1 rr'

e(r/r' —u) e(t! 1/1 )+
(ur')

Additional powers of co' or co=Q(u) —uco' in the numerator can be generated by derivatives with respect to the Feyn-
man parameter u.
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