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Symmetric Cabibbo-Kobayashi-Maskavra matrix and quark mass matrices
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In this article we aim to find the constraints on the quark mass matrices for the symmetric
Cabibbo-Kobayashi-Maskawa (CKM) matrix V. We work in the bases, where (i) M is diagonal,

(ii) Mq is diagonal, and (iii) Mq = f(M„'), l.e. , U = D'P, where U and D are matrices that
diagonalize the up- and down-quark mass matrices, respectively, and P is the phase matrix. We

And that none of the moduli of the oR'-diagonal elements of these interesting forms of the quark
mass matrices M„and Mp, which lead to the symmetric CKM matrix, are consistent with zero
for these Ansatze, which means that such forms for mass matrices are diKcult to obtain from any

symmetry. We then give the symmetry constraint for V written in terms of the mass eigenvalues in
a basis-independent form.

PACS number(s): 12.15.Ff

I. INTRODUCTION

The importance of studying mass matrices lies in the
fact that the structure of quark and lepton mass matri-
ces determines the flavor dynamics of the standard elec-
troweak theory. However, the elements of these matrices
cannot be predicted within the standard model as quark
and lepton masses are free parameters within the model.
Furthermore, there exists an infinite number of mass ma-
trices, related to each other by unitarity transformations,
which yield the same physics. Apart from the masses, the
other existing free parameters in the standard model are
the three mixing angles and a CP-violating phase, which
are incorporated into the quark sector of the standard
model via the Cabibbo-Kobayashi-Maskawa (CKM) [1]
matrix V. All the presently available data [2) are consis-
tent with having symmetric moduli for the CKM matrix:
i.e. ,

/Vij I
= JVj

It should be noted that, for three generations, the as-
sumption that V has symmetric moduli implies a single
constraint on the matrix V because the unitarity require-
ment alone yields

This in turn implies that if V has a symmetric modu-
lus, then it is always possible to choose the phases of
the quark fields so that V is also symmetric, since under
rephasing of the up- and down-quark fields the nonphys-
ical individual phases yJ and P; of U& transform as

V~J ~ (UJ)' = V1exp(p1 —p;). (4)

Recently there has been some work done assuming the
CKM matrix to be symmetric [2, 6, 9]. In Sec. II, we give
the notation used and the preliminaries required in the
subsequent sections. In Sec. III, we write the symmetry
requirement of V in terms of the fIavor projection opera-
tors of Jarlskog, without using any parametrization of V,
and obtain a general constraint relating all the parame-
ters of the mass matrices in a basis where the matrix M„
is diagonal. We give the necessary condition in terms
of the matrices U and D for the matrix U to be sym-
metric in general and then provide the ranges for the
elements of the mass mat;rices that lead to the symmet-
ric CKM matrix for an interesting choice of U in Sec.
IV. In Sec. V we give the symmetry constraint written
in a basis-independent form. Section VI consists of our
conclusions.

A = /Vj2/ —/Vsj /

= /Vsj [
—/Vjs/ = /Vzs/ —/V32/

(2)

for three generations. The fact that experimentally
the asymmetry parameter A is, in general, small, i.e.,
A ( 10 and, in particular, (Vjz( and ~U31( are quoted
to be the same modulo the errors and both of them lie
between 0.217 and 0.223 prompted us to believe that V
has a synunetric modulus. It has been shown [2] that for
three generations, symmetric rnoduli of the CKM matrix
lead, through unitarity, to the vanishing of the imaginary
part of a rephasing-invariant sextet consisting of the oQ'-

diagonal matrix elements of V: namely,

Im(V13V23V31U21*U13 V32 ) = 0.

II. NOTATIONS AND PRELIMINARIES

Since the fermion mass term in the standard model
arises from the Yukawa couplings due to the assumption
of a nonzero vacuum expectation value by the Higgs field,
it is not diagonal in the fermions and not even Hermitian.
The mass term written in terms of the weak basis (de-
noted by prime) reads

L~ —uL, M„uR + dL, Mgd~+ H.c.j (5)
where the matrices M„and Mp denote the quark mass
matrices for charge 23 (up-type) and —

3 (down-type)
quarks respectively. In order to find the physical fields,
the quark mass matrices M„and Mp must be diagonal-
ized. As is well known from the theory of matrices, any
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square matrix (Hermitian or not) can be diagonalized by
a biunitary transformation. Since the mutually exclusive
left- and right-handed fields in the standard model can be
rotated dift'erently, we can find four matrices such that,
for three generations,

P-(S) = & (~)/~

P', (&') = ', (~')/ ',

where the Hermitian matrices 8 (= M~M„) and S (=
M~M&) have non-negative eigenvalues

Ui, M„U~t = M„= diag(m„, m„m, ),

DI, MdDIr = Mg —diag(mg, m, , m$).

(6)
(

2 2
g 1 Q2 Q~ 77l~ mg

2 2(z', , z'q, .. . , z'„) = (mg, m, , .. .),

(14)

Multiplying the first line of the above equation with its
Hermitian conjugate, we can see that the matrix UL di-

agonalizes the Hermitian matrix S (= M„M„t). Sim-
ilarly the matrix U~ diagonalizes the Hermitian ma-
trix M„tM„. These conclusions can be simply extended
to the down-quark sector. Since the weak eigenstates
d' (n = d, s, b) are related to the mass eigenstates d,
(i = 1, 2, 3) through the relation

3
d' =) V;d;,

respectively, and v is a Vandermonde-type determinant
given by

V Vg1)Z2) ~ ~ )Z~ (zp —z ), P ) n. (15)

V = V Z1) &2) &3 —+3 +1 &3 &2 &2 &1 (16)

The quantity v' is the primed version of v, whereas the
quantity v is obtained from the v by replacing z with
the matrix S and all other zp, P g n by zpI, where
I is the unit matrix. Thus v is an n x n matrix. For
example, for n = 3 we have

V = ULDL'

In the basis where the up-quark fields are mass eigen-
states, M„ is diagonal, i.e.,

M„= diag(m„, m„m~). (9)

In general the matrix Mg is not Hermitian, but we as-
sume Mg to be Hermitian and write the most general
Hermitian Mg as

where V; is the CKM mixing matrix and the charge
currents in the standard model only involve left-handed
fields, we have

and

~~(~) =(»-»)(»-~)(»-~)
These projection operators are Hermitian and have unit
traces. They can be used to express the measurable com-
binations of the CKM matrix elements in terms of invari-
ant functions of the mass matrices.

In QCD, the quark masses are running parameters; i.e. ,

they depend on the renormalization point at which they
are computed. The physical mass of a particle is its value
calculated at the same scale. Although the determination
of the light-quark masses involves larger errors, still they
are best estimated by the use of chiral QCD perturbation
theory as well as meson and baryon spectroscopy [5]:

Mg ——hM„+ A,

where

(10)
m„= 5.1 6 1.5 MeV,

md
——8.9 6 1.5 MeV, (18)

( 0
R e

(R~e '"
R1e'~'

e
—&Ps

R2e'~' )R3e'I"

Thus the mass matrices are a ten-parameter family de-
termined by m„, m„mq, h, f, d, Rq 2 s and the invariant
phase (pq + ps —pq) [3]. Taking the trace of both the
sides of the equation, we obtain the constant h in terms
of parameters of mass matrices as

(md+ m, + mg) —f —d

(m„+m, +m, )
(12)

Since the identity of the quarks is defined in the basis
where the mass matrix is diagonal, the fIavor projection
operators [4], denoted by P and P'~ (n, j = 1, 2, . .. , n),
are introduced to keep track of the identity of quarks in
any arbitrary basis, where the mass matrices are arbi-
trary, by projecting out the appropriate flavor. They are
given by

m, (1 GeV) = 1.35 + 0.5 GeV,

mq(1 GeV) = 5.3+ 0.1 GeV.

The limit that we have used for m~ is

180 GeV & m&(1 GeV) & 280 GeV,

(19)

(2o)

which is consistent with the phenomenological con-
straints imposed on the symmetric CKM matrix [6]. The
ranges for the individual matrix elements of the CKM
matrix that have been used in our calculations are

rn, = 175 6 55 MeV.

Similarly the physical masses of the charm and bottom
quarks are obtained from e+e data by using QCD sum
rules for the vacuum-polarization amplitude. The run-

ning masses at 1 GeV and AqcD = 100 MeV [5] are
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(0.9759—0.9747 0.2240—0.2180 0.0070—0.0010)
V = 0.2240-0.2180 0.9752-0.9734 0.0580—0.0300

0.0190-0.0030 0.0580-0.0290 0.9996—0.9983
(21)

which are taken from Particle Data Group tables [7].

III. THE SYMMETRY CONSTRAINT
IN THE BASIS WHERE M IS DIAGONAL

To incorporate the constraint due to the symmetry of
CKM, we use Jarlskog's flavor projection operators to
express the mod square elements of V in terms of the
matrices S and S' as

Iv~, I' = tr[P;(S)P,'(S')], (22)

where the first and the second indices denote the up- and
down-quark sectors, respectively, and the flavor projec-
tion operator in S is given as

p;(S) = S z')(S —zs) (S —~„)
(23)

Zj —Z] Zj —ZQ Z —Z

where [ ]' means that the factor (S—z;) in the numer-
ator and the factor (z; —z;) in the denominator must be
left out. The expression for Pz (S') is obtained by replac-
ing i, S, and z„with j, S', and z'„, respectively. Then,
the symmetry condition

(24)

is translated into a relation involving the matrices S and
as

t [P,(S)P'(S')] = t [P (S)P (S')]. (25)

Since the matrices M„and Mg of our choice are Hermi-

tian, we have done all the calculations in terms of invari-
ant functions of the matrices M„and Md instead of S
and S'. Considering, in particular,

Iv. l' = Iv.il' (26)

we obtain the constraint condition due to symmetry of
the CKM matrix involving the parameters of the mass
matrices as

[Ri + Rs + (hm, + f —m, )(hm, + f —mt, )]

[R2i + R22+ (hm„—mg)(hm„—mg)] = 0.
mb ~s

(27)

In general, it was not possible to find out the form of Mq
based on the general consraint mentioned above. But,
an interesting point was noticed. When we calculated
the CP violation measuring plaqeutte J in terms of S
and S' using [8]

(28)

it was found that if any of the Rq, R~, R3 are chosen to
be zero along with M„being diagonal, then J is zero im-

plying such a choice is not allowed for three generations.
Thus, we note that in the basis in which M„ is diagonal,
no oK-diagonal elements of Md can be made zero consis-
tent with the CP violation in the quark sector for three
generations.

The numerical calculation was done to find out
whether or not any of the oK-diagonal elements of the
mass matrix Mg are consistent with zero. To find out
numerically the allowed ranges for the elements of the
mass matrix Mg we note that Mg can be written as

M„= DtM„O= VM„Vt (29)

because a diagonal form for M„ implies U = I and D =
Vt. For a symmetric V it reduces to

Mg ——VIV'. (30)

Since any unitary matrix that diagonalizes a Hermitian
matrix can be written as the product of an orthogonal
matrix and a phase matrix, we write V, in this basis, as

(31)

where the phase matrix P„carries all the information re-
garding CP violation in the quark sector for three gener-
ations. Then, the ranges for the elements of the Mg were
calculated using the eigenvalues of M~ and the moduli of
the elements of V. The allowed ranges for the elements
of Mq in GeV are found to be

(0.0117—0.0052 0.0549—0.0207 0.0409—0.0059)
Mg —— 0.0549—0.0207 0.2374—0.1186 0.3261—0.1591

0.0409-0.0059 0.3261—0.1591 5.3962—5.1824

in the basis where M„ is diagonal. Similarly the allowed ranges for the elements of M„are found to be

(0.1137—0.0657 0.4209—0.2818 1.9774—0.1881)
M„= 0.4209—0.2818 2.2736—1.3885 16.312—5.4287 '

1.9774—0.1881 16.312—5.4287 279.78—179.38)
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in the basis where Mg is diagonal. It is apparent from
these numbers that when M„ is diagonal none of the
modulus of the oA'-diagonal terms for the matrix Md is
consistent with zero. This means that it is diKcult to
get such a form for Md from any symmetry. Thus any
generalization of the Stech form of mass matrices to lead
to the symmetric CKM matrix should be such that the
mod elements of the matrix M~ lie in the ranges given
above.

The above conclusion can be extended t,o the case when
the down-quark eigenstates are the mass eigenstates; i.e. ,

the matrix Mg is diagonal. In such a basis, it will be
difFicult to obtain the form of M„as given above from
any symmetry because none of the modulus of the oH'-

diagonal elements are consistent with zero.

IV. AN A%SAT. Z FOR QUARK MASS
MATRICES LEADING TO SYMMETRIC

CKM MATRIX

Since the CKM matrix V = UDt, where U and D are
unitary matrices that diagonalize the mass matrices M„
and Mp, respectively, then the symmetry condition for
V, i.e. ,

V=V (34)

will be satisfied by the necessary and sufficient condition
involving the matrices U and D:

D= V'P, (35)

where the matrix P (= U+D) is a symmetric, unitary
matrix. Then the symmetric CKM matrix V is

mCmq

(41)

For such a choice of P, we write the CKM matrix as

V = O„PO„, (42)

Cl S1 C3

F1 = S1C2 ', B)p —,C1CpC3 —82S3e
(3132) (Cls2C3+ C283e' )

S1S3
—C1C2S3 —SgC3e

C182S3 + C2C38 )

(43)

where c; = cos P; and s, = sin P;. The reparametrized
CKM matrix V may then be written in terms of its eigen-
values A; and eigenvectors n; as

where P is a phase matrix. To get the ranges of the mod
elements of the mass matrices for the case when P is a
phase matrix we proceed with the numerical calculation
using a convenient parametrization. For three genera-
tions, t;he three orthonormalized complex eigenvectors of
V are determined up to a phase. We can thus choose one
nonvanishing component of each vector to be real. The
two remaining arbitrary phases can be chosen in such
a way that one eigenvector is real. We use the follow-
ing parametrization [9] of the three eigenvectors with the
above properties:

V=UDt=UP*V .

Writing the unitary matrix U as the product of a phase
matrix P„and an orthogonal matrix 0„, i.e. ,

v = o„p„, vt = p„"o„',

3

V = ) Aw;wt = WAWt,

where

A = diag(Ar, A2, As)

(44)

(45)

the symmetric V can be rewritten as

v = v(v'p)t = o„p„p'p„o„'.

and W is the matrix of the eigenvectors:

W = (8)i & tU2, 103). (46)

Consider the matrix P to be a phase matrix. Such a
choice is a special but interesting case because, as a con-
sequence we can write either

Md ——f(M„') or M„= g(Mq). (39)

Then one of the possible choices for the mass matrix Mg
as a function of M„' is

Mg = p(M„") + qM„'+ rI,

where the parameters p, q, r are introduced to retain t,he
mass hierarchy for the down-quark sector. Upon di-

agonalization of both sides of the above equation, we

obtain three equations involving six quark masses and
three unknown parameters p, q, r which can be deter-
mined uniquely. These three parameters are given in

terms of the quark masses as

tr V = ze'~~, (47)

then it follows that the eigenvalues of the CKM matrix
for such a choice of the quark Aelds phases are

Comparing this general form with the form of symmetric

V, we see that if A is recognized as P then the general
form is reducible to a symmetric form only if W is real.
Thus we conclude that the reality of W is a necessary and
suKcient condition for having a symmetric CKM matrix.
This result was reported [2] based on a different and sim-

ple proof. Then it is evident that the choice n = 0 will

make V symmetric within the above parametrization. As
is well known, the eigenvalues of the CKM matrix de-

pend on the choice of the phases of the quark fields. If
we choose three out of five arbitrary phases of the quark
fields in such a way that the CKM matrix satisfies the
condition
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x, = -,"-I*'»sl(z -1—i+3+ 2*- z2),

~, =-,"-(*»sl(z- I+ +3+2 — s),

-1&x&3,
—1(z(3,

(48)

Consider the case of n = 0. Then the elements of the
matrix W are functions of three mixing angles Pi, Pq, and

Ps out of which two are independent and we recognize
0„=W. Then, the unitary matrix U is given as

In this parametrization [10] all the mod elements of V
were written in terms of z and the angles. Consider the
case when Ps ——0 and n drops out. Then the mod ele-
ments of CKNI matrix relevant to our discussion are

U = O„P„=WP„,

P = diag(e'4'i e'&~ e'&3)

(51)

iV„i = gl —
4 sin'(2P, )(3 + 2g —g'),

i Vi2 i
= s sin(2pi) cos(p2) y (3+ 2z —z2),

its i
—s sin(2p& ) sin(ps) g(3 + 2z —z2).

(49) M„= UtM„U = P„'W~M. WP. (52)

and the mass matrix Md as

Using the matrix U and assuming the matrix M„ to be
Hermitian, we can write the mass matrix M„as

Pi ——0.1265 to 0.3605,

p2 = 0.0040 to 0.0320.
(50)

The experimental constraints, i.e. , the values of the mag-
nitudes of the elements of V, p = its/V2si, and J imply

[6] that z must lie between —0.882 and 0.02. We then
solve for Pi and P2 by inverting the above equation and
using the magnitudes of the first row of V and find the
allowed ranges to be

Mg ——DtMgD = P'P„5' Mgg P„'P.

In our numerical calculation, we use the above-mentioned
ranges of the angles Pi and P2 to calculate the ranges for
the mod elements of the mass matrices using the above
equations in this two-angle parametrization of the CKM
matrix. The allowed ranges in GeV for the mod elements
of M„and Md in GeV are, respectively,

(0.1799—0.0242 0.4609—0.1617 0.0147—0.0006)
M = 0.4609-0.1617 1.6636-1.1413 8.9172-0.7141

(0.0147—0.0006 8.9172—0.?141 279.93—179.87i

and

(0.0386—0.0081 0.0738—0.0135 0.0023—0.00005 )
Mg = 0.0738—0.0135 0.2318—0.1059 0.1692—0.0198

0.0023-0.00005 0.1692-0.0198 5.3995-5.1947 )

In this basis neither the mod element of any off-

diagonal term of the matrix M„nor that of the matrix
Mg is consistent with zero, which implies that it is dif-

ficult to get such forms of the mass matrices that lead
to a symmetric CKM matrix in a natural way from any
symmetry. Although the mod of the iMd&si element is

small compared to that of other elements of Mg, it still is
considerably different from zero. It is interesting to note
that the mass matrices, apart from the phase factor, are
symmetric.

V. BASIS-INDEPENDENT
SYMMETRY CONSTRAINT

In the preceding sections, we have given the ranges of
the elements of the mass matrices M„and M~ allowed

by the symmetric CKM in two different bases. In this
section we give the symmetry constraint written in a
basis-independent form. As we have seen in the previ-
ous section, the condition iViqi = iV2i i implies

I

which can be rewritten as

Pg 2(M„) = UPi g(M„)U )

P1,2(Md) —DPl 2(Md)D
(58)

Consider going from an unprimed basis to a primed basis
by the transformations

O'= AU, D'= BD,

where A and B are unitary matrices. Then the CKM
matrix in the primed basis is

r[tcgV Pg(M„)VP2(Md) —CQV P2(M )VPg(Mg)] = 0,

(57)

where the constants ci and c~ are functions of the mass
eigenvalues and

tr[Pg(M„)P2(M&)] = tr[P&(M„)P&(M&)], (56) v' = xvat. (60)
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Requiring V' = V relates A and 8 through the matrix
V as follows:

A = VBV'. (61)
Then use of syrrunetry of the CI&M matrix in the primed
basis yields

A = VBV'. (62)
The mass matrices transform under this basis transfor-
mation as

M„' = AM„A, M~ ——BMd Bt. (63)

But the difhculty in using these expressions to find out
how the mod elements of the mass matrices transform
under this basis transformation is that it is not possible
to separate out the phase from the the mass matrices in
the primed basis for any general unitary matrix A and B
after the transformation.

VI. CONCLUSIONS

We have tried to find the constraints imposed on the
form of the mass matrices due to the symmetric CI&M

matrix. First, we wrote the symmetry constraint as an
equation involving the parameters of the mass matrices
using flavor projection operators in a basis where M„ is

diagonal. We gave the numerical ranges for the mod
elements of Mg in this basis. We have repeated this
procedure in the basis where Mg is diagonal. Then, we

wrote the necessary condition for having a symmetric V
in terms of the matrices U and D. We chose a par-
ticularly interesting basis where U = D'P, P being a
phase matrix, and gave the ranges for the mod elements
of M„, Md in that basis using a convenient parametriza-
tion for V. We noticed that none of the off-diagonal
elements of M„and Mg are consistent with zero for a
symmetric V, which means such forms for mass matrices
cannot be obtained from any symmetry. But, in principle
there exists an infinite number of other bases related to
each other by similarity transformations. So it is appar-
ent that the numbers we provided for the allowed ranges
of the mod elements of mass matrices are not basis inde-
pendent. Finally we wrote down the symmetry constraint
in a basis-independent form.
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