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Analysis for magnetic moment and electric dipole moment form factors
of the top quark via e+e = tt
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Phenomenological analysis for determining the magnetic moment and electic dipole moment form fac-
tors of the top quark via the reaction e+e ~tt, followed by the decays t~bW+ and t~b8', is
presented, with analytic expressions for the differential cross section and decay given. Various experi-
mental observables are studied- and their efficacy for the determination of form factors is considered and
compared with the optimal resolution of form factors in the tty and tWt vertices. We find that with a
sample of 10000 events it is possible to put limits of 10 "-10 ' e cm for the form factors considered,
evaluated at q =s when &s =500 GeV.

PACS number(s): 13.40.Fn, 13.10.+q, 14.80.Dq

I. INTRODUCTION

The fact that the top quark has not been discovered yet
may eventually prove to be one of the most important
physics nonevents of the 1980s. The current Collider
Detector at Fermilab (CDF) limit [l] of 89 GeV puts the
top-quark mass well into the electroweak scale, suggest-
ing that top physics may be more sensitive to physics on
the electroweak scale and beyond in a way that other
quarks may not be. Experimental determination of the
properties of the top quark will thus be an important
priority in the coming decades (assuming that the top
discovery is not too far in the future) and will perhaps be
an important window on fundamental interactions
beyond the standard model.

From the experimental point of view, the top quark
also has the additional advantage that due to its large
mass it may not hadronize. Thus, its decays may be
directly observed in much the same way as in the case for
a heavy lepton. In contrast, light quarks always appear
in hadrons. Therefore, in order to put limits, for exam-
ple, on the up- or down-quark electric dipole moment
(EDM), it is necessary to consider the EDM of the neu-
tron, making the theoretical interpretation very difficult.

Perhaps the cleanest method for measuring the proper-
ties of the top quark is to look at the pair-production re-
action in e+e colliders: e+e ~tt followed by the sub-
sequent weak decay of the top quarks, tt~bR'+b8'
where the W bosons decay leptonically, W~ l vt ( l =e, p,
or r) Such experi. ments may perhaps be possible at the
CERN e+e collider LEP II if the top-quark mass is
very near the current limit, or otherwise at future e+e
colliders [2].

In this paper we consider ytt and Ztt couplings and
their effect on the differential cross section for the reac-
tion e e ~tt. The y tt coupling consists of the
standard-model tree-level ones as well as magnetic dipole
moment (MDM) and electric dipole moment (EDM) cou-
plings. Likewise, in addition to the tree-level standard-
model Ztt coupling, we are including the analogous Z
MDM and Z EDM couplings. In both cases we allow the
possibility that these couplings may have imaginary
parts. In our analysis, we assume for simplicity that the

the'vertex has the standard-model coupling.
The MDM-like couplings are present in the standard

model at the one-loop level. On the other hand, the
EDM-like couplings violate CP and, in fact, due to the
structure of the standard model, are only present pertur-
batively in the standard model at three loops [3], al-
though it could also arise nonperturbatively [4] through a
nonzero value of OQCQ In some extensions to the stan-
dard model, however, EDM couplings may be present at
lower order in perturbation theory [5]. Some models
which can give relatively large fermion EDM's include
left-right-symmetric theories, additional Higgs multi-
plets, supersymmetry, and composite models [5].

In order to observe these couplings, we consider in de-
tail the distribution of the momenta of the final-state par-
ticles. For each of the couplings mentioned above, there
are in general several possible observables which are sen-
sitive to them. One may also construct an optimal ob-
servable which allows for the maximum sensitivity to the
coupling in question. We have found examples for which
the optimal observable does about one order of magni-
tude better in terms of sensitivity to the above couplings
than observables which one might naively consider.

II. FORM OF INTERACTION
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In this paper we will assume that the coupling between
a fermion f and the boson V (where V represents either a
y, a Z boson, or possibly a Z' boson) takes the form

i[y"(A—f +Bfy5)+o "I'q (i' +Df y5)] .

For the electron we assume that these parameters have
their tree-level standard-model values; hence,
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The parameters C, and D, are the MDM and EDM form
factors of the top quark evaluated at q =s. In our calcu-
lations, we will expand the differential cross section to
first order in these quantities. As mentioned above,
throughout this paper we will assume that the Wtb cou-
pling takes on the usual standard-model left-handed
form.

In the Appendix, we calculate the differential cross sec-
tion for e e ~V~tt, with subsequent tt~8'+b8' b
as shown in the Feynman diagram in Fig. 1, where for
simplicity we take mb =0. The expressions given are ex-
panded to first order in C, and D, for both Z and y ex-
change, including interference terms between the Z and y
graphs. Our calculation there has been done both in the
case of unpolarized e+e beams and e+e beams of ar-
bitrary polarization. The fact that the e+e may be
treated as massless allows for a straightforward generali-
zation from the unpolarized to polarized case.

In our analysis we have also assumed that C, and D,
may take on complex values which could arise from ab-
sorptive parts in the process which produces these
effective couplings. Denoting the total differential cross
section by X($)dg, where P represents the phase-space
variables, we expand X to first order in C, and D, as

X AB +XRe( C) +Xim( C) +XRe(D) +Xim(D) & (4)

where XAB depends only on A, and Bf, XR (c) is linear in
Re(C), X, ~c~ is linear in Im(C), XR,~~~ is linear in Re(D),
and X, ~~~ is linear in Im(D).

Of course A„B„C„andD, are in general s-dependent
form factors. Since experimentally the e+e collision
takes place at a specific value of s, only the value of these
form factors at the value of s will be accessible in a given

while C, =D, =0. For the top quark, the tree-level
standard-model values for these parameters are

A ~=—'e
3

B =0

experiment. Note that the explicit form of these terms
given in the Appendix obeys the correct transformation
properties under various discrete symmetries, as one
would expect. For example, under CP, XR,(D) and XIm(D)
are antisymmetric, while all XI (c) and XR,(c) are sym-
metric. Also XR,(D) and XI (c) are antisymmetric under
T„,where T„denotes "naive'* time reversal defined to be
replacing t with —t without switching initial and final
states.

Experimentally, it is not possible to reverse the flow of
time, so one cannot use T„ to experimentally distinguish
between the real and imaginary couplings. In order to
accomplish this, one needs a symmetry that is a symme-
try of the domain of phase-space integration. Consider
the transformation P„, which we define to be parity ap-
plied to all boson polarizations and particle momenta
while leaving fermion helicites fixed. P„ is clearly a
transformation on the domain of integration, and by in-
spection of the expressions in the Appendix, all the X,
have identical symmetry properties under P„and T„.
Thus, P„can be used to experimentally differentiate be-
tween the real and imaginary parts of the couplings.

III. OPTIMIZED OBSERVABLE QUANTITIES

X=Xo+AX) . (6)

If one has an ideal detector that records accurately the
value of P for each event that occurs, any method for
determining the value of k amounts to weighting the
events with a phase-space-dependent function f (P) and
calculating the quantity

f'"(&)=f f(Q)&(P)dP, (7)

Before defining how to measure the EDM or MDM
couplings, let us consider the general problem of observ-
ing the change in the differential cross section due to the
addition of any small coupling. Here, we denote the
differential cross section by

X(P)dg,

where P represents the relevant phase-space variables be-
ing considered (including angular and polarization vari-
ables). Suppose now that there is a small contribution to
this differential cross section controlled by a parameter k
(for example, A, could be the EDM or MDM) so that if we
expand the total differential cross section in terms of A, we
have

as compared to the value if A, =0:
f'"(O)= ff(y)~,(y)dy.

Thus, the change due to the presence of A, is given by

&I=f"'(&)—f"'(o)=&ff(p)& (p)dp . (9)

FIG. 1. Feynman diagrams for the process
e+e ~tt ~b8 +b8'

(2)~
gf f

n
(10)

We must now compare 6I with the error in measuring

f"'. If n events are recorded, this error will be given by
' 1/2
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where o =fX d(t) is the total cross section and

f' '= ff Xd(I). Let us now define the "resolving power"

R of the function f in terms of the appropriately normal-
ized ratio of these two quantities by

$2

nA, (b f)
[f( i)(g } f(1)(0)]2

g2f (2)

'2
ff(P)X)((t))dg

(r f f'(p)XO(p)dp

Thus, the statistical significance S with which the pres-
ence of a nonzero value of A, may be ascertained is

(ffo)'
crR =

fo (19)

From this formulation it is clear that R will be maxim-
ized when f =fo

=f, „as we concluded above in Eq.
(17).

As an illustrative example, consider a 2-to-2 scattering
process where the differential cross section is of the form

er the set of all functions of P to be a vector space on
which we define the scalar product

g 1g2 = fg i(0)g2(0 }Xo((())"(()

where g, and g2 are functions of p. If we denote

f0=X)/Xo, then in terms of this notation, Eq. (15) may
be rewritten as

5IS = =A&nR. (12)
= A +Bg+Cg

dg
(20)

The larger the value of R, therefore, the more eB'ective f
is for measuring A., so that if at all possible, one would
like to use a function f for which R is maximal.

In order to find such an optimal function, which we
will denote f, „it is useful to decompose an arbitrary
function f as

where g= cos8; —1 ~ g + 1, and B,C ~ A. According
to the above recipe, if we wish a quantity which is most
sensitive to B, we should take fz =g, while the quantity
most sensitive to C is fc =g . Thus, we find

cr=2A +—'C, fa' (B)= 'B, f' (B—)=—'A +—C,

f=A +f,
0

where we define the quantity

ffX)dd
A=

g2

f

(13)

(14)

Therefore, f defined by Eq. (13) has the property that

ffX,dy=o.
Clearly, rescaling f does not change the value of R;

therefore, without loss of generality we take A =1.
Thus, if we expand the definition of R to lowest order in
A, and use the above decomposition, we obtain

ffX)dg

ff2Xyy

(21)

In the case of determining B the value of R (to lowest
order in B and C) is thus given by

f Bldg
R( 2))= B' f

"Adolf+'Ag'dg

A
3

2

f dP+ff Xdg
0

(16}

X)f=f.,(= X0
(17)

The preceding derivation of f, may also be under-
stood in terms of the following argument. Let us consid-

Examining the denonnnator of Eq. (16), we note that iff
is nonzero, the expression ff Xodg is positive, and since
the expression fX)!Xois also always positive, R is max-
imized when f=0. R is therefore maximized when

Likewise for C the value is R (fc ) =—,
' A

One might also consider measuring 8 via another func-
tion which has the same symmetry properties as f~.
Consider, for example,

+1 if/)0,
—1 if/&0.(~)= '

(22)

In this case g~"=8 while gz '=2 A +—', C; hence,
R (g~)= —,'A, which is less than the optimal value of
R (f2) ).

Similarly, one might consider measuring C via the
change in the total cross section, which is equivalent to
using the function gc= 1. In this case R (gc)= —,'A
again less than the optimal value of R (fc ).

In these cases, the difference between optimal and
nonoptimal values of R is not that great; however, if
there are a large number of degrees of freedom, more pro-
nounced differences are possible.

Clearly, the f, , inherits whatever discrete asym-
metries X& has with respect to X0. In the illustrative ex-
ample f~ is antisymmetric under g++ —

g while fc is sym-
metric under this symmetry. Likewise, in the case of ob-
servables sensitive to EDM and MDM couplings, the op-
timal observables will have the same transformation
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properties under CP and P„as the couplings. In particu-
lar, this prevents observables which are sensitive to one

type of coupling from being sensitive to another coupling
that has different symmetry properties [for example
Re(C) versus Re(D)]. On the other hand, observables
that are sensitive to a particular y coupling will also be
sensitive to the corresponding Z coupling [for example,
the optimal observable for Re(Cr) will also receive con-
tributions from Re( C ) ].

IV. MEASUREMENT OF DIPOLE MOMENTS

Consider now the process e+e ~tt~bW+bW
where the W bosons subsequently undergo the decay
W~l vi (I =e, p, or r). The final state consists of the six
particles bl+vibl vi. Of these one may only experimen-
tally measure the momenta of the quarks and the leptons
since the neutrinos escape detection. However, by impos-
ing (1) conservation of four-momentum together with the
conditions that (2) the lepton and neutrino reconstruct to
the W* mass, (3) the b quark together with a lepton and
neutrino reconstruct to the t, t mass, and (4) the neutrinos
are massless, the momenta of the missing neutrinos may
in fact be inferred. Furthermore, because of the left-
handed nature of the coupling of the W boson to leptons,
for W~lvi the momenta of the decay products of the W
boson determine the polarization of the W. Thus, in the
W decay, W (p~)~l (pi )vI(p„), the W polarization
E" is given by the expression

(23)

where coo is an arbitrary lightlike vector that determines
the phase convention for the polarization.

Under some conditions, it may not be possible to deter-
mine the polarization of the W boson. For example, if
the W bosons were to decay into jets, the polarization
would be undetermined unless the quark jet could be dis-
tinguished from the antiquark jet. We will therefore con-
sider the measurement of EDM and MDM form factors
both under conditions where the W polarizations may be
determined and under conditions where they may not be.

Let us now turn our attention to the problem at hand
and calculate the R value associated with the C, and D,
couplings. For each coupling, we calculate the value of R
and plot the quantity

5„= (24)
&nR e

6„ is thus the smallest value of the moment expressed in

units of el&s which, given a sample of n events, may be
detected with statistical significance S =1. Thus, for ex-

ample, if n =10000 and &s =500 GeV then 5&oooo=1
implies that if the moment being considered has a value

of e/500 GeV =4X10 ' e cm, it will produce a 1-o
effect given an experimental sample of 10000 events ob-
served.

Let us consider first MDM-type couplings which corre-
spond to Re(C). In Fig.. 2(a) we plot 5,oooo as a function

of V s for m, = 120 GeV and unpolarized e +e beams.

The solid curve represents the value of 5&0000 for a pho-
ton where the observable is the total cross section. In
contrast the dashed curve represents the optimized ob-
servable. Clearly, in this case there is no great improve-
ment. Likewise, the dotted line represents using the total
cross section to determine Re(C, ) while the dash-dot line
represents the optimized observable for Re(C, ). In this
case the optimized observable gives a factor of about 4 in-
crease in precision. In Fig. 2(b} we plot the same quanti-
ties for the case where both e+ and e are right polar-
ized, and in Fig. 2(c) we plot the same quantities in the
case where the beams are left polarized. The right-
polarized beams give the best results, which in the opti-
mized case are about a factor of 2 better than the unpo-
larized case.

In Fig. 3(a) we consider operators which are sensitive
to Im(Ctr) and m, =120 GeV. The solid line represents

5&0000 for the optimized observable where the beams are
unpolarized; the long dash-dot curve is the case with
left-polarized beams and the long dashed curve is the case
with right-polarized beams. As before, the right-
polarized beams give the best result, improving the pre-
cision by a factor of about 2. Also plotted are the opti-
mized result for unpolarized beams and m, =160 GeV
(short dash-dot curve), which shows that there is not a
great dependence of these results on m, .

We have also considered what precision one can
achieve if one neglects to measure the polarization of the
W, for example, in the case where W~qq' and one can-
not identify the flavors of the quarks. The dotted curve
in Figs. 3(a)—3(f) show 5,oooo for the optimized observable
which does not use the Wpolarization. As can be seen it
is about a factor of 30 worse than what can be obtained
using this polarization.

The optimized observable which we use above suffers
from the fact that it is defined only through the relatively
complicated equations given in the Appendix. It would
also be desirable to consider an observable which, al-

though not optimal, is of a simple form. Consider first
the case of the imaginary MDM-type couplings [Im(C, ) ].
In this case we have considered observables of the form

e„„k", k 2k 3 k 4~ (k, kb ),
where

k; C [P„Qz,P„Pb,Qb, H+, H

(25)

(26)

which have the correct symmetry (even under CP, odd
under P„). The momenta mentioned above in the nota-

tion of the Appendix are

P =P, PQ. =p,++p,—,

P, =p,+ —p,

H —=2E~ p, E~+2E~.p, E~ .

(27)

Of all the operators of the above type, it was found that
the operator

e„, PfQ, H+ H ~(Pb Q, ) (28}

is the best in both the cases of Im(Ctr ) and Im(C, ). The
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results for this operator are shown with the dashed curve

in Fig. 3(a) for the case of Im(C,~} and Fig. 3(b) for the

case of Im(C, ) assuming unpolarized e+e beams. Note
that this operator gives precision a factor of 5 —10 poorer
than the optimal operator.

In Fig. 3(c}we consider the measurement of th EDM
Re(D, ). The curves we give are similar to those de-

scribed above except that the form of the best simple

operator indicated on the graph by the dashed line is

Likewise, Fig. 3(d) shows a similar set of curves for the
coupling Re(D, ), where the best simple operator
represented by the dashed curve is

e P"Q "H+ H (30)

For the case of the imaginary EDM couplings, we have
considered operators of either the form

(k, .k )(k k )

e„„gggzH+ H (29)
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k) -k2, (3 I)

(32)

In Figs. 3(e) and 3(Q we produce the corresponding
dashed curves for the couplings Im(Dtr) and Im(D, ), re-

with the correct symmetry (CP odd, P„even), k, chosen
as above. In both the y and Z cases, the best operator of
this form we found was

spectively.
From the above calculations we conclude that in the

case of the real MDM couplings, Re(C, ), the use of an
optimized operator instead of just looking at the change
in the total cross section gives a factor of about 3 im-
provement in resolution, while using right-polarized
beams gives another factor of about 3, giving a total gain
using both improvements of about an order of magnitude.
In the cases of Im(C, ), Re(D, ), and Im(D, ), we wish to
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FIG 3 Sh h is 5 vs &s with respect to various couplings. The cases shown are ( )n are (a) Im(C~); (b) Im(C, ); (c) Re(D,~); (d)own ere is
arns usin m =120 QeV is shown withRe(D ) (e) Im(D, ); and (f) Im(D, ). In each case the optimal observable for unpolarized beams using m, —e(, )7 e m

g 7an m
n with the ion dash-dot curve; the optimal with right-polarized beamsthe solid curve the optimal with left-polarized beams is shown wi e ong a

m =160 GeV is shown with the s ort as - oh th th 1 n dash curve. The optimal curve using unpolarized beams an m, —
curve. The best that can be achievedcurve the optimal case where 8'-boson polarization is not measured is shown with the dotted curve. e e

with the simple operators described in the text is shown with the dashed curve.
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FIG. 3. (Continued).

10
0.0 500.0

I

1000.0
s 'i'(( eV)

1500.0 2000.0

emphasize that a simple operator constructed using the
8'-boson polarizations gives an improvement of an order
of magnitude over what can be done without using that
information, and an additional factor of 5—10 improve-
ment is obtained by considering the optimal observable.
If, in addition, one is able to use polarized beams, some
further improvement occurs, the best case being with
right polarized beams where an additional factor of about
2 is obtained. The graphs in these three cases tend to be
constant as &s increases; hence, the value of the moment
one can measure improves linearly with &s. The resolu-
tion, however, deteriorated near threshold. In contrast,
in the case of Re(C, ) the resolution does not deteriorate
near threshold.
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APPENDIX

The basic four-vectors we shall use are p,
+—which is the

four-momentum of the e —, pb, which is the four-
momentum of the b quark, pb, which is the four-
momentum of the b quark, p„which is the four-
momentum of the t quark, p„which is the four-
momentum of the t quark, and E~, which is the polari-
zation of the W —+.

We also define the following kinematic angles: Ot is the
angle between the top quark and the electron three-
momentum in the center-of-mass frame, and P, is the az-
imuthal angle of the top quark three-momentum about
the electron-beam axis. 8b and Pb are the angles of the b

Pi =p p~ Q. =p.++p,

P p+

pB=pB+2EIF p, Ew~ pB=pb+2E& p, EIF, (A3)

FB =PB—PB Pt — PB Pt
Pt& B PB 2 Pt

m, m,

QF FB+FB, PF=FB FB, —

in terms of which we define the quantities

m,
s Qz~ xt

2mp
xz =, ut=

s
pe pt

s

QF
QF.QZ QF P, PF Pe QF P,

VF ~ QG—,VG—
s s s

(A4)

quark in the rest frame of the t quark. Likewise, Ob and
P- are the angles of the b quark in the rest frame of the tb

quark. We express our phase space in terms of these an-
gles as

dP= d cos8,dg, d cos8bdgbd cos8bd(t)b . (Al)1

(4n )

Below we will calculate the differential cross section
X(P)dg for the process e+e ~tt~bW+bW to first
order in Ct and D, . We decompose X as

( ~ AB +~Re( C) +~Im( C) +~Re(D) +~Im(D) )

(A2)

where XzB is independent of C, and D„XR,(c) is propor-
tional to Re(C), XI (c) is proportional to Im(C), XR,(D) is
proportional to Re(D), and XI (D) is proportional to
Im(D).

For the purposes of our calculation, let us combine the
four-momenta of the particles as follows:
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QF' &F'
xF 3F + 2(PB Pt P—B Pt)+

s s Alt

1 „1F3= , &—„...Ptt'Qzp, QP e4= ,—&„.,Ptt'QzP, PP .
s s

We give here the following formulas for the differential
cross section in two cases: unpolarized e+e beams and
the exchange of only one vector meson (e.g., exchange of
only the Z boson), and longitudinally polarized e+e
beams with multiple-vector exchange (in particular, if one
boson is the Z and the other the y we have the case for
which we calculate numerical results). Both cases may be
derived from the expressions below by the following as-
signments to the parameters ai„cj„and dk, which will

then be substituted into Eq. (A8) to obtain the diff'erential

cross section.
First of all, in the case of single-vector exchange with

unpolarized beams let us define f = ( A, +B, ),

g =2 A, B„and r(,=s l(s —m(, ). We then assign the pa-
rameters ak, ck, and dk according to the expressions

a)=fA, rv, a2=fB, r)

a, = g f; A,'AJ, a2= g f; Bt.'Bt~,

a3= g f; (At'B. tj+Bt'Atj), a4= gg; At'Atj,
IJ IJ

a 5
= g g; B,'B„a6

= g g, ( A,'B~+B,' A ~ ),
IJ ij

c(' = g f ~
At~Re(Ct'), c2 = g f, BJRe.(C,'),

c3' = g g;, AtjRe(Ct'), c4'= g g;,B/Re(Ct'),
1J IJ

c', = g f,, A,'Im(C, '), c™

c' = gg; A~lm(C, '), c' = gg; B~jlm(C,'),
IJ IJ

d"'= yf. . A~Re(D,t), d';= yf, ,B/Re(D, '),

(A7)

a 3 2fA, B,rv, a4 —gA, rr2 = 2 2

5 g t "v 6 g t~tI"v2 2 = 2

d3'= gg; A(JRe(Dt'), d4'= g g; BtJRe(Dt'),
IJ IJ

ci'=f Re(A C t)re, c2'=f Re(BtCt)ri

c3 =g Re( A, C, )r~, c4' =g Re(B,C, )r~

c'i =f Im(A, C, )rv2, c2 =f Im(B, C, )rv,

c3 =g Im(A, C, )rv, c4™~gIm(BtCt)r), ,

d", =f Re( At Dt )rr, d 2' =f Re(B,D, )r

d3'=g Re(A, D, )r(„d4'=g Re(B,D, )r), ,

=f Im(A, D, )rv, d'2 =f Im(B,D, )rv,

d3 =g Im(AtDt)r), , d4 =g Im(B, D, )rv2 .

In the case of longitudinal-polarized beams with
multiple-vector exchange, let us denote the helicity of the

+ +e —by h+. Thus the e —beam contains a proportion of
—,
'

( I +h+ ) right-handed particles and —,
'

( I —h+ ) left-
handed particles. %'e further define the quantities
a=l+h+h and P=h++h . For each pair of vector
bosons V,- and V let us define

d', = g f; A(~Im(Dt'), d'2m = g f, B(JIm(Dtt), "

= gg,"Atjlm(Dt'), d4 = gg, Bt2Im(Dt') ."
IJ IJ

The terms in the partial cross section expansion are thus

~AB N[ai( Ui + Ui )+a2( U2+ U2 )

+a3 U3+a4 U4+a~ U5+a6 U&],

~Re(c) N'(c i Xc +c2 X—c+c3 Xc +c4 Xc )

im Yl q cim Y2 +cim Y3+ im Y4 ) (A8)

XR.(D) =N'(d", XD+d2'XD+d 3'XD+d4'XD ),

XR,(D)=N'(dI YD1+d2-Y2+d3-YD3+d4-YD4) .

The normalization constants N, N' are given by

f,~
= [a( A,' A ~ +B,'B~ ) +P( A,'B~+B,' A 1 ) ]r, r

gj = [p(A,' A J+B,'B~)+a( A,'BJ+B,' A2)]r,.r. ,

1 —4x,

N'=mt% .

2x~xt
(xt xw) (xt+2xw)

(A9)

where r, =sl(s —m,. ). Using these definitions, values of
the parameters aI„ck, and dk are

The quantities U, , X&, Y&, XD, and FD are given by the
expressions
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U, = [(R )
—(R+) ](u, +4x, +1),

U', = —
—,', [(xF—yF)(1 —4x, —u, )+2(vg+VF u—g

—uF)

+4u)( vg vF +uguF ) ]

Xc= —
—,'Ix, u, [(R ) —(R+) ]+u, (uF2 V—F2)

(uFug+UFUg )]

Q
Yc= (R +@4—R e3),

(A 1 1)

U2= [(R ) —(R+) ](u, —4x, +1),

Uz =
—,', [(xF—yF )(1—4x, —u,2)

+2(1—4x, )( vg +UF
—ug —uF )

+4ut(vgUF+uguF)]

U3 = [R (vgu, —vF ) R+(u—gu, +uF)]

Xt
U4= (R tjg —R ug),

2
—x, u, +Us= (R VF+R uF) ~

2

Uq= ju, [(R )
—(R+) ]—4(UFvg+uFug)],

XC= —,'tx, [(R )' —(R+)']+vg —ug

+ut(vFvg +uFug )]

Xg= —,'IR [vgu, +vF(u, —4x, )]
—R+[ugu, uF(u, 4x—, )]], —

Xg3= —
—,'[R [vFu, +vg(1+4x, )]

+R+[uFuT ug(1+—4x, )]j,

(A 10)

Yc ,'—(u—ge4 v—ge3),

Yc = —
2 ( uFe4+ UFe3) ~

Yc = —
—,'(R +@4—R e3),

XD = T~(vgE4 uges) i

Q

(R e —R+e )D 4 4 3

XD =
—,'(R e4 —R +e3),

XD — T~( VFE4+ uFE3),

YD= —
—,
' [R [ugu, (u, +—4x, )uF]

—R+[vgu, +(u, +4x, )UF]],

Qt
YD = (UguF+ugvF )

Y~ —
—,
'

( vg uF +ug vF ),
YD = —

—,
' [R [uFu, —(1—4x, )ug ]

+R +
[vFu, + (1—4x, )vg ]] .

(A12)
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