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It is shown that the weak states which are used in the standard treatment of neutrino oscillations do
not, in general, describe correctly the neutrinos produced and detected in weak-interaction processes. It
is also shown that it is impossible to construct a Fock space of weak states. However, neutrino oscilla-
tions can be described by defining appropriate "weak-process states, "which are superpositions of mass

eigenstates weighted by their transition amplitudes in the process under consideration. In the extreme
relativistic limit, the weak-process states reduce to the usual weak states. Some numerical examples are
given to illustrate the magnitude of nonrelativistic corrections to the standard results.

PACS number(s): 14.60.Gh, 12.15.Ff

I. INTRODUCTION

As in the case of the quark sector, if neutrinos are mas-
sive, the mass matrix in the weak basis of the neutrino
fields can be nondiagonal. The mass matrix can be diago-
nalized by defining a mass basis for the neutrino fields.
The left-handed neutrino fields in the weak basis v L(x)
and the left-handed neutrino fields in the mass basis
v,t (x) are related by a unitary transformation

v i(x) =g'M„, v,L (x)

(throughout this paper the greek indices a,P refer to the
weak basis, whereas the latin indices a, b refer to the mass
basis). In the usual treatment of neutrino oscillations [1],
the Aavor neutrinos are described by the "weak states"
Iv & given by

~v &=gQ*, iv, &,

where i v, & are mass eigenstates. In Eq. (2), it is not obvi-

ous which values must be assigned to the momentum and

energy of the mass eigenstates. In the literature, the most
popular choice has been to assume that the mass eigen-
states have the same momentum p but different energies
E„given by E, =Q ip ~

+m„where m, are the mass ei-
genvalues. On the other hand, as noted in Ref. [2], from
energy-momentum conservation in the process in which
the neutrinos are produced, the mass eigenstates must
have different momenta p, as well as different energies E,
(with E, =ip, i +m, ). For extremely relativistic neutri-
nos this problem is irrelevant because both approaches
lead to the standard oscillation probability. In this paper
we wi11 show how to calculate the neutrino oscillation

probability that is valid for nonrelativistic as well as rela-
tivistic neutrinos. The nonrelativistic corrections to the
standard oscillation probability depend on the processes
in which the neutrinos are produced and detected
through the corresponding transition amplitudes of the
mass-eigenstate neutrinos. Hence, in order to calculate
the transition amplitudes, we will assume energy-
momentum conservation and the propagating mass eigen-
states will have different momenta as well as different en-
ergies.

In this paper we will emphasize that the weak states
~
v &, which are used in the standard treatment of neutri-

no oscillations, do not, in general, describe correctly the
neutrinos produced and detected in weak-interaction pro-
cesses. In order to elucidate this point, let us consider,
for example, the weak charged-current process
v+ X' +Xf +e in which a neutrino is detected through
the production of an electron. If the neutrino were
correctly described by the weak state

~ v, &, as given by
Eq. (2), the transition amplitudes

(e ieyt'(1+ys)v, iv &h (X;,Xf)

=g Vl„'M*, (e ieyt'(1+ys)v, ~v, &h"'(X;,Xf ) (3)

should vanish for aWe [h')(X, ,Xf) are the matrix ele-

ments of the X part of the process and the superscript
(a) indicates that they depend on the mass eigen-
value m, because of energy-momentum conservation].
Instead Eq. (3) is, in general, not proportional to
6, . In fact, even though the mixing matrix
'M is unitary, i.e., g, Vl„VL*,=6, , the factors
(e icy~(I+ys)v, iv, &h "(X;Xf), which depend on the
index a through the different masses m„spoil the di-

agonality in the fiavor indices (e and a) of Eq. (3). In the
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limit in which the differences between the mass eigenval-
ues are negligible compared with the neutrino momentum
(in particular for extremely relativistic neutrinos), the fac-
tors ( e

~
e y~(1+ y5 )v, ~ v, )h "(X„Xf) can be taken out

of the sum in Eq. (3) and the transition amplitudes vanish
for aWe. Only in this case, the weak states ~v ) can be
used to describe approximately the neutrinos detected in
the weak-interaction process under consideration.

More generally, in Sec. II it will be shown that it is im-
possible to define appropriate creation and destruction
operators of weak states and hence a Fock space of weak
states do not exist in a rigorous sense. However, in some
special case (in particular for extremely relativistic neu-
trinos) an approximate Fock space of weak states can be
constructed.

The observation that a Fock space of weak states does
not exist does not cause any difficulty in calculating usual
cross sections and decay rates of processes in which neu-
trinos participate as external particles. The reason is that
these neutrinos must be described by the mass eigenstates

~ v, ) and each mass eigenstate corresponds to a separate,
incoherent process, as discussed in detail in Ref. [3]. In
Sec. III, it will be shown that neutrino oscillations can
also be described by using only the mass eigenstates,
without any reference to weak states. It will also be
shown that, in order to establish an analogy with the usu-
al treatment of neutrino oscillations, it is possible to
dePne appropriate "weak-process" states that can be used
instead of the usual weak states in order to obtain the
correct oscillation probability. Since the concept of
Qavor neutrinos has a physical meaning only in connec-
tion with their weak interactions, in order to properly
define the weak-process states, one must consider specific
physical processes in which neutrinos are produced or
detected. Namely, the weak-process states are given by
superpositions of mass eigenstates weighted by their tran-
sition amplitudes. It will be shown that in the extreme
relativistic limit the weak-process states reduce to the
weak states given in Eq. (2). Thus, this treatment difFers
from the standard one in that the nonrelativistic correc-
tions to the weak-interaction processes in which neutri-
nos are produced and detected are properly taken into ac-
count whereas the standard treatment is valid strictly for
the extremely relativistic case. Since the present direct
experimental upper limit of the neutrino masses are quite
poor (m

&
5 10 eV, m2 5250 keV, and m3 5 35 MeV), it is

I

possible that nonrelativistic corrections may not be negli-
gible in some experiments that search neutrino oscilla-
tions.

II. WEAK STATES

(iso io"V)4,—(x)+m, ia 4,"(x)=0 .

The plane-wave solutions of the field equations are [5]

(4)

In a free-field theory only the neutrino fields in the
mass basis have a physical meaning. The concept of
flavor neutrinos (i.e., electron, muon, and tau neutrinos)
arises when weak interactions of the neutrino fields are
introduced. So far, it appears that the existence of the
weak states

~
v ) has been assumed without investigating

the possibility of quantizing the neutrino fields in the
weak basis by building a Fock space of weak states. The
reason for this assumption is the fact that the canonical
anticommutation relations of the fields are preserved by
the unitary transformation that relates the weak and the
mass bases of the neutrino fields. In fact, the canonical
anticommutation relations of the fields depend only on
the kinetic part of the Lagrangian (through the definition
of the conjugate momentum), which is invariant under
any unitary transformation. However, the physical con-
tent of the theory is established by the full Lagrangian,
which, due to the presence of the mass term, is not invari-
ant under unitary transformations of the fields. In the
canonical formulation of quantum field theory, one must
solve the field equations and implement the canonical an-
ticommutation relations of the fields by defining ap-
propriate creation and destruction operators of one-
particle states. In the case of mixed neutrinos, the field
equations can be solved in the mass basis (in which they
are independent) and the neutrino fields in the mass basis
can be quantized by building a Fock space of mass eigen-
states ~v, ). It will be shown below that, contrary to the
general belief, in the weak basis it is impossible to define
operators that obey the canonical anticommutation rela-
tions and thus can be interpreted as creation and annihi-
lation operators of weak states. Hence, a Fock space of
weak states does not exist.

We consider the case of Majorana neutrinos, which is
predicted by a large class of gauge theories. The free-field
equations for the two-component fields 4, (x) in the mass
basis are'

@,(x)=f +(2m ) t, =+)

E, —hP

2E,

1/2

a, (p, h )co(p, h)e ' —h a(p, h) (rop,
—h)e

a
(5)

where P:
~ p~, E, =QP +m„h =+—1 denotes the helicity and ro(p, h) are two-component orthonormal helicity eigen-

state spinors [in the present case, it is convenient to quantize the neutrino fields as helicity eigenstates because the spi-
nors r0(p, h) do not depend on the neutrino mass]. The operators a, (p, h) and a, (p, h) obey the canonical anticommuta-
tion relations and can be interpreted as destruction and creation operators of one-particle states with definite helicity in
the mass basis ~v, (p, h)) (mass eigenstates).

In the chiral representation of the y matrices, the two-component fields 4, (x) are related to the four-component fields v,L(x) by
vrr (x)=(C&,(x),0). For details, see Ref. [4].
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From Eqs. (1) and (5), the two-component neutrino fields in the weak basis 4 (x) can be expanded as

@ (x)= J g [A (p, h, t)co(p, h)e'~" —hB (p, h, t)co(p, —h)e '~*],dp
&(2a) p =+i

where

A (p, h, t)=QVE,
E, —hP

2E,
a, (p, h)e

a, (p, h)e
E, +hP

B (p, h, t)=+M*,
2E,

The crucial observation here is that, in general, the
operators A (p, h, t) and B (p, h, t) do not obey the
canonical anticommutation relations. For example, at
equal time, one has

( A (p, h, t), A&t(p', h', t)}

I

The operators a (p, —1) and a (p, +1) can be interpret-
ed as destruction operators of an approxixnate Foek space
of weak states with negative and positive helicity, respec-
tively.

(2) For almost degenerate mass eigenvalues (i.e., if the
differences between the mass eigenvalues are much small-
er than the momentum P), with a real mixing matrix

The reality of the mixing matrix is necessary in
order to have Q, Vl, 'M&, =5 &. Since E, =E, indepen-
dent from the index a, one has

E, —hp
=5(p —p')5„„g 'M, Gp, 2E,

(8) E hP
' 1/2

e ' 'a (p, h),
and

[A (p, h, t),B&(p', h', t)]

=5(p —p')5„„+'9, Vi'p, . (9)
Q a

In general, these anticommutation relations are nondiag-
onal in the flavor indices. In fact, even though S is uni-
tary, i.e., g, 'M, 8'&, =5 &, the terms (E, —hP)/(2E, )

spoil the diagonality of the anticommutation relation
given in Eq. (8). Similarly, the anticommutation relation
given in Eq. (9) is not diagonal because, in general,
g, O', 'M&, %5 & and because of the presence of the term
m, /(2E, ). Therefore, one cannot construct a Fock space
of weak states. This proof is general and also applies to
Dirae neutrinos, because a Dirac neutrino field is made of
two Majorana neutrino fields with degenerate Inass and
opposite CP phases. It can also be easily extended to any
set of mixed particles, either fermions or bosons.

Even though one cannot construct an exact Fock space
of weak states, an approximate Fock space of weak states
can be defined in the following two cases in which the an-
ticommutation relations given in Eqs. (8} and (9) become
diagonal in the flavor indices.

(1) In the extremely relatiuistic limit (i.e., for
P))maxim, ]). Since, in this case, (E, —hP)/(2E, )

~(1—h)/2 and m, /(2E, )~0, the anticommutation re-
lation given in Eq. (8) becomes proportional to 5 & and
the one given in Eq. (9) vanishes. In the extremely rela-
tivistic limit the operators A (p, + l, t) and B (p, —l, t)
are suppressed and the surviving operators can be written

A (p, —1,t) =e ' 'a (p, —1},
a (p, —1)=QVl, a, (p, —1),

B (p, +1,t) =e ' 'a (p, +1),
a (p, + 1)=QVl*, a, (p, + 1) .

' 1/2F +hP
~ P» —

2E
e ' 'a (p, h)

with a (p, h)=g, lt, a, (p, h). The operators a (p, h)
can be interpreted as destruction operators of an approxi-
mate Fock space of weak states with definite helicity.
Note that in this case the Majorana character of the
creation and destruction operators is preserved in the
weak basis.

The anticommutation relations given in Eqs. (8) and (9)
become diagonal in the flavor indices also in the extreme-
ly nonrelativistic limit (i.e., for P «minim, ]), with a
real mixing matrix. However, in this case it is impossible
to define time-independent creation and destruction
operators of weak states because of the different phase—urn t
factors e ' that cannot be factorized out of the sum
over the mass eigenstates in the operators given in Eq.
(7).

The anticommutation relation given in Eq. (9) is
characteristic of Majorana neutrinos: in the Dirac case
there is only one nontrivial anticommutation relation,
analogous to that given in Eq. (8). Therefore, for Dirac
neutrinos an approximate Fock space of weak states is
well defined in the extremely relativistic limit and for al-
most degenerate mass eigenvalues.

In order to understand the physical meaning of the
reality condition for the mixing matrix S' in the case of
Majorana neutrinos, let us consider, for example, the
lepton-number- (L-)violating process X, ~Xf+e +v in
which a neutrino is created together with an electron. If
the neutrino were correctly described by the weak state

~ v, ), given by Eq. (2), the transition amplitudes

(e —,v. icy~(1+), )v, iO) h, (X„Xf}=ye..n,.(e —,v. icy~(1+), ) iOv) h,"(X,,Xf )
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lv &=+'M .lv. & . (13)

should vanish for aWe. Instead, if the mixing matrix Q
is not real, Eq. (12) is not proportional to 5 „even if the
mass eigenvalues are almost degenerate. This means that
the weak states given in Eq. (2) do not describe the Ma-
jorana neutrinos produced in L-violating processes. One
must instead use the "antineutrino" definition of weak
states:

This is a simple example in which the weak states ap-
propriate for the description of the neutrinos produced in
a specific process differ from the usual weak states lv &

given in Eq. (2). The states
l
v & can be used for the study

of L-violating neutrino oscillations. Because of a helicity
mismatch analogous to the one that occurs in the
double-P decay, in the extremely relativistic limit the L
violating oscillation amplitudes are suppressed by
m, IE, . By using the states lv &, one obtains the well-

known [6] L-violating oscillation probabilities

'
&v,(r)lv. (r) &&v.(r)lv. (O) &&v. (0)lv (0) &

a

Vlp, 'M, e
a a

in which the CP-violating phases of the mixing matrix Q are observable.

(14)

III. WEAK-PROCESS STATES

In the previous section, we have demonstrated that the standard "weak states" are, in general, ill defined. In spite of
this problem, it will be shown in this section that it is possible to describe neutrino oscillations by defining appropriate
"weak-process states" which depend on the processes by which neutrinos are produced and detected.

As a simple example, we consider the neutrino oscillation process

v+ JV;( A, Z —1)~JVf ( A, Z)+e (15)

in which a neutrino is produced by pion decay, propagates between the source and the detector and is detected by nu-

clear capture. Since one observes the initial and final particles but not the intermediate neutrino, the oscillation proba-
bility is given by

2

P„,(x, r)- y &e-,nfl'~(0)la, ,v. &e" * '"&v.,p'IZ~(0)l~'& (16)

where 5~(0) is the weak-interaction Lagrangian evalu-

ated at the origin, E, and p, are the energies and mo-
menta of the mass eigenstates and x is the direction of
propagation of the intermediate neutrino (for simplicity,
the details on the energies, momenta and spins of the par-
ticles involved have been omitted).

Even though the oscillation probability given in Eq.
(16) contains all the information necessary for the calcu-
lation of the neutrino oscillation process given in Eq. (15),
in order to establish an analogy with the standard treat-
ment of neutrino oscillations, we can dePne the following
"weak-process states" corresponding, respectively, to the
production and detection processes:

lv„&wp- g lv. &&v. ,@+le~(0)le+&,

I
v & wp Q I

v & & v, ~~; I& g (0)l~f, e
(17)

2

P„,(x, r)- g wp& v, lv, &e" " ' '
& v. lv„&wp (18)

It is obvious that the definition of the weak-process states
depend on the specific process under consideration. By
using these weak-process states, the oscillation probabili-
ty given in Eq. (16) can be written as

2For Dirac antineutrinos l v ) =g, Vl, l v, &.

A more rigorous treatment, with localized wave packets in
the framework of quantum field theory, will be discussed else-
where [7].

which is analogous to the standard oscillation probabili-
ty, with the usual weak states replaced by the corre-
sponding weak-process states. In the following, we will
show how the weak-process states defined in Eq. (17) are
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different from the standard weak states given in Eq. (2)
(in the extremely relativistic limit they become equivalent
and one recovers the standard formulation of neutrino os-
cillations).

Let us consider the production process m+ ~p++ v.
In the rest frame of the pion, because of angular momen-
tum conservation, the muon and the neutrino must be

emitted with the same helicity. In the limit of zero neu-
trino mass they both have negative helicity, but, for a
finite neutrino mass, the decay into positive helicities is
also allowed. The transition amplitudes
(v, (p„h),p+( —p„h)~XII (0)~m.+) —Q„*,P, (h), for the
two helicity cases h =+1, can be calculated by using a
definite representation of the y matrices. The result is

GF cosBc
P, (h)= — f U„( —p„h)[m„(1+y, )

—m, (1—y5)]u„(p„h)
2

= —G~cosdcf„(m„+m —m„m,—hA—,,' +m, Qm„—m„m,—+hk,' ), (19)

where GF is the Fermi constant, 8c is the Cabibbo angle,
f is the pion decay constant, and A., —:A,(m, m „,m,2) is
the usual kinematical function [A,(x,y, z) —=x +y +z—2xy —2yz —2zx]. For each value of h, we can define a
weak-process state

~ v„(h ) )wp given by

(20)

with

v„(h)) =g S„*.P.(h)lv. (p. , h)~
Q

P, (h) =P, (h)/Po( —1), where Po( —1)
= —&2GF cosmic f m„Qm —m „ is the production
amplitude in the massless limit.

The weak-process states
~ v„(h ) )wp are quite different

from the usual muon-neutrino weak states ~v„(h) ) with
definite helicity, given by Eq. (2), for, in Eq. (20), the pro-
duction amplitudes 'M„*,P, ( h ) of the mass eigenstates
~v, (p„h )) are not simply given by the elements of the
mixing matrix of the fields 'M alone, but depend on the
specific process under consideration. The weak-process
states have not been normalized to one particle in order
to take into account the variation of the neutrino Aux as a
function of the mass eigenvalues; however, they have
been normalized in such a way that the negative-helicity
weak-process state ~v„( —1))wp becomes a usual muon-
neutrino state in the extremely relativistic limit. In fact,
if a mass eigenstate is extremely relativistic, one has
P, (+1)~0 and P, ( —1)—+Pa( —1), independent of the
index a, thus P, (+1)~0and P, (

—1)~1. Therefore, if
all the mass eigenstates are extremely relativistic,
~v„(+1))wp is suppressed and ~v„( —1))wp becomes a
usual muon-neutrino weak state with negative helicity
~v„(

—1}),as given by Eq. (2).
The weak-process states

~ v„(h ) )wp have neither a
definite momentum nor a definite energy: the energies
and momenta of the mass eigenstates

~ v, (p„h }) are both
determined by energy-momentum conservation in the
production process [in the pion rest frame,
E, = (m —m „+m, ) /2m ]. Although the production
amplitudes P, (h) have been calculated in the pion rest
frame, they are Lorentz-invariant quantities and the
weight factors of the superposition of mass eigenstates in
the weak-process states

~ v„(h ) )wp do not depend on the
frame of the observer; hence the weak-process states
~v„(h))wp describe correctly the neutrinos propagating
between the two interaction processes given in Eq. (15).

I I I I I 111] I I I I I I I I
I

.8

+I

4

0
10 10

m (eV)
10

FIG. 1. Plot of the production amplitudes P, (h) for h =+1
as functions of the mass eigenvalue m, . The symbols ( —) and
(+ ) correspond to negative and positive helicities, respectively.

In Fig. 1, for an illustrative purpose, we have plotted
P, (h) for h =+1 as functions of the mass eigenvalue m, .
It can be seen that P, (+1) is non-negligible for m, ~ 1

MeV and P, (
—1) deviates from unity for m, ~ 10 MeV.

For the maximum value m, =m —m„, the mass eigen-
state v, is emitted with zero momentum and the produc-
tion amplitudes for the two helicity states have the same
value.

To be more specific, let us consider the following two
numerical examples. (1) We take v3 to be the as-yet
unconfirmed but still persistent 17-keV neutrino. In this
case we have P3( —1)—= 1 and P3(+1)=4X10 for the
negative- and positive-helicity states, respectively, as can
be seen in Fig. 1. That is, the standard definition of the
weak eigenstates contains inherent errors of up to 0.04%.
(2) On the other hand, if one takes m3 to be, say, 10 MeV
which is not yet ruled out by experiment, one has
P3( —1)=0.998 and P3(+1)=0.224. In this case, the
standard treatment, i.e., the use of Eq. (12), can lead to a
result which is wrong by as much as 22%.

Let us now consider the detection process; for the pur-
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pose of calculating the detection weak-process states, we
consider a simple nuclear neutrino capture v, (p, )

+JV;(A, Z —1;p;;0+)~JVf(A,Z;pf', 0+)+e (p, ) in
which the nuclear transition is between states with spin-

1

parity 0 . The initial nucleus JV; is assumed to be at rest.
Neglecting the recoil of the nucleus, the hadronic matrix
element can simply be expressed in terms of a vector
form factor Fi as [8]

( JVf( A, Z;pf, 0+)IJ (0)IJV, ( A, Z —1;p, ;0+) ) =MF&g& (21)

where M=M, =Mf is the nuclear mass. The final electron can be emitted in any direction. However, from
energy-momentum conservation, for each direction, the absolute value P, —= Ip, I

of the momentum of the final

electron can be determined from the absolute value P, = Ip, I
of the momentum of the incoming neutrino. The

helicity of the final electron is not fixed and will be denoted by h, . The transition amplitudes
(e (p„h, ),JVf(A, Z;pf', 0+)I/a, (0)IJV(A, Z —I;p;;0+),v, (p„h))-Q„S,(h, 8, h, ), which depend on the helicities
h =+1 and h, =+1 of the incoming neutrino and the outgoing electron, respectively, and on the angle 8 between p,
and p„can be calculated by using a definite representation of the y matrices. The result is

GF cosdg
&.(h 8, h, )= — ~,(p„h, )y (1+y&)u„(p., h)(Af(A, Z;pf, 0 )I~,(0)IJV;(A, Z —1;p;;0'))

v'2

GF cosBCMFv 8Q(E, hP, )(E—, h, P, ) —(1+h,h ) cos —+(h, —h ) sin

For each value of h, 8, and h„we can define a weak-process state Iv, (h, 8, h, ) )wp given by

Iv, (h, 8, h, ) )wp=g 'll;, 2), (h, 8, h, ) I v, (p„h ) )

(22)

(23)

with 2), (h, 8,h, ) =2), (h, 8, h, )/2)o( —1,8,h, ), where 2)0( —1,8,h, ) is the detection amplitude in the massless limit.
In the standard treatment, it is straightforward to derive the standard oscillation probability for extremely relativistic

neutrinos by using the weak states defined in Eq. (2). In our treatment, which is Ualid for ttonrelativt stic as w'ell as rela
tivistic neutrinos, the neutrino oscillation probability must be calculated by taking into account the corrections due to
the production and detection processes (strictly speaking, a process-independent oscillation probability does not exist,
in general). From Eqs. (18), (20), and (23), the oscillation probability for the process given in Eq. (15) is given by

2

P„,(x, t)- g fd8 gawp(v, (h, 8, h, )Iv, (p„h))e ' ' (v, (p„h)Iv„(h))wp
h, h, =+1

h, h =+1

2

fd8 +2), (h, 8, h, )P, (h)8'„'M„', e (24)

2)3( —1)-P&( —1)-1—e,

2)3(+ 1)-P3(+ 1)-e' (25)

with e-(m3/E) -0 01 and e'-. (m3/E)-0. 1. Equation
(25) indicates that the use of the standard formula in this
example can lead to errors of up to several percent in the
oscillation probability. The exact values, of course, de-
pend on specific production and detection mechanisms.
At present, the nonrelativistic corrections we have dis-

This oscillation probability is a generalization of the stan-
dard expression, which is valid only for extremely relativ-
istic neutrinos, the difference being the presence of the
terms 2), (h, 8,h, )P, (h) that take into account the nonre-
lativistic corrections due to the production and detection
processes.

To demonstrate potential significance of the nonrela-
tivistic corrections in Eq. (18), let us consider the electron
neutrinos with the energy of about 1 Me V. For
definiteness, we assume m3 =100 keV. If one ignores de-
tails on dynamics and kinematics of the production and
detection processes, one roughly expects

I

cussed so far are negligibly small and are of academic in-
terest. However, when oscillations are observed in the fu-
ture and their precision analysis becomes necessary, the
corrections discussed in this paper must be taken into ac-
count for nonrelativistic neutrinos.

IV. CONCLUSIONS

We have shown that the weak states which are used in
the standard treatment of neutrino oscillations do not, in
general, describe correctly the neutrinos produced and
detected in weak-interaction processes. We have also
shown that it is impossible to construct a Fock space of
weak states. However, neutrinos oscillations can be de-
scribed by defining appropriate "weak-process states" in
which the superposition of mass eigenstates is weighted
by their transition amplitudes in the process under con-
sideration. In the extreme relativistic limit, the weak-
process states reduce to the usual weak states.

The present discussion can be applied to any set
of mixed particles with a significant mass difference.
In the K -E case, the relative mass difference

I/IMx +M+ I

—10 " is too small to pro-
L S L S
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duce any measurable effect. In supersymmetric models in
which superparticles are mixed, there can be large effects.
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