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Neutron electric dipole moment in chiral quark-meson models
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The neutron electric dipole moment is calculated in models of the quark structure of nucleons. The
models studied incorporate chiral symmetry and the axial anomaly. The results are shown to satisfy the
requirement of vanishing if either the strength of the anomaly or any current quark mass vanishes. In
the cloudy-bag model both quark and pion-loop contributions to the dipole moment are found and these
reinforce. In the color-dielectric model, which is consistent with partial conservation of the axial-vector
current, there is only a pion-loop contribution.

PACS number{s}: 13.40.Fn, 11.30.Er, 12.40.Aa, 14.20.Dh

I. INTRODUCTION

Recently interest has reawakened in an old problem:
the calculation of the strong CP-violating contribution to
the neutron electric dipole moment (1„)in models of nu-
cleon structure. This quantity is proportional to the
coefficient 8 of the CP-violating term in the QCD La-
grangian:
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It is important as it provides the best experimental limits
on 0, and hence places stringent constraints on theories
of CP violation. For reviews see Refs. [1—3]. The topo-
logical density in Eq. (1),
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also appears as the anomalous divergence of the U(1)z
current in QCD [4]. Because of the nonperturbative
structure of the QCD vacuum [5], this anomaly generates
various physical effects such as the mass of the g' meson
[6,7] as well as the dependence of observables on 8. It
also makes it possible to transfer strong CP violation to
the quark mass matrix by making an appropriate axial
rotation of the quark fields [8].

Various authors [9—11] have stressed the need to in-
corporate both the U(1)„anomaly and chiral-symmetry
breaking correctly in models of low-energy QCD. This
has been discussed in some detail by Aoki and Hatsuda
[9] and Cheng [12]. In particular the effects of strong CP
violation should vanish if either the anomaly or any
quark mass vanishes. Many earlier calculations of d„
[8,13—16] fail to satisfy this requirement.

Moreover there is complete confusion in the literature
as to the sign of 1„,as has been noted elsewhere [12,17].
The sign is crucial in models where there are both direct
quark and pion-loop contributions to d„. If these tend to
cancel, the limits on 0 are relaxed by about an order of
magnitude [16].

Morgan and Miller [16], working in the cloudy-bag
model [18],calculated both contributions and did indeed

find a cancellation. However, their model was not fully
consistent, as an ad hoc volume-coupling form was used
for the CP-violating quark-pion interaction. In addition
the model made no direct reference to the U(1)„anoma-
ly. As a result their work has recently been criticized by
two groups [9,11], both of whom claim that the direct
term is obtained by faulty handling of the U(1)„anoma-
ly. Nevertheless an approach based on a baryon-level La-
grangian does find two contributions and an apparent
cancellation between them [9].' As we discuss later, the
cancellation found in the three-Savor model of Ref. [9]
stems from its arbitrary choice of chiral-symmetry-
breaking parameters. The simpler, and more realistic,
two-flavor model in Ref. [9] gives reinforcement.

Here we calculate the neutron electric dipole moment
in a version of the cloudy-bag model in which the axial
anomaly is consistently incorporated. By making an axi-
al rotation to a CP-invariant vacuum, we get a quark La-
grangian which is similar to that of Baluni [8] except for
an extra factor. This factor has the form 1 —m /m„. in
a two-Qavor model, and it vanishes if the strength of the
anomaly vanishes. Thus physical observables calculated
with this Lagrangian satisfy the requirement noted in
Refs. [9—11]. In practice this factor is very close to unity
and so makes little difference to the results of earlier cal-
culations which ignored it, such as the quark contribu-
tion to d„ofRef. [16].

In the cloudy-bag model we find that there are indeed
two contributions to d„whose magnitudes are in fact
very close to those given in Ref. [16]. However, we find
that they have the same sign, and so reinforce one anoth-
er, in agreement with the two-flavor model of Ref. [9].
Moreover the direct quark contribution can be expressed
in terms of the anomalous magnetic moment of the neu-

The sign of the direct term obtained from the three-Aavor
model in Ref. [9] is given incorrectly there. This was noted by
Cheng [12], although he quotes the pion term with the wrong
sign [17].
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tron and so has precisely the form obtained from
baryon-level models [9,15].

A tree-level contribution to d„arises only if there are

explicit fermion mass terms which break chiral symme-

try. Such terms are need with a nonlinear realization of
chiral symmetry, but they violate partial conservation of
the axial-vector current (PCAC}. In linear o models ex-

plicit chiral-symmetry breaking can be introduced
through terms linear in the scalar fields. Separate fer-

mion mass terms do not appear and PCAC is respected.
Hence in models with linear realizations of chiral symme-

try, there is only a pion-loop contribution to d„. As an

example of such a model, we calculate d„ in the color-
dielectric model [19,20]. We find a loop contribution to
d„similar to that of the cloudy-bag model.

II. CLOUDY-BAG MODEL

A full three-fiavor version of the cloudy-bag model [18]
including the nonet of pseudoscalar fields, SU(3)-
symmetry breaking and the effect of the anomaly can be
described by the Lagrangian

X =f(i 8 M)$8~— Q—Us—$5(r —R)

2 2

+ Tr(B"UB U)+ Tr(MU+MU )
4 P 4

+f~ Re(e ' detU), (3)

where U =exp(iA. P /f ) and U5 =exp(iA, P y&/f )
and the pion decay constant f„ is 93 MeV. Explicit
chiral-symmetry breaking comes from the current quark
mass matrix M=diag(m„, m„, m, ), where m„(=m„/v)
and m, [ = (2mx —m ) /v ] are the nonstrange and
strange current quark masses, respectively; the value of u

is not required here. The determinant term models the
nonperturbative e6'ects of the U(1)z anomaly and has the
form suggested by 't Hooft's instanton arguments [6].
The physical effects of the anomaly are governed by the
parameter a. Strong CP violation is introduced by the
phase e ' in this term.

Other workers prefer to include the anomaly via a
"TrlnU" term [21]. The distinction is unimportant for
our present purpose since what matters is the expansion
to second order in the meson fields, which is the same in
both cases

f~ Re(e ' detU) = ——3ago+( —', )' af Po8 .

This agrees with the form used in Ref. [12]. Consistency
with LQCD is obtained either with the signs above, or (as
in Ref. [9]) with the opposite sign for the po8 term and
with U5 in the quark-meson coupling.

If SU(3) symmetry is broken, Ps and Po are not mass
eigenstates since, in this basis, the mass matrix is

—,(4m'. —m )
3

(m —mx. )
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under which
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where V5 bears the same relation to V as U~ does to U.

The angles E'p and e8, which make the vacuum expecta-
tion values of Po and Ps vanish, are

' 1/2
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where

H=m (2m' —m )/I m„. .

By making this rotation we remove all terms linear in Po
and Ps from the mesonic part of the Lagrangian. When
U is expanded up to second order in the meson fields, the
only source of CP violation in the Lagrangian is the CP-
odd quark mass term. The relation between e8 and ep is
just that required to make this term a Aavor singlet. In
this frame the CP-violating term in the quark sector is

X~=v 'Ha8giy, g
=I ( 1 H) 8/i y ~g,

—

where their masses and the angle P depend on the
strength of the anomaly a. As is well known, m „and m „
cannot both be fit to their experimental values. A best fit
can be obtained by using the experimental masses to fix
a =

—,'(m„+m„, —2mx. ). With this choice, diagonalizing
N gives

a =12.5m, P= —18.3',

m„=500 MeV, m„=984 MeV .

In the following, m„, m„., and P will refer to the model
values, not the experimental ones, and as such implicitly
depend on a.

As the Lagrangian of Eq. (3) stands, the vacuum is not
CP invariant since the vacuum expectation values of Ps
and (to do not vanish. It is most convenient to work in a
chirally rotated frame in which there are no expectation
values for the pseudoscalar fields. The chiral invariance
of the quark-photon coupling means that the final result
will be the same whatever rotation is performed, and so
we are free to choose the most convenient basis. The
desired axial rotation has the form

—i (E'pAp+E'818)/2=e

2 I 2 2(m —m~) —,'(2m++I )+3a

The mass eigenstates can be written

(5) where

m I
(&3)
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This rotation thus achieves Baluni's aim of transferring
the strong CP violation to the quark sector [8]. Like his
original form, this term vanishes if any quark mass van-
ishes, but unlike the original form it also vanishes in the
absence of the anomaly. This rotated basis, with a CP-
invariant vacuum, has the further advantage that current
algebra can be used to evaluate matrix elements involving
pseudoscalar mesons.

In fact Eq. (12) differs from Baluni's expression only by
the factor of 1 —H. It is significant in that it vanishes if
the strength of the anomaly a vanishes and so satisfies the
requirement noted in Refs. [9—11]. Indeed many previ-
ously obtained results need only to be multiplied by this
factor to be correct. In practice the corrections it pro-
duces are very small. For example in a two-flavor model,
with pions and one isoscalar meson (q)') only, H is given
by m /m„, . For the experimental values of the masses
this is 0.021. It has the same form in the SU(3)-
symmetric three-flavor model and in the case of very
strong SU(3) breaking (ms »ct). For realistic symmetry
breaking H can be expressed either as in Eq. (11) or in
terms of the g and g' masses and mixing angle as given
by Eq. (3.15) of Ref. [12]. With the values given in Eq.
(7), H =0.037 and so the factor 1 H is aga—in very close
to unity.

We now return to the cloudy-bag model [18] and fol-
low the standard practice in this model, keeping only
contributions from nonstrange quarks and pions since
those from the strange degrees of freedom are
significantly smaller. If we regard all heavier mesons as
frozen out, the Lagrangian for a spherical bag reduces to

X=/[i' m„+ m—(1 H)8i y—s]QB(R r)—

values, the quark wave functions satisfy the usual MIT
bag boundary condition [22] for a spherical bag:

Er"gg =g (15}

but within the bag there is now a CP-violating quark-
mass term Xs.

The ground-state quark orbital in the absence of Xs is

j o(cor/R )y
qo(r)= 4' i cr".rj, (cor /R )y

where R is the radius of the bag, Nq '=2R (co—1}
Xjo(co)/co, and y is a Pauli sPinor. This wave function
satisfies the free, massless Dirac equation with eigenvalue
co/R, where co=2.04. It is easily seen that yoysqo is
another solution of the same equation with energy
—co/R. The full Dirac equation with CP violation, to or-
der 0, reads

(16)

[ a V —im.(1—H)8yo—y, ]q =—q, (17)

and it is easy to verify that the solution to this equation
subject to the boundary condition Eq. (15) is

. m(1 H)8R-
XOX5 &o. (18)

CP violation mixes positive- and negative-energy states
but does not mix in excited states, as was Grst noted in
Ref. [16].

Using the wave function of Eq. (18), it is now straight-
forward to calculate the direct contribution to the dipole
moment of a spin-up neutron:

,'QUs$5(r ——R )+—,'(%$.c)„$)——,'m (14) n diaz g
q

where U5=exp(ig r/f ) At this s.tage we can set the
quark mass m„(but not m) to zero since its effect on the
quark wave functions is very small. Our results for CP-
violating quantities will then be valid to first order in the
current quark masses. %ith the exception of the factor
1 —H, this Lagrangian is just the one used by Morgan
and Miller [16] to calculate the direct contribution to d„.

There are two contributions to the neutron electric di-
pole moment in this model. One is the direct or tree-level
contribution, and the other comes from pion loops in
which one of the couplings to the nucleon is CP violating.
%e consider first the direct or tree-level contribution
which Morgan and Miller [16] obtained using perturba-
tion theory in &z.

An equivalent, but more transparent, way to obtain
this is to solve the Dirac equation for the quark wave
function to first order in 0 directly. In the rotated frame
where there are no pseudoscalar vacuum expectation

2 m(1 H)8R . —= ——e
3 Q7

j R, (19)

pn n d ir ~ p ~ n

q

=j„R n 03 n

q Sf

= ——', ej„R, (20)

where Q is the quark charge operator, —,'e(r3+ —,') and

j =
—,'(co —

—,')l(co —co). Except for the factor 1 H, that-
is the result obtained by Morgan and Miller [16]. If we
compare this with the expression for the magnetic mo-
ment in the cloudy-bag model,

2The quantity called H in Eq. {3.4) of Ref. [12] is wrong; Eqs.
(3.4) and (3.15) of that paper should be identical and can be
shown to be equivalent to Eq. {11)lf the model masses are used

we see that the direct quark contributions to the neutron
electric and magnetic dipole moments are closely related:

d„""=m(1—H)8R p„/co . (21)

It makes little difference whether m(1 H) is taken—
from a two- or three-Aavor model, but here we use the
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three-ffavor version and take the value m =5.3 MeV
from Ref. [16]. For a bag radius of 1 fm, this gives
d„'"'= —1.77 X 10 ' 8 e cm. Diagrams in which the
photon couples to the quark current while a virtual pion
is in ffight lead to the same correction factor as for the
magnetic moment [18]. Their effect on the result is small
except for small bag radii where the quark piece is in any
case much smaller than that due to pion loops. For
R = 1 fm it reduces the quark contribution to—1.69X10 ' 8 e cm.

Note that our result is chirally invariant: it does not
depend on our choice of the rotation in Eq. (9). We could
equally well work with the unrotated Lagrangian Eq. (3)
and obtain the same result. In that case the vacuum ex-
pectation values of the pseudoscalar fields lead to CP
violation only in the boundary condition at the bag sur-
face. The wave function obtained by solving the free,
massive Dirac equation subject to that condition is just
an axial rotation of the one above, Eq. (16). This does not
alter the dipole moment since the vector coupling of the
photon to the quarks is chirally invariant.

It is instructive to compare this result with ones ob-
tained using baryon-level model Lagrangians. Chiral
symmetry ensures that there is no direct contribution to
d„ if the only photon-baryon coupling is vector, but such
a contribution can be obtained if the tensor coupling to
the anomalous magnetic moment is included [15]. Aoki
and Hatsuda [9] have developed such Lagrangians incor-
porating chiral symmetry and the anomaly. In these
models there is a tree-level contribution to the nucleon
electric dipole moment proportional to its anomalous
magnetic moment. The simple two-flavor model of Ref.
[9], for instance, gives

+ v,
" '(k)B Aa, (k)], (23)

where a,.(k) annihilates a pion with momentum k, and A

and 8 are baryon annihilation operators. %ith the wave
function of Eq. (18) the vertex function is given by

d r1 I d r

Q(2qr) 2rok

X ( A
~ qi y 5q q~B )e '"'5(r R)—

. fq u(kR)
f~ Q(2qr) 2cok q ~I

g„u (k)
A gr~ B

Q(2qr) 2rok q ~f
(24)

where rok =k +m, f =co/6(ro —1), and

The arbitrary choice used gives a contribution to d„with
the opposite sign to the more trustworthy two-favor
case. A different choice could have reversed the sign.
%e believe our present calculation provides a more reli-
able three-ffavor result; as remarked before it does not
differ significantly from the two-ffavor case.

The second contribution to the dipole moment in this
model comes from pion-loop diagrams in which one ver-
tex is CP violating. To obtain such an interaction we cal-
culate the +X' vertex function using the quark wave
function derived above. As is usual in the cloudy-bag
model, we write the pion-baryon interaction Hamiltonian
as [18]

H;„,= g f d k[v" (k)A Baj(k)
ABj

d tree SBm

2M~

2Pl1—
2Pl ~~

(22) m(1 —H)8Sx= 2f (ro —1)
(25)

where ms& is that part of the nucleon mass attributable
to chiral-symmetry breaking, given approximately by the
pion-nucleon o term [23]. This has exactly the structure
of the cloudy-bag result expressed in the form given by
Eq. (21).

In Refs. [9,12] an attempt was made to find a three-
fiavor version of Eq. (22). The Lagrangian used in Refs.
[12,24] does not incorporate the effects of chiral-
symmetry breaking in a realistic way. This is remedied in
Ref. [9] at the expense of introducing further parameters
which are not uniquely determined by the baryon masses.

3The cloudy-bag result can be extended to the proton provided
one takes account of the fact that the proton is charged. The
wave function of Eq. {18)would seem to lead to a dipole mo-
ment proportional to the full proton magnetic moment. If one
corrects for the displacement of the charge with respect to the
center of mass, the proton dipole moment is equal and opposite
to that of the neutron. This agrees with the experimental obser-
vation that the nucleon anomalous magnetic moment is also al-
most purely isovector.

+(~y5g QQ+g )vs )q (26)

we can identify the normal- and abnormal-parity md%
coupling constants. The former is

q =0.544f
2M~ 3f

to be compared with the most recent experimental value

g„~z/2M~ =0.641f„' [25]. The abnormal, even-parity
coupling is

g ~~ — g — 0.02660 .

An alternative derivation of the expression for g &N can

4In Ref. [9] the sign appears to be the same in the two- and
three-flavor cases, but this is because the choice of signs in the
mesonic and three-flavor baryonic I agrangians are incompati-
ble. In Ref. [12] this is corrected.

Here u (k) is the usual form factor 3j&(kR)/kR, while
the form factor for the odd-parity coupling u (k) is just
jo(kR). The g„of Ref. [16] enters vj(k) with the same
sign as ours. If we compare this with the Lagrangian
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be obtained from the current-algebra relation

3.5

Direct bare

Direct d

Loop

TotaI

(29)

where the wave function qo is used to evaluate the last
matrix element. Thus the abnormal-parity coupling con-
stant is negative (in agreement with Ref. [12]).

The dipole moment can be found by inserting the ver-
tex function of Eq. (25) in the standard cloudy-bag ex-
pressions for the pion electromagnetic current [26]. As
we have described in detail elsewhere [17],this gives

2.5

1.5
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~ /
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/
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(31)

Our expression has the same leading term, as can be seen
by extracting the potential infrared singularity which is
cut off by the finite pion mass. At low momenta the form
factors u (k) and u(k) can be replaced by unity, and Eq.
(30) yields

dn 2 g nNNg «NN (32)
4m MN a)k

Assuming that the form factors cut this integral off at
momenta of the order of MN, as obtain the usual result
Eq. (31).

In the full calculation with form factors we get

Sef g„d„"'i'= — f dz j, (z)
n f

—,'z j,(z) —,'z jo(z)
(z2+ ~2)3/2 (z2+ 2)5/2

J

(33)
where a=m R. This integral is dependent on R, in-

creasing for small bag radii. As a result the sum of the
direct quark and pion-loop contributions is only rather
weakly depended on R, as can be seen in Fig. 1. For
r =1.0 fin, we have d„ i'= —1.14X 10 8 e cm. (If we
use the experimental value for g N&, we get—1.31X10 ' 8 e cm. ) The total dipole moment in this
model is d„=—2.83 X 10 ' 8 e cm.

Morgan and Miller [16]assumed a volume coupling for
the abnormal-parity piece, and took the value of g NN
from Crewther et al. [27], who used Eq. (29) and estimat-
ed the matrix element from the baryon-mass spectrum.
This gives a value extremely close to ours:

(30)
The most frequently quoted expression for the loop con-
tribution of the dipole moment is the leading term in a
chiral perturbation expansion [27]:

FIG. 1. The two contributions to the neutron electric dipole
moment in the cloudy-bag model as a function of R. The
dressed direct contribution includes corrections from diagrams
in which the photon couples to the quark current while a virtual
pion is in flight.

~g NN ~

=0.0278. Although the model of Ref. [16] is not
consistent with chiral symmetry, in practice it only differs
from ours in the form for the abnormal-parity coupling.
Thus the magnitude of d„"' they obtain is similar to
ours.

The corresponding expression given in Ref. [16] differs
from our Eq. (30) by an overall minus sign, leading to
cancellation between the tree and loop contributions to
d„. However this cannot be correct. The CP-violating
term in Eq. (18) (for positive 8) interferes constructively
with the normal term for r in the direction of the quark
spin, and destructively in the opposite direction. In a
spin-up neutron the down quarks have spin up on average
and so CP violation displaces them along the positive z
direction, while the up quark is moved in the opposite
direction. Hence the direct quark contribution to d„ is
negative. The pion-loop term is due to virtual negative
pions. These are emitted from the down quarks in the
neutron and so their source is displaced in the positive z
direction. Hence these also make a negative contribution
to d„.

III. COLOR-DIKLKCTRIC MODEL

The appearance of a direct quark contribution to d„ in
the cloudy-bag model can be directly related to the pres-
ence of two scalar terms in the Dirac equation: a current
quark mass term as well as the confining MIT boundary
condition (which is equivalent to an infinite scalar well).
These terms have different radial dependences and so if
CP violation induces a pseudoscalar part in either, it is
not possible to find an axial rotation which makes both
purely scalar. If such a rotation did not exist the direct
contribution to d„would vanish. Similarly in the
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baryon-level models of Ref. [9], an explicit symmetry-
breaking mass was necessary to generate a tree-level di-

pole moment.
Such explicit quark or baryon mass terms are required

within the framework of a nonlinear o. model. However
they violate the principle of partial conservation of the
axial-vector current (PCAC), which has proved phenome-
nologically very successful [28]. In particular the
Goldberger-Treiman relation is very well satisfied by the
most recent values for g„[29],g„zz [25], and f [30].
This leaves very little room for such PCAC-violating
terms. To model quark-mass effects in a manner con-
sistent with PCAC, one has to include scalar-meson de-

grees of freedom and work with models based on the
linear o model [31]. With a linear realization of chiral
symmetry, explicit symmetry breaking can be introduced
through terms in the meson sector which change the vac-
uum expectation values of the scalar fields. These in turn
change the effective masses of the fermions without any
need for explicit mass terms.

This can be seen by considering a two-flavor version in
which the relevant fields are the pions and a flavor singlet
o. subject to a "Mexican hat" potential:

V(o, g)= —,'A, (0 +P —v ) (34)

Without explicit symmetry breaking there is a "chiral cir-
cle" of degenerate minima, and the pions are massless.
The addition of the term —co. to the potential tips the
Mexican hat slightly, making the vacuum unique and giv-

ing the pions a mass. PCAC requires the vacuum expec-
tation value of cr to be f and c =f m . The parameters
A, and v can then be fixed in terms of the pion and o.

masses. In a model with, say, a nucleon doublet coupled
to the chiral fields,

g~~~N(o—+iy~r P)N, (35)

it would be possible to identify two components of the
nucleon mass: one, due to spontaneous symmetry break-

ing, of g v and another, due to explicit breaking (ultimate-

ly, to the quark mass terms in QCD), of g (f„—v). Thus

separate fermion mass terms are not required to model

the effects of chiral-symmetry breaking in the linear o.

model. An axial transformation of the meson fields will

rotate the spontaneous and explicit symmetry-breaking
contributions in the same way. Hence it is always possi-
ble to find a frame in which the fermion mass is real.
There is thus no direct term in d„, only a pion-loop term.
The abnormal-parity ~N coupling arises in a different

manner from the nonlinear case since there is no CP
violation in the quark wave functions. Instead it is due to
mixing between the pion and its scalar partner [not in-

cluded above, but essential in the linear rnode1 if the
U(1}„anomaly is to be incorporated].

As an example of a model of this type, we consider the
color-dielectric model [19]. In this quarks are confined
through a coupling of the form

where the matrix of meson fields is

8

U = g (g, +i/, )A,
' .

a=0

(Note that U is not a unitary matrix in this model. ) The
potential for the mesons V( U) is given by

V= Vo(U U) —3( —,')'~ y Re[e ' det(U)]

—
—,'Tr(CU+C U ) . (39)

Here

V = 'g ['Tr(UtU} —v ]

+ —,', a [3Tr(U UU U) —[Tr(U U)] I (40)

is a generalized Mexican hat which is U(3)XU(3) sym-
metric; the determinant term models the effects of the
anomaly as described above and determines the masses
and mixing angle of g and g'. Explicit chiral-symmetry
breaking is produced by terms linear in the neutral scalar
fields, with coefficients

C=diag(c„, c„,&2c, ) . (41)

SU(3) symmetry is broken if the strange explicit
symmetry-breaking parameter differs from the non-
strange one (&2c,&c„).

The constants in the mesonic potential (six in all) are
determined by fitting the charged-pion mass, the average
kaon mass, and charged pion and kaon decay constants
f„and f~, an unimportant mixing angle between the
neutral scalar mesons, and a best fit to the g and g'
masses. This is described in detail in Ref. [35]. In partic-
ular, PCAC gives

c„=f„m „, c, =&I/2(2fx. mx f„m )—

pectation value vanishes. The soliton solutions to this
model are discussed extensively elsewhere [20]. The
model can be made chirally symmetric by replacing the
mass in Eq. (36) by a coupling to the fields of a cr model
[32]. The pion fields in these solitons are sufficiently
weak that they can be treated perturbatively [33]as in the
cloudy-bag model.

A linear realization of SU(3)L XSU(3)„chiral symme-
try requires 18 rnesons —a singlet and an octet of scalars
(g ) and a similar set of pseudoscalars (P ) [34]. Only
the pseudoscalar octets are Goldstone bosons in the case
of exact chiral symmetry; the scalars are all heavy and
contribute little to the dynamics. The full three-flavor
model Lagrangian is [35,36]

8

iy"8„+ g (g, +i/, y5)A;
a=0

+-,'a~a~y —
—,'m,'y'+-,' Tr(a„U'e~U) —V(m),

(37)

mqq
vx (36)

and

o.„=f, g, =& I /2(2f~ f„)—(42)

to a scalar, chirally invariant field g, whose vacuum ex- where cr, and g„are the vacuum expectation values of
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Cn CsH=
2 2av0nmg™v

(45)

Under this rotation the Lagrangian is unchanged except
that

C~Cexp[i(epAp+esAs)], 8~H8 . (46)

The detailed form of the U(3) XU(3)-symmetric part of
the potential is irrelevant, provided the parameters have
been chosen to give the correct pion and kaon masses.
The quantity H plays the same role as did Eq. (11) in the
nonlinear case; in particular it vanishes if either of the ex-
plicit symmetry-breakinggarameters vanishes. In the
SU(3}-symmetry limit (&2c, =c„) the Ps has the same
mass as the pion, and there is no mixing between it and
the Pp; in that case H is simply m /m „as before.

In the SU(3)-symmetric limit, it is easy to calculate the
g~mm. amplitude with this chirally rotated Lagrangian.
Since the vacuum is CP invariant we can use the current-
algebra relation

3

&ol[gl [Ql [Ql»]]]lo&

2/3cpep
&ol[g,', [g,', [g', ,y, ]]]lo&

2

(1 H) 8, —
3 3f

(4'7}

which is the same as the prediction of the nonlinear mod-
el.

By rotating to the CP-invariant vacuum, we ensure
that there is no pseudoscalar potential in the mean-field
Dirac equation. We can therefore take the s-wave quark
wave function

q(r) = G(r)
(48)

along with the mean y field, found numerically by solving
the Euler-Lagrange equations of the color-dielectric mod-
el [20].

At first sight there is no abnormal-parity coupling be-

the combinations of scalar fields which couple to non-
strange and strange quarks respectively:

a =v'1/3(&2gp+gs), (=&1/3(gp —&2/s) . (43}

Choosing y'=1.635 fm ' gives g and g' masses of 537
and 958 MeV, which are close to the experimental ones,
but a mixing angle of —5. 1' which is rather small.

As before, strong CP violation is introduced by the

phase in the anomaly term and leads to a vacuum which

is not CP invariant. The rotation required to produce a
CP-invariant vacuum is similar to Eq. (9), but with rather
more complicated expressions for eo and E'8.

2c,g„—c„a„
&p —( 1 H)8,—es = 2 ep (44)

6 cs vcnav

where

tween the quarks and the pions in this model. However,
although the fields P; are CP eigenstates, they are not
mass eigenstates. After rotation to the CP-invariant vac-
uum, there is still a phase HO in the determinant term,
and this gives rise to mixing between each pion and its
scalar partner, g, Thus the mass eigenstate P',. can be
written as

a—f, , a=
Pt

g
PPl ~

(49)

where 6 is the vacuum expectation value of the second
derivative of the potential V with respect to t)}, and g, :

b =6&3yH@', . (50)

8n f f 3d GF
A~

6 —F
g„=4mg a f r dr

(52)

and their values are g ~z/2M~ =0.660/f and

g &z = —0.0208. The corresponding form factors are

f r dr(GF/y)(3j&(kr)/kr)
u(k)= f r dr(GF/y)

f r dr jp(kr)(G F)/y-
u(k) =

f r dr(G F)/y—
(53)

These can be inserted in the expression for d„"'",Eq. (30),
to get

—,'u(k)
+

COk

5e g„,'flu (k)—d„""=—,' " fk'dk u(k)~f COk

(54}

The combination 6&3yg„corresponds to a of the non-
linear model since both are half the difference between
the mass of the pion and the nonstrange q. Thus the
numerator is analogous to aHO and has the required
property of vanishing if either explicit symmetry-
breaking parameter or the anomaly vanishes.

The mass of the scalar pion is completely determined
in the model, independently of the neutral scaling mixing
angle: m& =1027 MeV. In the SU(3)-symmetric limit

l

aH =
—,
' m ( 1 H). Fo—r realistic symmetry breaking

a =16.5m and H =0.029, so aH =0.494m (1 H). —
We can see that aH/(m

&

—m „)plays the role of m /f
in the cloudy-bag model, and again it matters little if we
use two or three flavors.

We can now rewrite the quark-pion interaction term in
the color-dielectric Lagrangian in terms of the meson-
mass eigenstates as

R~ . S~q((+i y,P) 'rq = q[(1 i ay, )g'—
x ' x

+(iy~+a)P'] rq . (51)

As in the cloudy-bag model, we can express the pion-
nucleon Hamiltonian in the form of Eqs. (24) and (25).
The coupling constants are now given by



2AAA JUDITH A. McGOVERN AND MICHAEL C. BIRSE 45

where

f r dr [j &
(kr)/kr](G F—)/g

2)u(k) =
J r dr(G F—)/g

(55)

Provided the g mass is chosen to fit observed nucleon
properties, the dependence of the results on the coupling
constant g is very weak. For a typical choice
(P=0.028, where M&P =g f„) we get d„"' = —1.17
X10 ' 0 ecm.

IV. CONCLUSIONS

We have calculated the neutron electric dipole moment
in two widely used models for the quark structure of
baryons; the cloudy-bag and color-dielectric models.
Straightforward extensions can be made to these models
to describe strong CP violation. We have shown that the
versions of the models used correctly incorporate the axi-
al anomaly, and so the effects of CP violation satisfy the
requirements noted in Refs. [9—11]. All observable
effects of strong CP violation vanish if either the strength
of the U(1)„anomaly or any quark mass vanishes.

In order to work in the most convenient and physical
basis, we make an axial rotation to a CP-invariant vacu-
um. In models based on a nonlinear realization of chiral
symmetry, such as the cloudy-bag model (in which sym-
metry breaking is included via explicit quark mass terms),
this leads to a CP-violating term in the quark Lagrang-
ian, which is similar to that of Baluni [8], except for a
factor which vanishes in the absence of the anomaly.

This term leads to a direct quark contribution to d„(as
found by Morgan and Miller [16]apart from the anomaly

factor). We have shown that the quark contribution is

proportional to the neutron anomalous magnetic moment

and so has the same form as the tree-level contribution
calculated in baryonic models [9,15].

Explicit quark-mass terms violate the principle of
PCAC, which is phenomenologically very successful. We
have, therefore, looked at a model with a linear realiza-
tion of chiral symmetry, the color-dielectric model, in
which explicit chiral-symmetry breaking is included
through terms which change the vacuum expectation
values of the scalar fields. In such models there is no
direct or tree-level contribution to d„.

The CP-violating term in the Lagrangian also gives rise
to an abnormal-parity ~X coupling in both models and

hence to a pion-loop contribution to d„. The magnitude
of the loop term we get is similar to that of Morgan and
Miller [16] but has the opposite sign. Hence where both
are present, the quark and pion-loop terms reinforce.
The reason for this reinforcement can be seen from the
way in which strong CP violation admixes negative-
energy states into the quark wave function.

Neither of the models we consider leads to a cancella-
tion between two contributions to d„. Hence the limits
we can impose on 0 are as stringent as those from most
other estimates of d„. From the most recent experimen-
tal limit on the dipole moment, d„(1.2X10 e cm

[37], our calculation of d„ in the color-dielectric model

gives an upper bound of 6 ( 10 . This would be about
halved for the cloudy-bag model.
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