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Strong CP violation and the neutron electric dipole moment reexamined
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The relation between the CP-violating operator FF and its effective version L& is reconsidered on
the basis of the anomalous Ward-Takahashi (WT) identity. The consistency of the previous phenomeno-
logical calculations of the neutron electric dipole moment (NEDM) with the WT identity is critically ex-
amined. We demonstrate a consistent evaluation of the O(N?) contribution to the NEDM and the result
is compared with the leading term in the chiral expansion which is O(N,!).
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I. INTRODUCTION

The absence of the OFF term is one of the long-
standing problems in QCD, which has stimulated the
search for a rationale such as the Peccei-Quinn symmetry
[1] and its variations (see the review, Ref. [2]). Experi-
mentally, the most stringent bound on 6 comes from the
measurement of the neutron electric dipole moment [3]
(NEDM), which should vanish if there is no CP violation.
(For a recent review of the general electric dipole mo-
ments, see Ref. [4].) On the theoretical side, the precise
calculation of the NEDM is rather difficult since it re-
quires the nonperturbative evaluation of the nucleon ma-
trix element of FF. Instead of taking such a matrix ele-
ment, it has been proposed to replace FF by an effective
CP-violating operator L& written only by the quark
fields [5], which allows us to apply the current algebra
techniques and the effective Lagrangians of QCD at low
energies. So far, a number of papers have been published
based on this idea. (See the reviews in Refs. [2,6].) One
of the problems of these approaches is that it is not clear
whether the results and the approximations adopted are
consistent with the anomalous Ward-Takahashi (WT)
identity. Actually, some of the previous calculations
break the constraint from the WT identity as we will
show.

The purpose of this paper is to clarify the above issue
in view of a general principle and also to point out the ex-
istence of a consistent tree-level contribution to the
NEDM [7]. First, on the basis of the WT identity, we
generalize and develop the argument by Aoki, Gocksch,
Manohar, and Sharpe [8], where the danger in the naive
use of L& instead of FF is pointed out. The analysis is
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useful to clarify problematic points in previous calcula-
tions of the NEDM. Then, in Sec. III, we reanalyze the
NEDM based on an effective Lagrangian that is con-
sistent with the WT identity. A contribution, which is
leading in the large-N, expansion (but not leading in the
chiral perturbation), is estimated and compared to the
term in the opposite limit (i.e., the term which is leading
near the chiral limit but subleading in large N,.). Section
IV is devoted to the summary and concluding remarks.

II. ANOMALOUS WT IDENTITY

We first assume the following anomalous WT identity
for QCD without a 6 term:
°)

(

2
P (x)—2m iy sY(x)—N; L FI7F 2 (x)

1672
+(8,0)=0, (2.1)
where J Z is the (flavor-singlet) axial-vector current, m is

the quark mass [9], g is the QCD coupling constant, N is
the number of flavors, F,,, = 1le,,,gF with €),;=1, and
6, is the (infinitesimal) variation under the local chiral ro-
tation at site x, @ is an arbitrary operator, and (-)
denotes the average over all the configuration of quarks
and gluons [10]. If one recalls the derivation of the axial
anomaly [11], it is easy to see that the above WT identity
indeed implies the following two independent equations
when O contains the quark operators:

([T (x)—2m Piy s(x)]O)

2
J— g v a
= FMF o), @2
N, 16772< F 4 (x)0) (2.2)
([, (x)—2m iy sp(x)]O) (o= —(5,0) , (2.3)

where we have decomposed Eq. (2.1) into the disconnect-
ed and connected pieces following Aoki, Gocksch,
Manohar, and Sharpe [8]; { 4 Q)4 denotes the insertion
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of A into the quark loop, and { 40 ), denotes the inser-
tion of A4 into the operator @. The well-known triangle
diagram, which produces the axial anomaly, is a former
example. In other words, Eq. (2.2) means that if we con-
nect the fermion and antifermion operators in A4 to create
the fermion loop, the sum of 8“]2 and 2mdiysy pro-
duces the anomaly at the lowest order (gz), and the radi-
ative corrections to these diagrams are always canceled
between 3J) and 2muiysy (Adler-Bardeen theorem
(12]). Equation (2.3) says that the sum of the insertions of
oHJ Z and 2m iy sy into the fermion line starting from or
ending at the operator @ is always equal to the local
chiral variation of the operator O.

Now we consider the space-time integration of the
anomalous WT identity Egs. (2.2-2.3). Since there are
no massless particles that couple to the axial-vector
current J Z as long as m¥0, we can safely use integration

|
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by parts:
[ @4 (#T3(x)0) 4= [ d*x (3V3(x)0) (=0 . (2.4)
Thus we obtain
[ d*x 2m iy p(x)0) 4= —2N,(QO) , (2.5
[ d*x 2m (Giy p(x)0) o= [d*x(8,0),  (2.6)
where the topological charge Q is defined as
0= 822 [a*x FF o (x)= [d*x q(x) . @7

327

Equation (2.5) implies that the disconnected insertion of
J d*x miy sy is identical to the insertion of —N Q.

One can use the above relations to evaluate the effect of
small 6 on the physical quantities:

(00>=<@exp(—i6Q)>:(@)—i0<Q0)=<(o>+ieNifd“x(@'ystp(x)(o)dis
F

2<(0 exp > 2<(9 exp
dis

ie—l’g”; [ Biysv

Equation (2.8) represents the precise meaning of the usual
statement that the effect of —i0Q can be replaced by the
complex fermion mass term. (Note that one can prove
this equivalence even if 0 is not infinitesimal.) However
one should remark that the connected insertion of
[ d*x 2m iy sf(x) has nothing to do with the 6 term as
Eq. (2.6) tells us; this produces only the chiral variation
of the external fermions in the operator @. This chiral
rotation cannot produce any physical effect as the
equivalence theorem [13] tells us (we show it explicitly in
the last part of this section), which means that the con-
nected insertions are essentially zero for the physical pro-
cess once the on-shell conditions are imposed on the
external lines. Note that our argument here using the
anomalous WT identity is applicable only to the first-
order effect of 6. The advantage to assuming small 6
(which is actually true in the real world) is that one can
treat the 6 term by the first-order perturbation theory
and not have to worry about the change of the hadron
propagators in the 8 vacuum. For general 6, one has to
calculate the two-point functions, e.g., the 6 dependence
of the nucleon propagator to extract the neutron electric
dipole moments [8].

It will be useful here for the phenomenological evalua-
tion of the NEDM to comment on the possible source of
the violation of the above constraint. If the connected in-
sertion of [d*x 2myiysi(x) is considered and the finite
results are obtained for the NEDM, one can imagine
several possible origins of such a fake result. (i) On the
lattice, the violation of the WT identity by the finite lat-
tice spacing may cause the fake result [14,8]. (ii) If the
chiral-noninvariant intermediate states were used to cal-

i e

(2.8)

dis

f

culate the NEDM, it would break the equality (2.6), and
a nonzero result would be obtained. In fact, there always
exist contributions from the other intermediate states
which ensure the chiral invariance and tend to cancel the
fake contribution. (Note that the identity operator
1=3,In){n| is chiral invariant.) (iii) If the correct
one-shell condition for the nucleon is not imposed (which
often occurs when one uses the extended models of the
nucleon that do not have an exact covariance), a fake
contribution remains since the right-hand side (RHS) of
Eq. (2.6) does not vanish.

Here let us briefly see what happens when one takes
the chiral limit (m —0). We are not allowed to take the
limit separately in Egs. (2.5) and (2.6) since each matrix
element can have a massless pole, while it does not ap-
pear in the sum [15]

[ d*x 2m iy s¥y(x)0) =—2N,(QO)

+ [d*%(5,0) . (9

By taking the chiral limit in this formula, one gets

2N (QO)Y= [d*x(8,0) , (2.10)

which is a well-known relation telling us that the effect of
the 0 term is equivalent to the chiral rotation with the an-
gle —6/2N; in the chiral limit. However, it does not im-
ply that there is no effect of 6 in the matrix elements. In
fact, off-shell matrix elements may be nonzero for the
chiral noninvariant operators, e.g.,
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(Piysp9)) o= [ d*x (8, (Piyspiy)))
=—2((y))#0 .

Of course, as we mentioned and will show soon, the on-
shell quantities for f d*x 8,0 are always zero, which im-
plies that one cannot observe the physical effect of 6 in
the chiral limit. This gives a constraint on the structures
of the low-energy effective theory of QCD; the terms in-
duced by the U ,(1) anomaly of QCD should satisfy, e.g.,
(2.10), which is violated in some previous calculations of
the NEDM (e.g., Ref. [16]). We will return to this point
in Sec. III.

Now we give a brief proof of the vanishing of 8@ for
on-shell physical quantities as we promised [17]. [We
have defined 8= [d*x 5, as the U(1) global chiral rota-

tion.] Let us consider the following general operator:

] m n
O=11B IIFIIF

i=1  j=1 k=1

(2.11)

(2.12)

where B; is a bosonic composite operator made of quarks,
which produces a physical meson with mass M;, and
F; (F ;) is a fermionic composite operator made of
quarks, which produces a physical fermion (antifermion)
with mass m; [18]. For example, B;=¢ys¢ or ¢,
F;=1yp and F =9y [19].

The on- shell amplitude S (@) is proportional to the
pole residue T (@), which is obtained from (@) by cut-
ting the external legs and multiplying the external wave
functions with proper on-shell conditions according to
the reduction formula.

Now we will prove that S (8@)=0 holds provided that
the external momenta satisfy the same on-shell conditions
as those of S(©®). From Egq. (2.12),

80=73 SB,-@Bi+ > 8Fj@Fj+ > SFk(DFk , (2.13)

i j k

where O, is defined as O= A0 , with A =B, F;, or F,.
The U ,(1) chiral rotation among the fields B;, F;, and F,
can be written using the c-number matrices C D, and
D': SB 2 #ICUB_/’ SF YSDu 1+219&1D11F]’
8F,=D/Fys+3 j=iDi;jF;. The nonzero off-diagonal ma-
trix elements of C, D, and D' mean the presence of the
chiral multiplet. The explicit construction of these
operators for the nucleon can be seen in Ref. [20].

To prove S (0)=0, it is enough to prove S(6§ 40 ,)=0
for an arbitrary 4 =B,;, F;, or F. If the chiral symme-
try is not broken, S(8A40 ,) vanishes trivially since
(O(A4))={(O(A+86A)). If the chiral symmetry is (ex-
plicitly or spontaneously) broken, the masses of the parti-
cles in the chiral multiplet become different, i.e., M;#M;
and m;#m; for i#j [21]. On the other hand, the
infinitesimal chiral rotation turns the original operator
into the one creating a particle with different mass or into
the same particle with extra ys. Therefore it is easy to
see that the on-shell condition for the original particle
kills the matrix element S (80), e.g.,

¢, =M 15 0, )=
B ’
12?&] ij P Mj B;

S(8B,05)~ (2.14)
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for the boson operators. (The same thing holds for fer-
mions if one notes {ys,7,}=0.)

Thus, S(6 40 ,)=0 for all A4 irrespective of the reali-
zation of the chiral symmetry, which completes the
proof. As we mentioned before, the assumption of small
6 makes it possible to use the on-shell conditions at 6=0
in the proof.

III. NEUTRON ELECTRIC DIPOLE MOMENT

The measurement of the neutron electric dipole mo-
ment (NEDM) gives the most stringent bound on the 6
parameter at present. To extract a bound on 6 from ex-
periment, we need to calculate the following matrix ele-
ment in a reliable way:

i [d* (n(p")|T[J,(0Lcp(x)]ln (p))

=-—D,u(p")o,ysk*u(p), (3.1)

where Lqp(x)=—0q(x) with g (x) being the topological
charge density. (We have already used the first-order
perturbation for 6.) Various authors have calculated the
LHS of Eq. (3.1) using the low-energy effective theories of
QCD (see the review, Ref. [2]) or the numerical simula-
tion on the lattice [14]. As discussed in Sec. II, however,
one should keep in mind that only the disconnected part
has to be taken into account in the calculation when one
uses the effective operator L& in place of —6g.

In the following, we give a direct estimate of the LHS
of Eq. (3.1), i.e., the matrix element of —60Q using an
effective meson-baryon Lagrangian. We will first calcu-
late D, in the two-flavor case to show the essential
points. Then we examine the three-flavor case and show
that there exists a tree-level O (N?) contribution to the
NEDM which has not been addressed so far. Essential
constraints from the WT identity discussed in Sec. II are
(i) the vanishing of the matrix element in the chiral limit
and/or in the absence of the axial anomaly [22] and (ii)
the independence of the result under the change of vari-
ables.

The meson part of the low-energy effective action in-
spired by the large-N, QCD reads [23]

f2 2
LM(U,0)=T”Tr(a“Ua#UT)+ —4—"Tr(MU +MmTut)

+éq(x)Tr(an—anT)

+-a—}—q2(x)—9q(x)

m

(3.2)

where f,=93 MeV, M is the explicit chiral-symmetry
breaking [M =diag(m2,m2) for flavor SU(2) and
M =diag(m%,m%,2m2 —m?) for SU(3)], a is a constant
that controls the strength of anomaly, and U is a chiral
field defined by

U =expli¢®r°/f ) ,

with A% (@ =0~ N ) being the flavor matrices normalized
as Tr(k“lb)—ZSab Ly has UL (N;)®Ug (N;) invariance
except for the explicit mass terms in the large-N, limit.

(3.3)
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The breaking of the U (1) symmetry due to the anoma-
ly, which occurs in the next leading order of the large-N,
expansion, is summarized in the third term of Eq. (3.2)
representing the mixing of FF with ¢°. In the N r=2 case
(¢123=7123 ¢0=n), the equation of motion at the tree
level [24] ylelds the partially conserved U(1) current
(PCU,C) relation [25]

q(x)=af _n(x) (3.4)
and the parameter a is written as
- 2
a—%(m%—m,,) , (3.5)

which is O(1/N,) and vanishes in the absence of anoma-
ly.

Before considering the baryon sector, we will examine
an implication of the anomalous WT identity in this
effective action. By changing the variables as
n—n—f,0/2, we can eliminate —fq (x) in (3.2) and get
0 f :
L, (Ue 172 0)= r(3*U3,U")

f2 —i6A%/2 T io00277t
+="Tr(MUe " +M'e' U

4

—l—éq(x)Tr(an—anT)

1
+a~fzq2(x) , (3.6)
where 6 appears only in the explicit symmetry-breaking
term corresponding to the operator m e _1975/21/1 in the
quark level. Both effective actions .L ( Ue ~162°/ 2,0) and
L 34(U,0) should give the same result since the charge of
variables does not affect the physical quantities [13].
Therefore we can conclude immediately that the CP
violation in the physical quantities should vanish in the
absence of anomaly (2 =0) and/or in the chiral limit
(m%=0).

Let us demonstrate this explicitly in the case of the
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of —Oq(x)=—0f_an(x),

—i6f a [ d* (qlg(x)|an7) 3.7)

at the tree level, while from (3.6), we obtain

S
19—2—m,2,fd4x (nln(x)

lmt7™)

—(qglyrte ()7t ) (3.8)

fZ

Since, at the tree level,
2

m

d*x{nlylrtr )=—"-

f nln Fim?

and
fd4x(17|771r+7r—|7r+7r_ y=1,

both (3.7) and (3.8) give the same result

(3.9

which has the correct property mentioned above. If one
takes the approximation m,/m, <<1, which may be re-
garded as the large-anomaly limit (¢ — o) or the chiral
perturbation for m, (but not for m,), (3.9) reduces to
iOm2 /2f _ being consxstent with the result of Ref. [26].
Therefore, the formula (3.9) has the correct behavior both
fora—0and a— .

If there exists a small isospin-breaking term,

fZ

T”sm TeAU+UD),
it causes the mixing between 1 and the neutral pion (7).
Then the matrix element is modified as

—iff . a fd4x(cos¢(7]|1/|7r+7r‘)

—sing{n|7°l7 7)) (3.10)

n—2m decay. From (3.3) and (3.4), the matrix element
for this process is given by the zero-momentum insertion  where
J
m2—m?2)2sin’¢+m%(1+2cos’d)+6m*sin2¢

fd4x(17|17|1r+7r_)= (

3fim?

and

(m%—m2)sin2¢ —mZsin2¢ +8m cos2¢

fd“x(nln-ol‘rrﬂr*): fim? ,

Here m_ is the charged-pion mass and the mixing
angle ¢ satisfies tan2¢=8m2/a with mi=m2+a
+Va*+(6m?? and m2,=m’+a —Va2+(8m )2
[Therefore the quantity a is expressed in terms of the
meson masses: d =(mf,+mfro —2m2)/2.] It is also easy
to check that both (3.2) and (3.6) give the same result.

The baryon sector in N,=2 is written in terms of the
baryon field transforming as a fundamental representa-
tion of SU(2):

L4(B,U)=B(iy-d—aUl)B —yBMB

+Buo, UIB(d"4") . (3.11)
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Here the first term is manifestly chiral invariant since
Us=-expliys¢®A°/f,) with A°=(1,A); the second term
breaks U(2) in the same way with the meson sector, and
the last term denotes the phenomenological (anomalous)
magnetic moment of the baryon with u being a 2 X2 ma-
trix and 4, being the photon field. A few comments are
in order. First, we have constructed this effective action
to make Lz U 4(1) invariant. [See U § in the last term. It
can be U §=exp( —iys¢®A%/f.), but the difference does
not matter in the tree-level calculation of the NEDM.]
This is because the electromagnetism does not break
U 4(1) although it breaks SU(2). [In principle, one can
add terms that break U ,(1) but vanish in the chiral limit.
Here we have neglected these terms to make the argu-
ment simple. For the realistic SU,(3) case, see the later
discussion.] Second, we did not introduce the usual vec-
tor coupling A4 ”[l?y”()»3+ 1)B]/2 since it does not con-
tribute to the NEDM at the tree level because of its vec-
tor nature.

Let us evaluate the matrix element (3.1) in two different
ways that will clarify how the general discussion in Sec.
I1 is realized and also what is wrong in some of the previ-
ous calculations (in particular Ref. [16]). Here we use
(3.2) as an effective action for mesons. If we expand Lg
up to the first order of the meson fields, we get

Ly=Bliy-d—my)B +Bupo, B(d” A*)+g Biy ;A°B¢*
—Bpuo,,ivsA°B(¢°/f (3" 4H) , (3.12)

where g, =a/f, and my=a-+ym? are the pion-nucleon
coupling constants and the physical nucleon mass, re-
spectively. Another form of .L; is obtained by defining
the chiral-invariant nucleon N = \/—CTSFB:

LYU=N(iy-d—my)N +1V(\/F£iy#a"\/ff_5 )N

—8,NA%ysN¢*+Nuo, N(@*4*) , (3.13)
where g, =ym?2/f,. One should note that this change
of variables does not alter the final result [13]. If one uses
(3.12) (case I), we have a pseudoscalar (PS) nucleon-
meson coupling and an additional contact photon-
meson-baryon coupling. On the other hand, in (3.13)
(case II), we have a PS-coupling from the explicit symme-
try breaking and a pseudovector (PV) coupling from the
invariant term.

Our CP-violating operator L.p = —0q is written by the
gluon field carrying zero momentum. Therefore the PV
coupling does not contribute at the tree level and only
two diagrams shown in Fig. 1 are relevant in case II. The
explicit evaluation of them gives

D,=8af )= gou, .
msy my

(3.14)

The meaning of each term in D, is self-evident. af,
denotes the coupling strength of g (x) to the physical 5
meson. Rewriting it by the physical quantities, we obtain

2
T

m—%m )

m2—mXm
p,=g—1 "~ (3.15)

2
2mjy;
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X

Photon

i
! Meson
i

FIG. 1. The tree-level contributions to the NEDM in the
effective Lagrangian in case II. There is no contact photon-
meson-nucleon coupling in this case.

where we have defined a dimensionless number 7 =ymy
characterizing the strength of the explicit symmetry
breaking. Equation (3.15) shows that D, vanishes in the
absence of anomaly (m,—m ) and/or in the chiral limit
(m,—0), which is consistent with our constraint. The
former aspect ensures that we correctly took into account
only the disconnected piece, and the latter is related to
the fact (80)|,, qen=0. One should note that if one
adopts the first order of the chiral perturbation for m . or
takes a—, a disappears from the formula:
D,—08(m2/2m})yu,.

Let us now examine the large-N, behavior of our D, in
(3.15). my and u, are known to be O (N,) quantities as
the quark model tells us [27]. ¥ is also O(N,), since it is
proportional to the 7-N o term. Therefore, together with
the fact that mf,—mfr=0(Nc_l), we conclude that our
D, is an O(N?) quantity. (Here one should not confuse
the artificial limit @ —O0 with the large-N, limit.)

If we perform the same calculation using £} we have
three diagrams at the tree level (Fig. 2). The sum of the
first two gives

1 1 a

1
Dr}2= —o(af‘rr)—_—gs n= —ba—
mf, my # m%, famy

M s

(3.16)

which does not vanish in the chiral limit. In other words,
if one were not to make Ly U ,(1) invariant, a wrong re-
sult is achieved. The remedy comes from the third term
related to the U 4(1)-invariant magnetic moment which
gives
3 1
D,=6a—p, . (3.17)
may

This term cancels a part of D,}? and recovers the desired
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FIG. 2. The tree-level contributions to the NEDM in the
effective Lagrangian in case I. There is a contact photon-
meson-nucleon coupling from the U ,(1)-invariant magnetic
moment of the neutron.

result, Eq. (3.15).

Since it now becomes clear how to perform a consistent
evaluation of the NEDM by the above exercise, let us
give a diagnosis of the previous calculations. They are
classified in two categories: (i) the direct evaluation of
—6Q using the effective Lagrangians with an explicit
gluon field [28,29] or with the instanton-induced vertex
[30], and (ii) calculations using L& ~6@m iy sy in place
of —00 [5,16,31-35].

In the former approach, there arises no contradiction
to the general principle since only the disconnected part
is treated from the beginning. In Ref. [28], the photopro-
duction of 7' off the nucleon is adopted to estimate
D,~{n|J,FF|n). In Ref. [29], the pion-loop contribu-
tion, which is a dominant term in the chiral limit because
of the factor In(m? /m?), is adopted following Ref. [32].
In Ref. [30], the instanton-induced ’t Hooft—type vertex
[36] is used to calculate the NEDM in the N, =2 case.

In approach (ii), one has to make sure that the direct
insertion defined in Sec. II is properly eliminated. For
example, direct insertion of L&Y to the quark field gives a
finite result on the lattice [14], which is an artifact due to
the violation of the WT identity by the finite lattice spac-
ing [8].

In the bag model, the nonzero result of the NEDM is
obtained by the insertion of L, into the valence quarks
in the lowest order of the bagged perturbation theory
[5,31]. If one assumes that the valence quark in the bag
model is the same with the current quark in the QCD La-
grangian, the contribution to the NEDM in the above
calculation should vanish. Hence, the claim of the
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nonzero result should be fake either due to the use of the
chiral-noninvariant intermediate states or the inappropri-
ate on-shell condition for the nucleon. If the valence
quark is a much more complicated object than the
current quark, there is no systematic way to single out
only the disconnected pieces to calculate the matrix ele-
ment of LY. Therefore, the result of the bag model is
not reliable also in this case because of the uncontrollable
contamination of the connected piece.

In Ref. [16] it is claimed that a rather large |D,| is ob-
tained at the tree level. However, the result has serious
drawbacks. First, the contamination from direct inser-
tion 1is unavoidable since the matrix element
(0|giysq|n’), which has both a connected and a discon-
nected piece, is evaluated (note that 7’ has both quark
and gluon contents due to the axial anomaly). Second,
the U ,(1)-noninvariant magnetic moment of the neutron
is introduced, which gives an erroneous result being non-
vanishing in the absence of anomaly as we already
remarked in Eq. (3.16). Once one introduces the U ,(1)-
invariant magnetic moment in this approach and uses the
7' — N coupling from the quark model, the NEDM van-
ishes due to the contact photon-7’-nucleon coupling [37].

In Ref. [32], current algebra and chiral perturbation
theory are used to evaluate the CP-violating pion-nucleon
coupling g,y induced by L&, which gives rise to a
NEDM from the one-pion loop. At first look, the result
does not seem to vanish when m, —m.,. However, if
one treats the CP-violating pion-nucleon coupling g _»
more carefully, one finds that the factor a /(1+a TrM ~!)
should be multiplied when a is finite. The factor reduces
to 1 in the limit m /m, <<1 but vanishes in the limit
a—0. (See the derivation of D, in Ref. [29].) Therefore,
keeping in mind this correction (numerically, however,
this is a minor correction), the result is acceptable. One
remaining question, although it has nothing to do with
the consistency of the WT identity, is whether this lead-
ing term near the chiral limit is really a main term in the
real world where m =140 MeV. This point was proper-
ly addressed by Cea and Nardulli [16] and we will come
to this point later. g,y is also calculated by using the
chiral quark model [33], the chiral bag model [34,31], and
the Skyrme model [35] which are essentially the variants
of Ref. [32].

It is instructive to consider more about the relation be-
tween the approaches (i) and (ii) within our effective La-
grangian. In approach (i) we have to use the total action

L, (U,0)+Ly(B,U), (3.18)

while in approach (ii) there are several choices for L
with the mesonic part given by (3.6). The most naive
choice is

L (Ue ~10%°/2 0)+ £ ,(B, Ue ~10"/2) | (3.19)
where
i6y A0 =
L (B, Ue %) =B(iy-3—aUle'"" *\B—yBMB

+ i6ysA0/2

+Buo,,Use B(3"4*) . (3.20)
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At the quark level, this choice is rather strange since the
quarks in the baryon are unchanged while the quarks in
the meson are transformed under the U ,(1) rotation.
Furthermore, the CP-violating effect appears in several
places: the complex baryon mass, the CP-violating
baryon-meson interaction, the explicit electric dipole mo-
ment of the baryon, and so on. Each term does not have
a definite physical meaning; only the sum of all effects has
physical relevance. A more reasonable and simpler
choice is

—igysA0/4

LB(e B, Ue—iGAO/Z)

_ — _ipya
=B(iy-d—aUl})B—yBMe MENE

+Bpo, UIB(3"4%),

B
(3.21)

where the CP-violating term appears only in the explicit
symmetry-breaking term. Another choice adopted in
Ref. [29] is a little complicated:

. ic 0 .
Ly (Ue =8 0)4 £ (e 5" B, ye —16) | (3.22)

where b=a/m2=(m2—m2)/(2m2) and c¢=—2ba/
my. This is chosen so that the 7° term is absent in .L,,,

and the baryon mass is v free. (Here we consider the
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N;=2 case for simplicity, although N,=3 in Refs.
[29,32].) In this choice of variables, the CP-violating cou-
pling BA°B7° appears from the original CP-preserving
interaction =~ BA°B7w°y by  the  replacement
n—n—(2b+c)0f,./2, and this factor becomes
ym2f./(2my) (b=1) in the large-a limit. The CP-
violating interaction in this limit was used to calculate
the NEDM [29,32].

We come to the point of evaluating a contribution to
the NEDM which survives even in the large-N, limit or
equivalently in the tree level of hadron fields in the realis-
tic Ny =3 case. As we have already demonstrated in the
N f=2 case, the U ,(1)-invariant magnetic moment is an
essential ingredient. Equation (3.2) is our meson La-
grangian with

g(x)=()"2af n° a=Lmi+ml—2mg;),
and (3.23)
M =diag(m2,m?%,2m}t—m?),

where we have neglected the small isospin breaking. We
introduce the baryon field by B =1(1+y;5)Bg
+1(1—v5)B,, where B, and By transform as (3,3*) and
(3*,3) representation of the U (3)® Uy (3) flavor, respec-
tively. Then L is written as

Ly =Tr(Biy-3B)—a Tr(B, UBg U+H.c.)+[8 Tr(B, UBxM)+8'Tr(B, UBx UMU)+H.c.]
+[y Te(B,MBRU)+y'Tr(B, UMUBL U)+H.c. | +e Te(MU + MU\ Tr(B, UB U + B U'B, U")

+€Tr(MU —MU)Tr(B, UBR U —BR U'B, U")+ (magnetic moment) .

The 8, v, €, &', ¥’, and €' terms denote the U(3) breaking.
The last term denotes the magnetic moment of the octet
baryons, which contains U 4(1) invariant parts and also
terms of O (M). Note that our a, 8, and ¥ correspond to
f./V'2 times a, 8, and ¥ in Ref. [29]. A more general
form of the U;(3)® Ug(3)-invariant part of the effective
Lagrangian has D and F terms for the PV coupling [38].
In our case, however, such details are irrelevant since PV
couplings do not contribute. On the other hand, in the
approaches calculating the one-loop diagram, PV cou-
plings are important to get the observed gy at the tree
level, i.e., the Goldberger-Treiman relation g, y=(F
+D)my /f,.

To evaluate the NEDM, it is convenient to define the

chiral-invariant nucleon field by
B, =VUN,VU and By=VUN,VU . (325

Using this, expanding U up to the first order of the meson
field, and retaining only the part relevant for the neutron
(n), we get

Lp—aliy-0—my)n +(PV coupling)
—(n'g,y +ng,)Aiysn+up,io,n(d" 4*)

+[O (M) magnetic moment] , (3.26)

(3.24)

f
with

gﬂ,=?1—[\/§A(2m,2(—mf,)cos(¢+¢o)

+T'm2sin(¢+4,)] ,

) B 3.27)
g,7=f—[—\/2A(2m,2<—m,2,)sin(¢+¢0)

ka

+T'm2cos(¢+¢y)],

where A=8—8'—2¢'and '=y —y’'—4¢€' and
my=a—2e(2m}+m?2)
—(6+8")2mE —m2)—(y+y )m?,

U, is the neutron magnetic moment, and we have used a
relation between the flavor eigenstates (7° and %) and the
mass eigenstates (1 and 7’ ):

n°=mn'cos¢ —nsing ,

n=mncos¢+7'sing ,
with the empirical mixing angle [39] ¢=—11°~—20°

and ¢,=54.73° (tang,=V'2). Owing to the fact that we
introduce the magnetic moment as an U 4(1)-invariant

(3.28)
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form, the contact photon-n°-neutron coupling does not
arise in the choice of the variables here (as in case II in
our previous example).

Here several comments are in order. (i) The term pro-
portional to € in (3.24) is irrelevant in our calculation
since it does not produce Yukawa coupling. (ii) The
U 4(1) breaking due to anomaly is solely governed by the
FF-7° mixing in L, since we have used the effective ac-
tion motivated by the large-N, QCD. Therefore, the PS
coupling of 1° with neutron in Eq. (3.26) takes the value
in the large-N, limit. (iii) As already mentioned in the
N;=2 case, one has in general magnetic moments of
baryons which break U ,(1) invariance by the quark
masses, such as Tr(Ea,“,MB)a"A”. One can determine
some of such terms by the observed magnetic moments of
the octet baryons. The detailed examination of this effect
will be given in a separate publication [40]. (iv) To deter-
mine the parameters in Eq. (3.24), one needs information
of not only the mass splitting and magnetic moments of
octet baryons but also the 7-N and K-N scattering length
and other observables. Recently Pich and de Rafael
wrote down most general terms that can contribute to the
NEDM in the tree level [7], which is an extension of our
previous paper in Ref. [7]. The six parameters
(cg,€15€5,b0,b,b,) in their paper correspond to a com-
bination of the six parameters (5,7,€,8',7’,€') in our Eq.
(3.24). The parameters 8, in their paper correspond to
the chiral-invariant and -noninvariant magnetic-moment
terms discussed in (iii) above.

If one uses PCU,C, the problem is now reduced to
evaluating the matrix element

—ibaf,) [ d*x (n(p")|T[7'(x)coss
—n(x)sing1J,,(0)|n (p)) ,
(3.29)

which is given by diagrams similar to those in Fig. 1. To
get a rough estimate of the NEDM, let us take only the

chiral-invariant magnetic moment. Then, after a
straightforward calculation, one gets
mf71+mf,—2m,2( 3 172 fa
D,=6 =
3 2 mN
8y 8y .
X —iz-cos¢— —1’2$1n¢ Hy s (3.30)
my, mjy,

which is proportional to a and vanishes in the chiral limit
since g, is proportional to the current masses. Note
that the values of g,.,, will be effectively modified if one
takes into account the magnetic moment with explicit
U ,(1) breaking due to M. Note also that our D, is an
O (N?) contribution, while D, due to the pion loop is
O(1/N_). The latter can easily be seen if one remembers
that the pion-nucleon PS coupling g,y is O(N2/?)
and the parity-violating pion-nucleon coupling g,y is
O(N;/%?) due to the multiplicative factor
a/(14+a TrM ~') which we mentioned before.

If we set 8 =y'=¢€"=0 and determine (5,y,€) by the
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baryon mass splitting as was done in Ref. [29], we get an
estimate for the tree-level contribution:

D,=—7.2X10"1 gecm for ¢=—11°

=—3.9X10"1 ge cm for ¢=—20°, (3.31)

which is different in sign [41] and comparable in magni-
tude with the one-loop result (+3.6X10'%9 e cm) in Ref.
[29]. This result suggests that one cannot neglect either
of the following two contributions: one is a leading term
in the large-N, limit having a structure N°M like our D,
and another is the leading term in the chiral expansion
having the structure N, 'M InM. However, a complete
calculation taking into account all the parameters in the
tree level will be necessary to draw a definite conclusion
[42].

Here we should mention briefly a similar calculation
for the CP-violating condensation parameter or the topo-
logical susceptibility X which is defined by

0K =(—q(x)) =0 [d*y(Tq(x)q()) . (3.32)

If the disconnected part is properly treated in the calcula-
tion, K has to be proportional to both a and the current
quark mass. The evaluation using the current algebra
and the chiral perturbation, however, gives only the latter
dependence, as can be seen in Ref. [26]. Although K is an
off-shell quantity, (3.2) and (3.6) give the same result,
since q is a purely gluonic operator being chiral invariant:

2 2 )
K=i;la 1-2q |95 SiNG || (3.33)
m"l m1r0

in N,=2. Here we took into account the isospin viola-
tion. In the large-a or small current quark mass limit,
(3.33) reduces to the result of Ref. [26]:

f2
=Tﬁm,2,. .

As can be seen in the above examples, once one adopts
the lowest order of the chiral perturbation, one always
misses the explicit factor a. The reason is easy to under-
stand. Schematically every tree amplitude is proportion-
al to the combination

K (3.34)

Ni—, (3.35)
f m §

in the flavor-symmetric case with mg being the mass of

the flavor-singlet pseudoscalar meson. However, Eq.

(3.35) reduces to unity in the chiral limit.

IV. CONCLUSION

In this paper we have extensively examined the con-
sistency of the calculation for the low-energy matrix ele-
ment of OFF.

The anomalous WT identity tells us that the insertion
of OFF in the hadronic process is related to the discon-
nected insertion of Lé‘f,, while the connected insertion of
L&Y is merely the change of variables 8@, which vanishes
for the on-shell amplitude.
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This simple observation gives a constraint on the use of
the effective theory to calculate the NEDM and also
makes it possible to diagnose the previous calculations.
In fact, one cannot construct effective theories without
U ,(1) invariance in the chiral limit. This also implies all
the CP-violating matrix elements have to be proportional
to the current quark masses and the strength of the
anomaly. We pointed out, in Sec. III, the problematic
points of the previous calculations of the NEDM. Then
we gave a new calculation of the NEDM that is con-
sistent with the general constraints above and does not
vanish in the large-N, limit. The explicit inclusion of the
U 4(1)-invariant magnetic moment of the neutron is the
essential ingredient of the calculation.

Finally we should mention that it is desirable to calcu-
late the NEDM from first principle. One possibility is a
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lattice QCD calculation, although there are several prob-
lems to be overcome, as the recent analysis shows [8].
Another interesting problem related to the operator FF is
the spin content of the nucleon [43], where the nucleon
matrix element of FF plays a crucial role [44]. Extensive
studies using the effective Lagrangians and the lattice
QCD consistent with the WT identity are also called for
on this problem.
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