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The dominant first-order electromagnetic corrections to the 7" e te ™ invariant-mass distribution of

the rare decay K " —7Te e are analyzed.

PACS number(s): 13.40.Ks, 13.20.Eb

I. INTRODUCTION

Electromagnetic radiative corrections in K decays with
final-state electrons or positrons can be sizable in general
because the electron mass is small compared with the K
mass. A light charged lepton would undergo effectively
large accelerations in its creation and so should radiate
significantly. In practice, then, radiative corrections con-
tain large logarithms of a ratio of scales roughly propor-
tional to my /m,, which act to suppress stringently non-
radiative processes.

Recently, the rare decay K " —m+e te ™ has been stud-
ied experimentally with considerable accuracy [1,2]. This
report provides an examination of the effect of elec-
tromagnetic radiative correlations on the m+e Te ™ (mee)
invariant-mass distribution for this process. In the exper-
iment referred to above, the momenta of only charged
tracks are measured. In particular, the momentum car-
ried off by a photon goes undetected. Under these cir-
cumstances the mee invariant mass need not be the K
mass, but an approximate K mass can be inferred from
the mee invariant-mass distribution given adequate
theoretical input. Here the mee invariant-mass distribu-
tion is calculated in lowest nontrivial order in the sim-
plest appropriate approximation scheme as explained
below. Previous treatments of electromagnetic radiative
corrections in 7 and K decays include [3].

II. CALCULATION

The object is to calculate approximately the mee
invariant-mass (m_,,) distribution in K* —7*e*e ™ to
order a in electromagnetic corrections. One-photon
emission is allowed; the photon is assumed to go un-
detected. The ee invariant-mass square is

FIG. 1. the reactions (a)
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Some features of the experiment allow for simplifying
approximations. The most important one is that the
e*e” invariant mass m,, is required to be greater than
m o. This is necessary to avoid the background from
K —at#° followed by 7°—e Te ~y, where the y is un-
detected. Then, for example, the ratio m,/m,, can be as-
sumed to be small. The largest radiative corrections are
those which contain logarithms of m, divided by a scale
of order m_ or mg. This paper is concerned exclusively
with such terms.

The dominant contribution to the process with or
without radiative corrections arises from virtual-photon
rather than Z exchange, as illustrated in Fig. 2. The
graphs of the type Fig. 1(a), which are discussed here in
detail, are illustrated in Fig. 3, while those of type Fig.
1(b) are illustrated in Fig. 4. These form gauge-invariant
sets and contain the dominant large logarithms involving
the electron mass. Note in this regard that in the soft-
photon approximation the interference terms between
photon emission from a lepton and from a hadron cancel
when evaluating the m ,, distribution. Another class of
graphs of type Fig. 1(a) which is relevant is illustrated in
Fig. 5. In the Appendix the sum of such graphs is argued
to contain at most single logarithms of the electron mass,
subdominant to the leading double logarithms arising
from the graphs of Figs. 3 and 4. The coefficient of the
single logarithm from the class of graphs in Fig. 5 ap-
pears to depend on hadronic quantities presently incal-
culable and unavailable from the present experiment.
Therefore the graphs in Fig. 5 introduce an element of
uncertainty which will be specified in the concluding re-
marks.

The amplitude without radiative corrections, illustrat-
ed in Fig. 2, is

MoK —mee)=F((ry+ry))pki(ry)y,viry), (1

in the notation of Figs. 1(a) and

FIG. 2. Virtual-photon contribution dominates over the
virtual-Z contribution.
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FIG. 3. Virtual corrections analyzed in detail in this report.

where F includes a form factor, the photon propagator,
and constants. Only radiative corrections corresponding
to Figs. 3 and 4 depend in general on no more hadronic
information than is contained in F. The presence of the

o

(a) (b)

FIG. 4. Real-emission corrections analyzed in this report.

form factor precludes a fully analytic treatment. The re-
sults will be presented in a form suitable for Monte Carlo
evaluation. For example, the uncorrected partial width
Tyis

= 1 dp,, 4 _ 2172 44 .
T, 2me e que[q (p2+4m2)'2)(2m)*8* px —p,—q)
1
X——-—s(zﬂ)G(1—4m2/q2)1/2fd20A S MoK —>mee)|? . 2)

Here ﬁl is the three-momentum direction of the positron in the e fe ™

spins

center-of-mass frame (for each four vector g*).

The 6 function is appropriate as written for p% and g* given in the K rest frame. Of course, without radiation,

m

»ee =M. Terms of order m?2/q?* have been retained for the moment.

The radiative corrections are of either virtual (Fig. 3) or real emission (Fig. 4) in type. They have two effects on the
m . distribution. First, the real-emission corrections generate a tail for the distribution so that it is not a §-function

distribution, as it would be otherwise (1gnor1ng the intrinsic width of the K).

effects combine to suppress the quantity f (me—A_ ¥
m

Second, the virtual- and real-emission

,dm?2,,(dT /dm?,,), essentially the magnitude of the peak. This

mTee

quantity will be referred to as the contribution of the first bin. The two sorts of radiative corrections, when combined in

the first bin, cancel their individual infrared divergences. The bin size Am acts as the resolution in m

Tee *

Provided that m_,, is not too different from my, the soft-photon approximation can be used. More quantitative
statements will be made later. The soft-photon approximation will be used below. Infrared divergences will be regulat-
ed dimensionally [4,5], and the soft-photon approximation will be made following the approach and notation of [5] and

references therein.

The m2,, distribution for m _,,#my can be written as
d dy
dI; _ 1 f fd4q e[q —(p2+4m2)1/2](277)454(p1<—p,r—q) c , 3)
dmm,e (27 dm Tee
where
3 3
dy d’r d’r, d" 'K 4
= dg—r—r,—k) S MK —>meey)|*6(m2,,—(p, +r +r,)?) . €
dm?,, f(217)32€1 (2mV2e, 2ay-R2IK[ 1 V7 s},:;' —meey)| e Pa T )

Here the final-state photon phase-space factor d’k /(27)*2|k| has been written somewhat symbolically in its dimension-
ally regulated form. The introduction of the auxiliary momentum g" is convenient for the graphs of Fig. 4.
dy/dm?,, a Lorentz invariant, is most easily evaluated in the e *e "y center-of-mass frame, for given g*. In this
frame, ¢#=(Q,0), p7=(E_,P,), and r¥=(E;,R;). In the soft-photon approximation and also dropping terms of order

ml/Q?,
d n=s
amiy, 408, 3 MK e i T m =)
X [d" 204 : T 2 =
Q+E,—K-P, (E;—R;"K)NE,;+R'K)
—m? L L , (5)
(E,—RK)? (E,+R;K)?

where E; =Q /2.
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The validity of the soft-photon approximation can be estimated as follows. The e *e ~ pair is produced over a region
roughly of size 1/(g2)'/% For |K| smaller than (g?)'/?, the details of the leptonic current trajectories are weakly
probed, and the soft-photon approximation should be reasonable [6]. In making more specific estimates, the slightly
more conservative range |K| SE; (i.e., E, or E,) will be used. For |[K|Xm /2 and m, ~m _, then, the soft-photon ap-
proximation will be inaccurate. In obtaining the form Eq. (5), |K| has been ﬁxed to be

m}—m2,
IK|= LS — 6)

2AQ+E,—K-P,)

The minimum value of my —m _,, consistent with |K|~m /2 and m,,~m_ is mg—m_,,~3m?2/4my ~30 MeV. At
this value of mg —m_,,, values of |K| ranging to roughly 10 times smaller are also relevant. Therefore the soft-photon
approximation will just begin to breakdown at mg —m ,, =~30 MeV. The experiment [1,2] is concerned primarily with
mg —m_,, 530 MeV, and so the soft-photon approximation is appropriate. This is the second simplification allowed by
the particulars of the experiment in question.

Contlnumg with the evaluatlon of d v/ dm? e the integral d" ~ ZQA can be done in the peaking approximation. For
F(K) slowly varying close to K = R1 or Rz —Rl,

2 A
fd"_zﬂfc 9 ~——m] — -+ L F(K)
(EI_RI'K)(E1+R1'K) (EI_RI'K) (E1+R1'K)2
T o? VN R S Rk 0? PPN o
~2m T(n/2—1) l21n m? +(n—4) In 3 +(21n2+1)ln m? [f(K=R)+f(K=—R))]. ()

The terms proportional to n —4 must be retained in the calculation of the contribution of the first bin because the in-
tegral over m2,, there yields an infrared pole term proportional to 1/(n —4). Evaluation of the O(1) terms requires a
calculation beyond the peaking approximation (for a related example, see [7]).

In the soft-photon approximation and dropping terms of O(m?/Q?), the graphs of Fig. 4 give

dl 4, 1 d3Pﬁ
~ d*q 0[q°—(p2)/210(g>—q2,)2m)*8* pxr —p.—q)
dm? f(zmifzevf g 6lg°—(p7)'"*16(¢*— g, )2m) 8% (px —p,—q

mee

8(27)°
Q2
-

m

C 2my

2
><fd2nﬁ1 s l./l’lo(K—>7Tee)|2% In

spins mg—mz,

+0(1) (8)

e

outside of the first bin, and

mg dr
K 2 (4)
[ a2

(mg—Am) ree

1 d’p,
~ d%q 0[q°—(p2)1/*16(q>—q2, ) 2m)*6*(px —p,—q)
2m1(f(27r)326,,f q 60lg"—(p7) "°16(q° —q5y (2m)'8 (px —p.—q

1
8(2m)®
2 2Q Q2
de ‘Q'fll > [M (K —ree)] . [ln F

spins

2
‘m+y5—ln(l6ﬂ')

+In

4mi(Am)?
(Q+E,_ *—(R,-P,)?

o Q_2
2

——;-ln +(2In2+1)ln

+0(1)] 9

e

The quantity g2,, is the lower cutoff on the e "e ~ invariant mass, of order m 2.

The virtual corrections of Fig. 3 are also required to complete the calculation of the contribution of the first bin only.
The asymptotic behavior of the vertex function (including the effect of wave-function renormalization) and vacuum po-
larization (including charge-renormalization effects) are well known [7-9]. Including on-shell wave-function renormal-
ization, the ultraviolet-finite vertex function at large timelike ¢? is (in the notation of [10])

F 2(q 2’ ’ne2 )

THp',p)=F,(g*>,m2)a(p")y*v(p)+ a(p Yo (p+p)uip), (10

4m

e

where
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2 2y = & 0’ 1 1 Q2 Q2
Re[F(g*mI)]=— |—2In |= | |—+ = SVET 1n(47r)+1nme ——ln —ln +0(1) (11)
2 me2 —4 2 me 2 me
and effects of F, are power suppressed. Also,
QZ
eZHC(q2)=— In +0(1) (12)

3

e

The results from the one-loop vertex function and vacuum polarization modify the uncorrected result [Eq. (2)] in a sim-

ple way.
Combining the real-emission and virtual corrections,
3
mg 2 4T+ 1 d’p
J dmie= s =]
(mK~Am)2 dmfree 2m (2

f d*q 6[q°—(p2)'10(¢>— g2, )2m)*6*(px —p,—q)

8(27)°

X [d2g 3 MoK —mee)l?

spins
2 m2
14+ % | £ — +21n | Am
T | m? (Q+E_)*—(R-P,)* m,
2 2
21 | L+ pme+ 2 | |L | [+0|2 ’
T ki 6 m; T

The dominant correction is the double logarithm
(a/m)In*(Q?/m?), which is numerically near 0.35 over
the range m2 <gq?<(mg—m,_)%. Note that both the
real-emission and virtual graphs contribute equally to it.
That the dominant correction acts to suppress the tree re-
sult is due to the preference of the light leptons to radi-
ate. These double logarithms are closely related to Su-
dakov double logarithms of the vertex function alone
[11]. The Sudakov-like double logarithms in the vertex
function with external fermions on shell are known to ex-
ponentiate when summed to all orders [12] in QED with
a regulator photon mass in place. Assuming that the
double logarithms here exponentiate as well when
summed, the error in working to first order is not severe,
e.g.,, | —x—e *=~—0.05 for x =0.35.

It is argued in the Appendix that the graphs of type
Fig. 5 contribute presently incalculable terms proportion-
al to (a/m)Inm? to Eq. (13). Therefore it is important to
note that the terms proportional to (a/7)lnm? already
appearing in Eq. (13) are not the complete set in the full
result.

The recent results of [2] make possible a comparison of
experiment and the results of this report, as shown in Fig.
6. The effects of an energy resolution of approximately

FIG. 5. Another class of virtual corrections, beyond that of
Fig. 3.

(13)

I

6 MeV have been folded into the predicted m ,, distribu-
tion. Improved correspondence between experiment and
theoretical expectations is evident with the radiative
corrections included.

To summarize the primary results, Eq. (8) describes the
radiative tail to the m ,, distribution, and Eq. (13) con-
tains the O(a) corrections to the contribution of the first
bin of the m . distribution. Both contain the dominant
logarithms. Equation (8) is subject to nonlogarithmic
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FIG. 6. Comparison of data (histogram) and Monte Carlo re-
sults from Ref. [2]. Monte Carlo results without (with) radiative
corrections calculated here are given by the dashed (solid)
curve.
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corrections, while Eq. (13) is subject to additional single-
logarithmic corrections, as described in the Appendix.
Evaluation of the nonlogarithmic corrections would re-
quire both a more accurate calculation of the graphs con-
sidered here, as well as calculation of graphs in which the
photon is radiated off of the K or 7*. The arguments
of the single logarithms cannot be fixed precisely without
calculation of the nonlogarithmic terms for familiar
reasons. Because In(Q?/m2)=~12 over the appropriate
range of Q2 the corrections to both Egs. (8) and (13) can
be expected to be about 10% of the corrections as already
given there.
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APPENDIX

The discussion of graphs of the form of Fig. 5 is some-
what heuristic because of the presence of apparently in-
tractible hadronic complications. Contributions to the
amplitude which are singular as m2?—0, such as In%(m?2)
or In(m?), arise from regions of soft or nearly lightlike
loop momenta. Therefore, in analyzing such contribu-
tions, it is appropriate to organize the analysis according
to the number of propagators which are singular in either
region (or both).

The contributions most singular are those in which
there is a single intermediate hadron, a 7+ or K *. In ei-
ther case one of the photons can be soft while the inter-
mediate hadron is nearly on shell. The soft photon is em-
itted in the vertex, which does not change the variety of
hadron. There are actually four graphs of this type; two
are illustrated in Fig. 7. An approximate analysis of the
contribution of Fig. 7(a) is as follows. In the most singu-
lar region, where the loop momentum [ is soft, the [/
dependence of the propagator of the photon emitted in
the K-to-m vertex is neglected. Dropping the / depen-
dence of form factors as well, the contribution reduces to

My, = —ie’F(q?)4ry-pg @(ry)y,0(r pg I(ry,pg)

where
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FIG. 7. Two examples of radiative corrections which fall into
the class of Fig. 5.

dPl 1 1

Qm)2 1242]-r+ie I*+ie

x— L
12+21-p+ie

I(r,p)=f

Keeping only terms singular as 7>=m2?—0,

T(3—D/2)
Itr,p)~—
PP
1 1 pr | 1.5
X!2r~p D—a" |z |[Ta

where the pole term, proportional to 1/(D —4), is a di-
mensionally regulated IR divergence. When this contri-
bution is added to the corresponding contribution of Fig.
7(b), the IR divergences as well as the In?(m2) terms can-
cel. It is of course necessary that the IR divergences can-
cel. The sum of the two graphs, approximated as before,
in which the intermediate hadron is a 7, is also free of
IR divergences or singularities proportional to In%(m2).
Integrals which are less singular for soft / can contain
at most single logarithms of m?2. For example, the in-

tegral

dPl 1 1
f D24 12 —J(p)

(2m)? 1°+ie 1°+2l-r+ie
where J(p)=I-p/(I1*+2l-p+ie) or 1/(I*+2lp +M?
+i€), contains a single logarithm of m2. Such terms are
very difficult to analyze because they depend on the de-
tails of form factors and/or the 7-K Compton amplitude.
Consequently, the graphs of type Fig. 5 contribute ap-
parently incalculable terms proportional to (a/7)lnm Zin
Eq. (13).
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