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Single-spin asymmetries in muon pair production
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Theoretical analyses of polarized leptoproduction data suggest that the polarized gluon structure
function might be large, but there has been no independent measurement of this quantity. Measure-
ments of single-spin asymmetries in the production of muon pairs from the scattering of two protons,
one of which is longitudinally polarized, can be interpreted in terms of polarized gluon, quark, and
antiquark structure functions. We develop this interpretation in detail and compute the size of the
asymmetries that might be expected for this process.

PACS number(s): 13.88.+e, 12.38.Bx, 12.38.gk, 13.85.gk

I. INTRODUCTION

Polarized leptoproduction experiments [1, 2] have
shown that a polarized proton has an interesting spin
substructure. Quarks carrying a large fraction of a longi-
tudinally polarized proton's momentum are found to be
highly polarized. The degree of polarization varies with
the longitudinal momentum fraction and diA'ers for differ-
ent flavors of quarks. Recent experiments [2] have shown
that the simple assumption [3, 4] that only up and down
quarks should carry the proton's spin cannot be correct.
This suggests that either the strange quarks should carry
a significant fraction of the proton's spin or that the glu-
ons within the proton should be highly polarized [5].

The first alternative might seem improbable [6], since
it would require the strange quarks in the proton to be
highly polarized down to rather small values of the lon-
gitudinal momentum fraction z. The second alternative
might also seem improbable since it would require [7] the
gluons to be highly polarized down to small values of
z, but there is no data which directly contradicts this
idea. Furthermore, the expectations of quantum chro-
modynamics (QCD) [8] are that the gluon spin fract, ion
should grow indefinitely as one increases the momentum
scale on which one probes the proton's structure. (A
gluon spin fraction greater than l is accommodated in

QCD by a large and oppositely oriented component of
orbital angular momentum. )

High-energy hadron colliders offer the possibility of ex-
ploring partons at increasingly small longitudinal mo-
mentum fractions for a given value of the transverse
momentum (or partonic scale). At these small momen-
tum fractions the parton densities become large, either
through the mechanism of gluon bremsstrahlung as em-
bodied in the evolution equations of Altarelli and Parisi
[10]or through an intrinsic component associated [9] with
the structure of the Pomeron in QCD. In this sense new
hadron colliders provide gluon beams of high intensity.
From the viewpoint of the strong interactions, then, the
question of whether these colliders should accommodate
polarized beams is simply a question of whether these
gluons would be highly polarized.

We see that one's interpretation of current leptopro-
duction data may have an important influence on the
design of new hadron colliders. For this reason —and for
a better understanding of the substructure of the polar-
ized proton —it is important to resolve the question of
whether the gluons in a polarized proton are themselves
highly polarized. This is not a question which can be re-
solved from inclusive leptoproduction data alone. Indeed
the first moment of the polarized structure function can
always be written as a sum of terms

Gi(z, q )dz = ~sou'+ ~sAd'+ ~sos'.

Each of these terms corresponds to a matrix element of
a component of the axial vector current, e.g. ,

( p) slu7p7sulp) s )= sp(p)&u (1 2)

Within the context of leptoproduction data there is
no way to distinguish between the naive interpretation,
which identifies Au' with the spin fraction carried by the
up quark, and an interpretation [5] which identifies b,u'

4u = 6u —(crs/2s)AG (1 3)

Here Lu denotes the spin fraction carried by the up quark
and AG the gluon spin fraction, which enters the matrix
element of the axial vector current (1.2) as a consequence
of the axial anomaly.

If one wishes to isolate the up-quark and gluon contri-
butions to (1.3) separately, it. is necessary to examine ex-
perimental quantities which are directly sensitive to the
gluon spin fraction —quantities for which AG does not
have the formal structure of a higher-order correction to
Au. If AC' makes a contribution of any significance to
Eq. (1.3), then its contribution to these other processes
will be extremely large, since the relative suppression fac-
tor of ns/2ir will no longer be present. This makes an
experimental search for AQ much easier to undertake.

Unfortunately the experimental situation is by no
means simple or obvious. Experiments which require po-
larized beams and targets are technically difficult, long,
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and expensive. In leptoproductio» experinxents it is pos-
sible to separate the quark and gluon contributions to
the gi if one identifies [ll] one or two hadronic jets
in the final state. The single-jet events correspond to
quark-initiated processes; two-jet events are either ra-
diative corrections to these quark-initiated processes or
gluon-initiated processes. The latter are dominant for
large-transverse-momentum jets. This is not a simple
experiment to carry out. The optimal facility for such
a measurement might be a lepton-hadron collider such
as the DESY e-p collider HERA, but HERA lacks any
provision for a polarized proton beam.

The availability of high-energy colliders with polarized
proton beams would allow one to carry out, a. number of
experiments [7, 12] which are sensitive to the polarizecl
gl uoll corllporlell) of t he pl'ot ol}. No such r»achi»es ex-
ist at present, although an option of this sort exists for
t, he BNL Relativistic Heavy Ion Collider (RHIC). The
upgrade of any present hadron collider to accommodate
polarized beams seems unlikely at present. Hence one
would have to work with extracted tertiary beams and
external polarized targets. The massive effort for such an
experimental program also makes it unlikely at present.

This leaves the possibility of using processes for which
only a polarized beam or a polarized target would be
required. Measurements of t,he "single-spin asymmetr ies"
t, hat, might, be detectecl in such an experiment form the
subject of the present paper. We consider the specific
process

p++p
as typical and as a process which should be relatively
easy to examine experimentally. The required experi-
mental setup would involve either an extracted (unpolar-
ized) beam and a polarized external target or an (unpo-
larized) internal beam and a polarized internal storage
cell [13].

If one is interested in finding asymnietries for longi-
tudinally polarized protons, and if one is dealing with a,

parity-conserving amplitude, then it is necessary to mea-
sure the momentum of at least two particles in the final
state. Indeed, the spin vector for the polarized proton in
the initial state must be correlated with some axial vector
defined by the various measured momentunl vectors. If
only one particle is measured in the final state, then the
only such axial vector would be the normal to the plane
defined by this momentum and the collision axis of the in-
cident particles, and the only possible asymmetry would
have to involve transverse components of the initial spin
vector. If the momenta of two particles are measured in
the final state, then their cross product defines an ax-
ial vector which can have a longitudinal component. For
the process (1.4) these two momenta are the momenta
q+ and q of the p+ and p particles. The transverse
momentum of the pair,

Q J- 1J + 1J

must also be nonzero for the longitudinal spin asymmetry
to be nonvanishing (since otherwise q+ x q would have
no longitudinal component).

The longitudinal spin asymmetry for the process (1.4)

is proportional to the quantity s.q+ x q, where s denotes
the proton s spin. This quantity is odd under time rever-
sal. Hence the asymmetry must arise from the imaginary
part of the muon pair production amplitude. It follows
that there is no asymmetry at the tree level in quan-
tum chromodynamics, and that the asymmetry at order
o.s is determined by the structure of one-loop contribu-
tions to the production amplitude. In essence, the goal
of this paper will be to calculate the coeScients of o.p

that occur in the various partonic subprocesses that con-
tribute to the hadronic process (1.4). If these coefficients
are not small, then it should be practical to measure the
polarization asymmetry for moderate values of Q~, say
Q- 10—25 GeU .

We find this to be the case and identify the regions
of phase space where the contributing parton subpro-
cesses have relatively large asymmetries. These results
indicate that experiments which focus upon the process
(1.4) should be feasible to carry out and should provide
significant data on the magnitude of the gluon spin com-
ponent of the proton. We feel [14] that these experiments

may offer the best way of obtaining this information with
the use of any existing particle accelerators ~

The following two parton subprocesses and their charge
conjugates contribute to muon pair production:

q+q p+p +G,
G+q o I +q.

A third process,

G+G~ p+p +q+q,

(1.6)
(1.7)

II. KINEMATICS

The parton-level kinematics are the same for any of the
processes that, we will discuss in this paper. In each case
two incident partons collide to produce a virtual photon
and an outgoing parton. The incident partons arise from
each of the colliding hadrons, the virtual photon decays
into a p+p pair, and the outgoing parton materializes

can also contribute to muon pair production, but this
process is of higher order in perturbative QCD than ei-
ther of the processes (1.6) and (1.7) and is thus relatively
less important at large Q . In the present paper we shall
only discuss the contributions of the leading-order pro-
cesses, (1.6) and (1.7). In the next section of this paper
we discuss the kinematics common to these two process.
In Sec. III we discuss the process (1.6) in detail, con-
sidering both the unpolarized cross section and the cross
sections for polarized quarks or antiquarks. In Sec. IV we

consider the gluon-quark process and evaluate the asso-
ciated single-spin asymmetries for this process. Section
V discusses the relevance of these parton processes in

proton-proton scattering experiments. Section VI sum-
marizes our results, discusses their consequences for ex-
periment, and lists related processes which might be con-
sidered in a. similar vein. Details of the calculations of
Secs. III and IV may be found in Appendix A and a set
of tables. In Appendix B we discuss the relation of the
current work to previously published results.
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Qp=qq +qp)+
+

(2.1)

(2.2)

If Q )) m&, we can ignore the muon mass m„and use

the approximations

as a hadronic jet. We label the momenta of the incident
partons by pl and p2, Q denotes the momentum of the

virtual photon, and A the momentum of the outgoing
parton or jet. The individual muons have momenta q+

and q, but it will frequently be more convenient to use

the linear combinations

outgoing quark of helicity +2. If the outgoing parton is

a gluon, the values s = +1 refer to helicities +1. The
corresponding symbols for the lepton helicities are s+. If
one does not observe the spin orientations of any of the
produced particles, then the parton cross section has the
form

EM1 o. dq+dq dK
2sQ 2lrs 2qo+ 2qo 2I&p

xb (q++ q + I~ —pl —p2)W""(sl, s2)L„„.
(2.16)

q Q=O,

q = —Q
2 2

(2.3)

(2.4)

The tensors W&v and L» are constructed from hadron
and lepton variables, respectively. If the produced muons
are relativistic, then one can ignore the muon mass and
write

Lp. = 2(QpQ. —gp. Q' —qpq. ) (2.17)
We will denote the invariant momenta formed from the
parton variables by

s = (PI + P2)',
t = (IC —pg) = (Q —pl),
u = (I~ —pl)' = (Q —p2)'.

(2.5)

(2 6)
(2.7)

In the center of momentum of the parton scattering
process the parton momenta have the explicit forms

p", = (P, o, o, P), (2.8)
p", =(P, o, o, -P), (2.9)
Q" = (E', q' sin 0, 0, q' cos 0), (2.10)
q" = (q'cosn, Qsinn cosPcos8+ E'cosnsino,

Q sin n sin P, E' cos n cos 8 —Q sin n cos P sin 0),
(2.11)

with
1

AW = —) s;W""(sl, s2)L„„.
S 1182

(2.18)

Equation (2.16) applies to the annihilation of partons
with helicities of signs sq and s2. If the initial parti-
cles are unpolarized, or if only one of them is polarized,
then one must construct appropriate spin averages of the
quantity W""(sl, sq)L„„.

Of particular interest in this paper is the case where
one of the initial partons is polarized, with s; = +1.
We will designate the differential cross section for this
process by dog. The unpolarized cross section is given
by (do++do )/2 and is obtained by replacing the factor
W&"(sl, s2)L„„ in Eq. (2.16) by an average over initial
spin orientations

& P, , W""(sl, s2)L„„.Similarly, we

can construct a cross section difference d&+ —der if we

replace the factor W""(sl, s2)I „„in Eq. (2.16) by the
quantity

1P = —+s,
2

s+ Q'
(2.13)

The ratio

do+ —do

do'+ + do'
(2.19)

s— 2

(2.14)

(2.15)

We will denote the signs of the helicities of the incident
partons by s~ and s2 and the sign of the helicity of the
outgoing parton by s. Thus s has the values +1 for an

Equations (2.8)—(2.11) display the components of each
vector in the form z" = (t, z, y, z). The momenta of the
incident partons thus define the z axis, while the direction
of the virtual photon defines the z-z plane. The angles
n and P describe the decay of the virtual photon relative
to these axes in the rest frame of the photon [where,
acco;ding to Eq. (2.3), qo = oj. The phase space for the
decay of the virtual photon has the form

1 d3q+ d3q 4 + 1
6 (q++ q

—Q) = dO(n, P)

1
sill ndn dp.

defines the single-spin asymmetry that we seek to de-
scribe in this paper. In terms of the quantities just dis-
cussed this asymmetry has the form

4W
W& (sl, s2)I.„„

(2.20)

P v~p c7
X&pv pcr Py J 2~ (2.21)

which involves a color coeKcient |~~ and two invariant
functions A& and A2 . The totally antisymmetric tensor

is defined to have

~Oi23
——+ l. (2.22)

The common factor g in Eq. (2.21) refers to the strong

We will denote by AW~&~ the contribution to AW of
a given Feynman graph, j. Each such contribution may
be written in the form

~WLl= * (~L'lq p, +~~'q p, )
~2g4g[j]
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~14Ll= ' (T,",q Z+T,",q X)
e2g4 g[j]

ir )

u~p oX E p, po'py p~ ~ (2.23)

The vectors Z and X are an orthogonal pair of spacelike
vectors each of which is orthogonal to the vector Q. In
the parton center-of-momentum frame Z lies along the
direction of the incident particles, while X and Z define
the scattering plane for the process q + q ~ 7' + G.
Thus Z is constructed from the momenta of the incident
partons, while X involves these momenta and the mo-
mentum Q. The explicit forms of Z and X are

Z„= (Q —u)pi„—(Q —t) (2.24)

coupling (with g /4' = o.s), while e, denotes the charge
of the participating quark in units of e, the proton's
charge.

It is convenient to reexpress the functions A& and A2

in terms of other invariant functions [15]T2 1 and T2
These functions are defined by a decomposition

and

v~p
pup&p] p2~ (2.34)

If we average the absolute value of do+ —der over the
possible decay directions of the muon pair and divide by
the corresponding average of der++do, we obtain a func-
tion A which depends upon two dimensionless variables,

Q /s and Qz/s. Denoting this averaging procedure by
the symbols ( . ), we define the average asymmetry
A by

& AW&

(~ P, , w&'(s, , s~)L„„)
(2.35)

q = (0, Q sin n cos P, Q sin o, sin P, Q cos n). (2.36)

In that frame the q dependence of AW can be written in
the form

In the rest frame of the virtual photon the vector q has
components

9 ' Cqy. (2.37)

X~ =(Q ")»~+ (Q t)p2~
—(Q' —t)(Q' —u) Q~/Q' (2.25)

The relation of the functions T2 i and T2 ~ to A~ and
A2 is given by

T2, —1 Al/(Q u) A2/(Q t) &

T2 2
——Ai/(Q —u) + A2/(Q —t).

(2.26)

(2.27)

In terms of the angles cr and P which characterize the
lepton momenta in the rest frame of the virtual photon,
the dot products q p~ and q p2 have the explicit forms

Q u —st

2(s —Q2)

Q t —su

2(8 —Q')

/Q2stu
cos n + sin n cos p,8—

QQ2stu
cos n — . sin n cos p.8—

(2.28)

(2.29)

s+ Q2 t —u
q X = tucosn+8— 8— 2stu sin n cos p,

(2.31)

while the cross product which appears in Eq. (2.23) can
be written as

Hence the products q Z and q X in Eq. (2.23) may be
written

Q28(u —t) s+ Q'
q Z = cos n+ 2

Q2stusin o. cos P,8— 8—
(2.30)

The maximum value of this expression is Q~(~/2, but the
resolution of any given detector requires one to average
over some region of phase space. To get an idea of the
effects of this averaging, consider an average of Eq. (2.37)
over the quadrant defined by qy & 0, q g & 0. The result
is 2Q~(~/3z or 4/3x times the maximum value.

Although we will quote polarization asymmetries at
the parton level to give a rough idea of asymmetries
that might be expected experimentally, there are several
other factors that one must consider in order to make a
more precise estimate. We have computed the parton-
level asymmetries by taking the ratio of the lowest-order
computation of the difference and sum of the various
helicity cross sections. The lowest-order results for the
unpolarized cross section are known to be modified by
higher-order corrections, which yield a "I~ factor" of or-
der 2. This factor would reduce our estimates of the
parton-level asymmetry by a corresponding factor, as-
suming that there is no analogous effect for the cross
section difference.

The most accurate estimate of the expected experi-
mental asymmetry would involve computing the cross
section difference using the parton-level expressions given
in this paper, introducing model expressions for the var-
ious parton distribution functions (introduced in Sec. V
below) and accurately modeling the acceptance of the de-
tector that is to be used in the experiment in question.
An appropriate expression for the cross section sum could
be taken from calculations which reproduce the A factor
or from experimental data.

ep"p7pl p2Q q = Q stu sin nsin P.
2

(2.32) III. QUARK-ANTIQUARK ANNIHILATION

Owing to the dependence of Eq. (2.23) upon the vector
q, the asymmetry Q defined by Eq. (2.20) alternates in
sign in quadrants defined by the relative orientation of q
with the vectors

In this section we will discuss the process

g+Q~P P +G (3.1)

=T2 1Z +T2 2X (2.33)
illustrated in Fig. 1. The quark carries a momentum

p~ and t, he antiquark momentum p2, while the outgoing
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P)
We have suppressed the color indices of the quark and
antiquark; these indices must coincide for annihilation to
take place. Neglecting quark masses, we can write the
hadron tensor W&' as a trace in Dirac and color space

P2

FIG. 1. Annihilation of a quark and antiquark to form a
virtual photon and a gluon.

N2 g 2 )

gluon has momentum I&. At the tree level there are two
Feynman diagrams which contribute to this process as
shown in Fig. 3. For arbitrary polarization states of the
initial partons, the muon pair production amplitude has
the form

4xoEMv(P2, s2)CI1 ~ u(Pl ) sl)
1

x u(q, s )p„v(q+, s+). (3.2)

The factor I/N2 (where N is the number of colors) refers
to an average over the possible colors for the colliding
quark and antiquark. This is appropriate if these partons
arise from color-singlet hadrons, as we shall discuss in
Sec. V of this paper. If the initial quark and antiquark
are unpolarized, then at the tree level one can average
over the initial quark helicities to obtain

51152
2 (g *)' -- K«'-t)'+(Q'-')'+ (» q)'+4(» q)'j (3 4)

If one replaces the factor W""(sl, s2)L„„ in Eq. (2.16) by the averaged expression, Eq. (3.4), then one obtains the
muon production cross section for unpolarized quarks and antiquarks. In terms of the angles n and P Eq. (3.4) may
be written as

—) W"'(s, , s2)L„„= (ge;) t + u + 2Q s
51}52

+
(s2+ Q~)(P + u2) —4Q2stu

(S Q2)2

+ 2(u —t)(s + Q2)

(s —Q )

8Q'stu
cos n+ sin ncos Ps—

(3.5)

The average value of this expression over the phase space
of the muon pair produced by the virtual photon is

2K

dP der sin n —) W""(sl, s2)L „4x 0 0 5 1152

Pg
q

q+

8Q'((Q' —t)'+ (Q' —u)'i2¹ '
3tu( —Q2)2

These unpolarized cross sections serve to normalize the
polarized cross sections that we shall compute below.

P2

2

q

Pg
q+

P2

FIG. 2. Gluon scattering from a quark to produce a vir-
tual photon.

(b)

FIG. 3. Lowest-order graphs contributing to quark-
antiquark annihilation.
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We are interested in the cross-section difference that
arises when one of the initial part, icles in the process (3.1),
say t, he quark, is prepared with either positive or negative
helicity and the other particle is unpolarized. Since the
helicity projector is (1 + ps)/2, this cross-section differ-
ence will involve a Dirac trace with a single factor of p5.
Note that, since all terms in M"o contain odd numbers
of y matrices, the helicities sr and s~ must, be opposite.
Hence the asymmetry arising from polarized antiquarks
will differ from that for polarized quarks only by a sign.
I'he Dirac trace with one factor of p5 will yield an imag-
inary coeKcient, owing to t, he identity

(3.7)

Our Dirac matrix ys is defined by the expression

75 ~Y (3.8)

Since the cross section difference is itself a real quantity,
it follows that the amplitude M" must involve a non-
vanishing imaginary part to contribute. This amounts to
an explicit demonstration of the tirrae-reversal argument,
given in Sec. I. In the context of perturbative @CD, this
observation implies that one must compute one-loop con-
tributions to the muon pair production amplit, ude. These
contributions are illustrated in Fig. 4. Since we are in-
terested only in the imagiiiary part of these one-loop am-
plitudes, not all of the graphs in V'ig. 4 will contribute.
Given that the momenta pi —Q and p2 —Q are space-
like, it, is easy to see that graphs 4(d), 4(e), and 4(f) have
no imaginary parts and need not be considered in what
follows.

The real parts of the graphs in Fig. 4 cont, ain ultra-
violet divergences, but the imaginary parts are finite.

Therefore it is convenient to extract the discontinuities
of these graphs before evaluating the internal momentum
integrals. This reduces those integrals to the form of sim-

ple and ultraviolet-convergent phase-space integrals. In-
dividual graphs exhibit infrared divergences for massless
quarks, but these divergences cancel in the observable
asymmetries. We have chosen to evaluate each of these
integrals in the center-of-mass frame of the particles re-
sponsible for the discontinuities and then to reexpress
these results in a covariant form.

The specific discontinuities that contribute to the po-
larization asymmetry are shown in Fig. 5. Figure 4(a)
has a nonvanishing s-channel cut, as shown in Figs. 5(1)
and 5(lx). All the other graphs of Fig. 5 involve a cut,
through the quark and antiquark which combine to form
the virtual photon. The contribution to the cross section
difference from graphs 5(1) and 5(lx) must combine to
yield a, gauge invariant, infrared finite result —as must
the contributions of the remaining graphs.

After evaluation of the phase space integrals, the con-
tribution of any of the graphs of Fig. 5 to the polarization
asymmetry may be written in terms of a quantity

(3.9)

which involves the interference of an amplitude .V„~
with the tree amplitude M"," depicted in Fig. 3. If
one replaces the factor $V"'(si, s2)I"' in Eq. (2.16) by
AW~&~, then one obtains the contribution to the differ-
ence in cross sections for positively polarized quarks and
negatively polarized quarks.

(1x)

(a)

(2) (2x)

(c) (4)

(tx)

FIG. 4. One-loop corrections to the virtual photon pro-
duction amplitude. Each diagram other than (c) depicts two
possible processes, since each incoming line can specify either
a quark or an antiquark.

(g)

FIG. 5. Cut graphs contributing to the single-spin asym-
metry.
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As discussed in the preceding section, AW may be
written in terms of two invariant functions, T2 1 and
T2 2. By construction the function T2 1 is odd under
the interchange t ~ u, while the function T2 2 is even.
To reduce the likelihood of algebraic error in our compu-
tations we have evaluated the momentum integrals, the
transformation to relativistically invariant variables and
the Dirac traces using the computer program MATHE-

i

MATICA [16]. In Appendix A we tabulate the quantities

T2 i and T2 „and the color coefficients Cital for each
individual Feynman graph. If we combine graphs which
correspond to the same physical discontinuity, then we
obtain functions which are infrared finite, gauge invari-
ant and physically realizable, Combining all graphs we
arrive at our final results for the asymmetry associated
with quark-antiquark annihilation,

2Q'(N' —1) / (N' —1)(Q'+ s)(u —t)»[{Q'—t)/s]»[(Q' —u)/s]
iuN ( (Q —i) (Q —u) (Q —t)u (Q —u)t

Q2(Nz —1) 2 ( 1 1 i Q (Q —s) —2tu

&(Q"- —t)' (Q' —')'& &'(Q' —&)(Q' —')
2s ln[{Q' —t)/s]»»[{Q' —u)/s]

(Qz-t)" (Q'- )~'

(3.10)

(3.11)

In the kinematic region t« s—, Eqs. (3.10) and (3.11)
simplify to the forms

t = —0.65Q
with a maximum value of

(3.17)

2Q&(N~ 1)2
T2,-1—

Nasl(Qz —t) 2

—Q~(N~ —1)'-

Nas j(Q~ j)

(3.12)

(3.13)

N2 —1
A x —- o3o ns. (3.18)

Another indication of experimental expectations is
provided by the average asymmetry A of Eq. (2.35). In
the limit t « s, A —assumes the form

The symmetry properties of T2 1 and T2 2 under t ~ fs

provide correspondingly simple expressions for the kine-
matic region u« s—. For fixed values of Qz, t, and s,
the cross section difference will depend upon the lepton
momentum diA'erence q through the factors indicated in
Eq. (2.37).

Consider now the asymmetry A defined by Eq. (2.20).
We can get an idea of the magnitude of this asymmetry
if we maximize this expression over possible values of the
lepton decay angles. In the limit,

N2 —1 ns r(r + 4)
2N 2~ (1+r)'

This quantity is maximal for

r = ~13 —3-O.61,

where it assumes a value

N2 —1A,„=O. 13 ns.

(3.19)

(3.20)

(3.21)

r = i Q'— (3.15)

(3.14)

our expression for A is a function only of the ratio
The relative size of A~~„and A~~„ is roughly the factor
4/3ir mentioned previously.

In the kinematic region

and the angles which specify the orientation of the lep-
tons. In terms of the angles n and P, the ratio A assumes
the form

N —1A= ns
2N
i/r sin n sin P[(2+ r) cosa —y r sin n cos P]

X (1+ r)2(1+ cos~ n)
(3.16)

—up(8,

0.35

0.3

0.2

0.15

(3.22)

Note that this expression vanishes in the limits r ~ 0
(where there are no longer two independent transverse
momenta in the final state) and r ~ oo (where the vir-
tual photon is massless and its decay products are neces-
sarily collinear}. If we maximize A with respect to these
angles, we obtain the function A(r), which is plotted in
Fig. 6. We see that A is maximal for

0.1

0.05

2 3 4 5
7

6 7 8 9 jo

FIG. 6. Polarization asymmetry as a function of the ratio
r = t,/Q'—
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the asymmetry A assumes the form

N —1

2N
~u sin n sin P[(2 + cu) cos n + ~~ sin o cos Pj

X (1+~) (1+ cos o)
(3.23)

where

(3.24)

This result is essentially the same as Eq. (3.16). In partic-
ular, the maximum value of the asymmetry in this region
has the same value as that given in Eq. (3.18), and the
average asymmetry has the same structure as Eq. (3.19),
but with the variable u replacing r.

Equations (3.16) and (3.23) refer to asymmetries for
polarized quarks. The minus sign in the antiquark helic-
ity projector in Eq. (3.3) implies that the cross section
difference for polarized antiquarks is obtained by replac-
ing the factor of ps in Eq. (3.9) by —7s. Hence the sign
of the cross section difference changes for the antiquark
case. Note, however, that for the quark case the polar-
ized parton is the one with momentum pq, while for the
antiquark case the polarized parton is the one with mo-
mentum p2. This distinction will affect the sign of the
result derived in Sec. V below, where we consider partons
within a polarized proton.

In experiments that observe a jet recoiling against the
producer) muon pair, it, is possible to restrict events to
one of the kinematic regions specified by Eqs. (3.14) and

(3.22). More generally, when one detects the muon pair
and no other particles, one must integrate over a larger
region of phase space. Hence we really need to know

the form of the asymmetries for all values of s, t, and
The analytic form for these asymmetries is given by

Eq. (2.35), and in Fig. 7 we display this quantity as a
function of Q2/s and Q2&/s. The transverse momentum
of the virtual photon is related to the other parton-level
relativistic invariants by

Qi —iu/s (3.25)

The curves in Fig. 7 indicate the contours where A
achieves 80% of its maximum value, 60% of its maximum,
etc. The numbers 80, 60, etc. label the regions where A
is 80—100 % of its maximum, 60—80 % of its maximum,
etc. The overall maximum occurs in the lower left corner
of the contour plots, where Q~ && s and Q2& && s and the
average asymmetry takes the form (3.19).

IV. GLUON-QUARK SCATTERING

Let us turn now to a second source of muon pair
production —the scattering of a gluon from a quark (or
antiquark),

0+q p+p +q, (4 1)

(4.2)

If one does not observe the spins of the produced
particles, then the cross section assumes t, he form of
Eq. (2.16). For the scattering of massless quarks and
gluons W"'(si, sq) may be written as

P2

illustrated in Fig. 2. The tree-level Feynman diagrams
which contribute to this process are pictured in Fig. 8,
For arbitrary polarizations of the gluon and quark, the
muon production amplitude has the form

1
47Ã1EMG(I C, $)~ r 'u(p2, sg) 2 u(q, s )p& v(q+, s+ ).

0. 25

0. 2',

0. :5-
(a)

P2

0. "'-

Q. 05-

0. 2 Q. c
2/s

Q. 6 Q

P

FIG. 7. Asymmetries for q~q annihilation. Labeled re-

gions show where the asymmetry is 80% of its maximum
value, 60—80% of maximum, etc.

FIG. 8. Lowest-order graphs contributing to gluon-quark

scattering.
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(4.3)

The factor I/[N(N2 —1)] refers to an average over the color degrees of freedom for the colliding quark and gluon,
which are assumed to originate from color-singlet hadrons.

At the tree level an average over the helicities and colors of the initial particles gives the expression

2 2~" ('i '2)Lp = (&e*)' -- l(s-@')'+(' —u)'+4(p2 ~)'+4(~~ ~)'l (4 4)

In terms of the muon angles n and P one has

q'i —su JQ'sou
p2 q= . z, cosn —

z sinncosP,
2 s — ) 8— (4.5)

I~ q=
28—

cos 0!. (4.6)

If one replaces the factor W""(si, s2)L„„in Eq. (2.16) by
the average value (4.4), one obtains the muon pair pro-
duction cross section for unpolarized quark-gluon scat-
tering.

We are interested in the single-spin asymmetries that
result from either a longitudinally polarized quark or
gluon. In either case the asymmetry must involve the
imaginary part of the amplitude fH». If the initial
quark is polarized, then the argument is the same as was
given in the preceding section: the asymmetry involves a
trace with a single factor of y5, and such a trace yields
a factor of i. This factor combines with the imaginary
part of /8 to yield a real contribution to the cross section
difference.

The graphs that contribute at the one-loop level to
muon pair production in gluon-quark collisions are shown
in Figs. 9 and 10. Each of the graphs in Figs. 9 and 10
is a crossed version of one of the graphs of Fig. 4. Ex-
cept for Fig. 4(c), each graph of Fig. 4 has two corre-

I

sponding graphs in Figs. 9 and 10. Graphs 10(d)—10(f)
have no imaginary parts in the physical region for gluon-
quark scattering and need not be considered further. The
specific discontinuities of the remaining graphs which do
contribute to the single-spin asymmetry are shown in
Figs. 11 and 12.

If the incident quark is polarized, then the contribution
of the jth graph of Figs. 11 and 12 to the polarization
asymmetry may be written in terms of the quantity

(4.7)

In Appendix A we tabulate the color coefficients CLil

and the contributions T2, and T2 ~ for each of the
graphs of Figs. 11 and 12. Combining these results, we
arrive at the following functions to describe the asym-
metry for polarized quarks in the gluon-quark scattering
process:

(a)

(a)

(c)
(4)

(c) (4)

(e)

FIG. 9. A portion of the one-loop corrections to virtual
photon production in gluon-quark scattering.

FIG. 10. The remainder of the one-loop corrections to vir-
tual photon production in gluon-quark scattering.
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Q2 / (N2 —1)(u —2t) Q2(Q~ —t) + st
suN l, (Q i)(Q2 u);(Q i)~(Q u)

2i ln[(Q' —i)(Q' —u)/iu] l
82 2 Q

(4.8)

Q2 / (N —1)(s + 2Q~) Q~ —i(Q'-—u)
~ N'

~ (Q' - i)(Q' — )' .(Q' —i)'(Q' -.)

21n[(Q2 —t')/s] 21n[(Q2 —t)(Q —u)/tu] l
+

G s(Qz —u) )
(4.9)

Insofar as we neglect quark masses in our calculations, the corresponding result for polarized antiquarks would be the
same.

Let us now consider these expressions in the kinematic region Qz « s. Owing to the factor of 1/u in the unpolarized
cross section (2.16), this cross section is much larger for small values of u than for small t Hen. ce we will consider the
limit —u « s, where Eqs. (4.8) and (4.9) take the approximate form

2Q2(N2 —1)
N'su(Q' —u)-" '

Q~(N~ —1)
N2su(Q2 —u) 2

In terms of the ratio

(4.10)

(4.11)

sr= —uQ, (4.12)

we obtain the following expression for the polarization asymmetry

N —1 ~a sm n sm P[(2 + a) cos n + ~a sin o cos P]
2N (1+a) (1+ cos n)

(4.13)

Comparing this expression with the corresponding ex-
pression, Eq. (3.23), for the quark-antiquark annihila-
tion process, we see that the magnitude of the single-
spin asymmetry for the present process gluon-quark
scattering —is exactly the same in this kinematic region.

If one does not observe the momentum of the gluon
jet, then it is not possible to restrict experimental data
to lie in the region —u (& i. Hence it is necessary to
examine the structure of the asymmetry over all of phase
space. Figure 13 shows the average asymmetry A as a

function of Q~/s and Q2&/s throughout the region where
—t ) —u. The curves in Fig. 13 indicate the contours
where A achieves 80% of its maximum value, 60% of
its maximum, etc. The numbers 80, QQ, etc. label the
regions where A is 80—100'%%uo of its maximum, 60—80%%uo

of its maximum, etc. As in the quark-antiquark case the
maximum values of the asymmetry occur for small values
of Q2/s and Q2&/s, where Eq. (4.13) applies.

Let us now turn to the case where the incident gluon

(2)

(tx1)
(gt)

050001

(2x)

(t13 (gl)

(t23 (tx2)

FIG. 11. A portion of the cut graphs contributing to the
single-spin asymmetry for gluon-quark scattering.

FIG. 12. The remainder of the cut graphs contributing to
the single-spin asymmetry for gluon-quark scattering.
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Q2 (

T2, —1

(N~ —1)(u —2i)

(Q —i)(Q —u)

Q'(Q' —i) —s(2s + i)
(Q'-i)'(Q'- )

2iln[(Q' —i)(Q' —u)/iu] l
s~(Q~ —u)

(4.15)

so that

0 oq—i 0
0 0
o 0)

o o
P =

0
&0 o

(4.16)
(4.19)

/ (N2 —1)(s+ 2Q )
N'

~
(Q'-i)(Q'- )'

Q'(2u —Q~) + i(Q' —u

'(Q' —i)'(Q' —')
21n[(Q~ —i)/s]+ -2
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Eqs. (4.10) and (4.11). Hence in the region —u « s the
polarization asymmetry for polarized gluons is identical
with the result, Eq. (4.13), for polarized quarks.

Figure 14 shows the structure of the average asymme-
t, ry Q in the larger regio» of phase space, —ii ( —t, . The
curves in Fig. 14 indicate the contours where A achieves
80% of its maximum value, 60'%%up of its maximum, et, c.
The numbers 80, 60, etc. label the regions where A is
80—100 '%%uo of its maximum, 60—80% of its maximum, etc.
Once again the rnaximurn occurs for small values of Q'-/s
and Q~&/s, where Eqs. (4.21) and (4.22) apply.

V. PROTON-PROTON SCATTERINC

In the preceding sections we have computed single-spin
asymmetries at the parton level for the production of
muon pairs. In this section we discuss how to apply these
results to the physical hadronic process

J +u V V +jet+~ (5.1)

P

The kinematics for this process are illustrated in Fig. 15.
If one measures the momentum I~ of the recoil jet, then
one can fix the longitudinal momenta of the two initial
partons. Therefore, if one measures the spin asymmetry
for the process (5.1) and uses the theoretical expressions
of Sections ill and IV, one can extract i»fornlatio» o»
the distribution of polarized partons within the polarized
proton.

In principle, analysis of the decay products of the jet
which recoils against the virtual photon could allow one
to distinguish quark-antiquark annihilations from gluon-
quark scattering processes. In practice, this is not eas-
ily done, and any practical experimental measurements
would necessarily involve linear combinations of polarized
quark, antiquark, and gluon structure functions. In this
section we display the explicit combination of polarized
parton distribution functions that enters a description of
the process (5.1). Using known properties of the unpo-
larized parton distribution functions one can effectively
isolate certain terms in these expressions. )Ve will dis-

cuss this in more detail in the following section. One can
also exploit the symmetry of the quark-antiquark pro-
cess to eliminate it from certain linear combinations of
experime»tal measurements. In this manner it is possible
to pick out, the contribution to the single-spill asy11lme-

t, ry of gluon-quark scattering events, even without being
able t, o distinguish gluon a.nd quark jets on an event by
event basis.

In this sectio» we will assume that, it. is possible t,o re-
solve the kinematics of the process (5.1) completely by
measuring not, only the ulonlenta of the produced illuo»s
but that of the recoil jet as well. Such measurements
would allow for a detailed analysis of the process in terms
of the polarized (and unpolarized) parton distribution
functions. Unfortunately the practicality of such mea-
surements is questionable. A principal virtue of muon
pair production experiments lies in the possibility of fil-

tering hadronic components out of the profusion of pro-
duced particles and concentrating on muon pairs alone.
This allows one to operate the experiment at very high
luminosities and effectively overcome the factor of nEM
intrinsic to the process under consideration. If one at-
tempts to reconstruct hadronic jets, the high event rates
would become a handicap. Nonetheless it is useful to
sort, out, the theoretical details of the process (5.1), as we

shall do in this section. ln the following section we will

discuss the more practical experimental situation, where
one does not observe the recoil jet. The expressions of the
present section all apply, but one must integrate over pos-
sible values of the jet momentum. This makes it harder
to extract the contribution of individual parton distri-
bution functions to the mea. sured single-spin a,symmetry,
but this ca» be overcome to some extent by a judicious
choice of the kinematic region in which to work. Details
of t, his discussion [14] will appear in Sec. Vl.

As illustrated in Fig. 15, the momenta of the incident
protons will be denoted by P~ and P2. The invariant
momentum transferred from protons 1 or 2 to the vii tual
photon is given by

t = (Pi —Q),
u=(P —Q)', -

while the invariant energy is

(5.2)

(5.3)

s=(Pi+Pal) . (5.4)

S:Z) Z2S. (5.5)

The definitions (2.6) and (2.7) specify t and u in terms
of the momentum transferred from the initial quark and
antiquark to the virtual photon. Hence, if a quark from
proton 1 annihilates with an antiquark from proton 2,
then the kinematics at the parton level are defined by

The relation of these varia. bles to the pa, rton variables s,
I, , and u introduced in Secs. III and IV will depend upon
which species of partons are identified as components of
protons 1 and 2. Let the momenta of these components
be denoted by zpP~ and z2P2. Then the invariant energy
for the parton subprocess is given by

p~ =z- P2,
I~ =pi+p2 —Q.

(5.6)
(5.7)
(5.8)

P The parton cross section (3.4) applies with

FIG. 15. Inclusive production of a muon pair and a jet in

the scatterin0; of two protons.

t = t. = z, t+ (1 —zi)Q-,

ii = u. = z2u+ (1 —z2)Q . (5.10)
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The constraint

s+t+u: Q (5.11)

is assured by the requirement that the recoil jet be mass-
less, i.e. ,

p) ——z~ P2,

p~ =z)Pg,
I~ =p)+p2 —Q.

(5.13)
(5.14)

(5.15)

I~ = (z) P) + z2P2 —Q)
= zg(t —Q ) + z2(u —Q') + z)z2s+ Q2 = 0.

(5.12)

If an antiquark from proton 1 annihilates with a quark
from proton 2, the parton kinematics are defined by

~~i = —Qi (5.24)

The cross section at the parton level, Eq. (2.16), in-

volves five independent variables. Two of these vari-

ables, defined as n and P in Sec. II, refer to the de-

cay of the virtual photon. The diA'erential cross section
K da/d QdQ(n, P)de for the process (5.1) constrains
the parton momentum fractions z~ and z-~ to fixed val-

ues. These values are most easily stated in terms of the
light-cone coordinates

and Eqs. (5.9) and (5.10) serve to define t, and u.
At the parton level we have partons of momenta zqP~

and z~P2 interacting to form a muon pair with total mo-

mentum Q and a recoil jet with longitudinal momentum
I~ . If one neglects the transverse momenta of the initial
partons, the transverse components of I~„are fixed to
have the values

The invariant momenta. tand ic w, hich appear in Eq. (3.4)
are defined by

po yp3
p (5.25)

(5.16)

(5.17)
If we neglect, the proton's mass (relative to Qs), then in

the center-of-mass frame we have simply

For gluon-quark scattering we must, consider the pos-
sibility of a quark from proton 1 interacting with a gluon
from proton 2 or a quark from proton 2 interacting with
a gluon from proton l. ln the first case the parton kine-
matics are defined by

P, =P =0,
P~+ = P, = gs/2.

From Eqs. (5.2) and (5.3) it follows that

(5 26)

(5.27)

(5.18)

(5.19)

(5.20)

The invariants t and u of Eqs. (2.6) and (2.7) are therefore
given by Eqs. (5.16) and (5.17). In the second case, the
parton kinematics are defined by

(5.21)
(5.22)

(5.23)
I

Q —t = v2sQ

Q —u = ~2sQ+.
(5.28)

(5.29)

zgP) + z2P2 —Q+ I~,

and hence

(5.30)

z, = (Q+ + I&+)/P+,

z2 ——(Q + IC )/P2 .
(5.31)
(5.32)

The phase space for the jet and the muon pair may be
conveniently written as

Momentum conservation at the parton level requires that

1 d3q+dq d K
(2 )s 2+ 2

— 2I-" (»+»-Q-')
.Od Qdn de 6

~
zy + z2 —

~

h
~

zy —zg —
~

. (5.33)
t' 2(Q'+ I&') & ( 2(Q'+ Ks) l

4 2s 'sIto ls
The cross section for muon pair production from the collision of unpolarized protons may then be written in terms of
parton cross sections as follows:

, ) e,' "
[q (»)q (z2)+ q (»)q (z2)]+,' [q (»)+q (»)]&(z2)

+, ' G(») [q'(z2) + q (»)]N2 —1
(5.34)

The functions q;(z), q;(z), and G(z) describe the distri-
bution of quarks, antiquarks, and gluons in an unpolar-
ized proton. The factors o qq o qQ and aGq are given
by +4z2(» q)'] (5.35)

[ (Q' —t.)'+ (Q' — *)'+4 '(P q)'
t, u
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«& = - [(s —Q )'+(Q' —u. )'
Stl~

+8z2(P2 . q) + 4zt(Pt q)

+8ztz2(Pt q)(P2 . q)], (5.36) z~ = z„„=2~I~ ~/y s

while for'

(5.41)

(5.42)

virtual photon and jet, . Specifically, for —t (( s we have

~,G = - [ (s —Q')'+ (Q' —t )'
81~

+8z&(R q) +4z~(P. q)'

+»tz~(Pt q)(P~ q)]

with

(5.37)

(5.4'3)

(5 4'1)

In either of these limits the parton cross sect, ions also
srrlipl1fy. FOI' —t ~~( 8 t lie quaI'k- a»t, rqu a rl' ex pl'cssloli
(5.,'35) assumes the form

0'. p' Q EM

Sm s
(5.38) s

0'qq .:c70 —..-(1 + cos o'). (5.45)

In the kinematic region where t (—& s and Q (( s,
Eq. (5.12) implies that

2 —u
Q+ = = zt v /2

2s
Q-' —t

(5.39)

(5.40)

Similarly, one finds a large K for —f &( s and a la.rge I~+
for —u && s. In these limits, therefore, zi and z-„~ assunle
the values of the longitudinal momentum fractiorls of tile

The corresponding expression for quark-gluon scattering,
Eq. (5.37), has the same value in this limit,

~a~ —~&~ (5.46)

The expression for gfuon-quark scattering, Eq. (5.36), is

negligible in this limit, owing to the factors of ii,. and s
in the denominator.

It, follows that in the limit —5 (& s, the cross section
for the muon pair production from unpolarized protons
ITlay be wrrtten as

do'

d4Q dz„„dO sQ't. z„„
1 — 1- 1

x I
—.q, (z, )q;(z-, ) + —q;(z, )q;(z, ) +, [q;(z, ) + q;(z, )]G(z,)(N',V ¹

—1
(5.47)

The functions q;(z), q, (z), and C (z) describe the distribution of quarks, antiquarks, and gluons in the unpolar-
ized proton. In the limit —u &( i one obtains similarly

do. —ops ~ 2
N2 —1

1, , 1, 1
x —q;(zt)q, (z. ) + —

q, (z, )q;(z, ) + —, -G(zt)[q;(z2) + q, (z2)] (5.48)

For the unpolarized case orle cannot distinguisll the
two protons. For the process

p~+ p ~ p+p +jet+ X (5.49)

we denote the momentum of the polarized proton by Pq
and that of the unpolarized proton by P2. At, the partorl
level the cross-section asymmetry is given in terms of the
product of invariant functions E~ I and 7~ ~, which
multiply the dot products Z . q and X . q, respectively.
The invariant functions depend on the parton variables s,
t, and u, which can be related to the invariant nloment, a
at the proton level (s, t, and u) by Eq. (5.5) and either
Eqs. (5.9) and (5.10) or Eqs. (5.16) and (5.17).

Where Eqs. (5.6) and (5.7) apply, the vectors Z„and
X„can be written in the form

Z„= 2ztz~[(P: Q)Pt„—(Pt . Q)P-„],

X„==2zt z~[ (P~ Q) P) „+(Pt Q) P)„
-2(» Q)(P Q)Q) /Q']

Hence for t, he parton process

q~+q p+p +G
we have

~Y .
q = ZI Zgag,

where

(5.50)

(5.51)

(5.52)

(5.5:3)

(5.54)
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a i —2 [(P2 Q) (Pi q) —(Pi Q)(» q)]

as ——2[(P2 Q)(Pi q) + (Pi Q)(Ps ' q)]

Similarly, for the parton process

qt+ q p+p, +0
Eqs. (5.13) and (5.14) apply, and we find

Z ~ q = —zyzgQy,

X ' q = ZiZ2Q2.

The parton process

q'+G v t +q

(5.55)

(5.56)

(5.57)

(5.58)
(5.59)

(5.60)

G'+q - s+s +q (5.61)

Ii do(p)p'~ @+p + jet+ X)
d4Q dQ dI&s

I~ do(p1p ~ p+p +jet+ X)
d4Q dQ de s (5.62)

with kinematics specified by Eqs. (5.22)—(5.23). The fac-
tors Z q and X q for this case are given by Eqs. (5.55)
and (5.56).

Combining this kinematic information with the results
of Secs. III and IV, we can construct the cross-section
difference for muon pair production with protons of he-
licities +&. We define

is described by the kinematics of Eq. (5.19)—(5.20). It
follows that Z q and X q for this process are given
by Eqs. (5.58) and (5.59). Finally, we have the parton
process

Then, in terms of parton distribution functions q(z) and
G(z) for the unpolarized proton and the corresponding
functions Eq(z) and b, G(z) for the polarized proton, we
have

[q'q] --4o' = A ) e;ziz2( Aq(zi)q, (z2)[aiT2 i (s, t„u, ) + a2T& 2 (s, t, , u, )]

with

[q'q] -- -?
++q'(zl)q (zs)[—aiT~' 'i (s, u*, t.) + a2T, ' ', (s, u. , t.)]

[q~ G]+[&q,(zi) + Aq;(zi)]G(z2)[aiT2', (s, u„t, ) —aqT2 s (s, u„t, )]
[G~q] --

+&G(zi)[q (z2) + q;(z~)][aiT2,' (s, t. , u. ) + a2Ts,' (s, t„u)]} (5.63)

2 2
S~EM p v p 0A=

~ 2 4e„„pPP2Q q .
4x s ~

Using the symmetry properties of T[q'q], we can write A~ in the form

A ) e' ziz2([&q (»)q (z2) + &q (»)q (*2)][alT2 i (s t u ) + a2T2 2 (s t* u*)]

(5.64)

[q'G]- fq'G] --
+[Aq; (zi) + Aq, (z i )]G(z2)[ai Ts', (s, u. , t. ) —a2T,', (s, u. , t.)]

++G(zl)[q~(z2) + iq( z2)][ al T2 i (s t u ) + a2Tp 2 (s t u )]}.
In the limits t « s or —u « s th—e cross-section difference simplifies. Owing to the identity

J - )s

one has

Q~ = t„—
for —t « s and

Q ~ u

for —u « s. The cross-section difference Ao thus assumes the form

4

) e.' l

—[&q*(»)4(») + &@(»)q*(»)]+, [&q'(»)G(») + &4(»)G(z&)]

(5.66)

(5.67)

(5.68)

(5.69)

for —t « s and

4

) .e,' [&q (»)q, (z2) + &q*(»)q (z2)]+, [&G(»)q (z~) + &G(zi)q (z2)] (5.70)
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for —u « 8. The subprocess-independent part of the
cross section difference is given by

or

—A(2ai —a2) (N —15 Q
Q' &» (Q'+Q', )'

(5.71)

—A(2ai + a2) (N —1 Q
b~k~ard q2 l N (q2 + qg ) 2

(5.72)

associated only with the gluon-quark scattering subpro-
cess. In this manner one can isolate events associated
with quark jets "ven without having identified these jets
through their decay products.

VI. EXPERIMENTAL CONSEQUENCES

In the preceding section we worked out expressions
which describe the cross-section difference for muon pair
production in the idealized case where one would mea-
sure the momenta of the outgoing muons and the recoil
jet. We have argued that this may not be practical due to
the experimental demands imposed by the constraint of
jet reconstruction. In this section we consider the more
realistic case [14] in which one does not observe the re-
coil jet. The expressions of Sec. V still apply, but one
must integrate over possible values of the longitudinal
momentum of the recoil jet, Ii. [The value of the . jet's
transverse momentum is fixed by Eq. (5.24).]

In the proton center-of-momentum frame we will let
I

in the respective kinematic regimes —t « 8 and —u « s.
The region —t « s corresponds to the production of a
virtual photon moving forward along the direction of the
polarized proton. Similarly, the region —u « s involves
the production of a virtual photon moving opposite to the
direction of the polarized proton (in the center-of-mass
frame for the proton-proton scattering process).

Note how the symmetry of the quark-antiquark an-
nihilation process affects the structure of the forward
and backward cross-section differences: the same com-
bination of quark and antiquark structure function,
Aq(zi)q(zz) + Aq(zi)q(zq), enters in both cases. The
gluon-quark scattering process has no such symmetry.
Only polarized quarks contribute to the forward produc-
tion process, and only polarized gluons contribute to the
backward production process. If one were to measure
cross-section differences for both forward and backward
production, one could extract a combination of structure
functions

[&q(») + &q(»)]G(») + &G(») [q(») + q(»)]
(5.73)

x~ and z denote the longitudinal momentum fractions
of the virtual photon and recoil jet, respectively, If the
longitudinal momentum of the virtual photon follows the
direction of the polarized proton, we write

q+/p+
z=Ii. /P

(6.1)

(6 2)

If, on the other hand, the longitudinal momentum of the
virtual photon follows the direction of the unpolarized
proton, we write

z~ =Q /P
z = Z+/P+.

(6.3)
(6.4)

If zz is large enough that the virtual photon is relativis-
tic, then the relation between the observables zz and z
and the parton variables zi and zq is very simple. If
the virtual photon is produced in the forward direction
relative to the polarized proton, then one has

Zp —Z] )

Z Z

(6.5)
(6.6)

and if the virtual photon is produced in the backward
direction relative to the polarized proton, then

(6.7)
(6.8)

Both cases are of potential interest experimentally. In
the first case measurement of the longitudinal momen-
tum of the virtual photon suffices to fix the momentum
fraction of the polarized parton. Hence an experiment
which focuses upon this kinematic region will be able
to map out the z dependence of the polarized parton
distribution functions. In the second case the measured
longitudinal momentum of the virtual photon fixes the
momentum fraction of the unpolarized parton. This al-
lows one to choose the value of z& so as to emphasize
the contribution of a particular parton subprocess to the
cross-section difference Ao .

In either case, if one does not observe the longitudi-
nal momentum of the recoil jet, one must integrate over
possible values of z. The kinematical constraint

s)Q'
fixes x to lie in the region

(6.9)

(6.10)
8Z~

With this information we can now display the results for
4o. Using Eq. (5.63) we find the following expression for
a virtual photon moving forward relative to the polarized
proton.

Ao. = A5 e;z~ [v'v]- [~'v]-dz( [hq;(z~)q;(z) + Eq, (z~)q;(z)][aiT~ i ( t,s, u, ) + a2T2 z (s, , t„,u„)]

[~'&]-
+[Aq;(z~) + hq;(z&)]G(z)[aiT2 i (s, , u„, t, ) —a2T2 & (s„u, , t, )]

[&'~]- [G'~]-
+AG(z~)[q;(z)+ q, (z)][aiT~ i (s, , t„,u )+ a2T~ 2 (s, , t, , u, )]}, (6.11)
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with

S~:ZZ~S)

t. = z, t+(I —z, )Q',
u, = zu+ (1 —z)Q .

(6.12)

(6.13)

(6.14)

The corresponding expression for a virtual photon which is produced in a direction opposite that of the polarized
proton is

Acr = A) e, z~
[e'4- 7—

dz{ [Eq, (z)q;(z&) + Aq, (z)q;(z&)][aqT2 & (s, , t„u, ) + a2T2 2 (s, , t„u, )]

h'Gl-
+[&q*(z) + &q*(z)]G(z~)[a~T2' i'(" ) — 2 2' 2'(" )]

+&G(z) [q*(z.) + q (z.)][a~T' —1 (s» u ) + a2T2 —2 (s* t u )]) (6.15)

with

Sg = SZpS)

t, = zt + (1 —z)Q,
u, = z~u+ (1 —z~)Q .

(6.16)

(6.17)
(6.18)

I

muon pairs described by Eq. (6.11) would be the easiest
to measure.

The calculations of this paper could be extended to
other processes of possible experimental interest. Among
the possibilities that one might consider are

A promising application of this result has been dis-
cussed briefiy in a recent paper [14]. We have sug-
gested using either an external polarized target or an
internal polarized storage cell at the Fermilab Tevatron.
If one selects forward-moving events in the laboratory
frame, this corresonds to a virtual photon which is mov-
ing opposite that of the polarized proton in the center-of-
momentum frame (since the polarized proton in the pro-
posed experiment is stationary in the laboratory frame).
Hence Eq. (6.15) applies. By selecting events with z&
in the range 0.2—0.4, one assures that valence quarks
from the unpolarized proton should dominate. It follows
that the dominant contributions in Eq. (6.15) should be
those involving the combination of distribution functions
Aq;(z)q;(z~) and EG(z)q, (z~). Thus the proposed ex-
periment is sensitive to a linear combination of the po-
larized antiquark and polarized gluon distribution func-
tions.

If one does not detect the recoil jet, then the polarized
distribution functions in Eq. (6.15) are necessarily inte-
grated over z in a manner characteristic of inclusive muon
pair production experiments. It is possible to perform an
experiment which would select events in which the vir-
tual photon is moving forward relative to the polarized
proton. In such an experiment, the measured value of
z~ would correspond to the argument of the polarized
distribution function, so one could map out the z de-
pendence of these functions. To describe such an exper-
iment one would employ Eq. (6.11), which involves an
integral over the longitudinal momenta of the unpolar-
ized quarks, so one could not select a particular subset of
the contributing terms in Eq. (6.11) as we have suggested
for Eq. (6.15). Furthermore, if one is using a stationary
polarized target, muon pairs described by Eq. (6.15) are
moving rapidly forward in the laboratory frame and are
thus well-collimated. This means that a smaller detector
would suKce to capture these particles efBciently. If one
were working with polarized beams rather than polarized
targets, the kinematic situation would be reversed, and

p~+ p~jet+jet+ X,
p~+ p~p+jet+X.

(6.19)
(6.20)
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q'+q I'~ +G,
q'+G t+a +q,
q+ &'-u+t + q

(Al)
(A2)
(A3)

Here the arrow (7) indicates which of the initial partons
is polarized.
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APPENDIX A: CONTRIBUTIONS
OF INDIVIDUAL CRAPHS

In this Appendix we provide further details of the com-
putations described in the text. This information is given
in a series of tables. Each set of tables refers to one of
the three processes discussed in the text:

The cut graphs which contribute to the quark-
antiquark annihilation process (Al) are pictured in
Fig. 5. The contribution of each graph to the invariant
function T2 ~ is listed in Table I, and the contribution to
Tz 2 is given in Table II. The entries in Tables I and II
do not include color factors, which are listed separately
in Table III. Equations (3.10) and (3.11) give the final
results for an SU(N) color theory. The corresponding
results for a U(l) theory (/ED) are given in terms of
a decomposition of the quantity b, W [Eq. (2.18)j in the
form

4W = —Ss aEM(Ts iq 8+7's zq X)Ep p pipzQ

This decomposition replaces that of Eq. (2.23), which was
appropriate for the SU(N) theory. The functions Tz
and Tz z for the @ED case have the form

TABLE I. Invariant functions for quark-antiquark annihilation. See Fig. 5 for identification of
graphs.

Graph

49(s+ Q') 8Q ln[—t/(s —Q')]
(Q' —t) (Q' —u) (Q —t)u

2(Q —11Q s+QQ s +s —4Q t+12Q St —4s t)
(Q' —s) (Q —t)(Q —is)

—4ir(s+Q )
(Q —t)(Q' —u)

SQ' »[-u/(' —Q')]
t(Q' —u)

+2(Q —7Q s+5Q s + s —4Q t+4Q st —4s t)
(Q —s)'(Q —t)(Q —u)

—SirQ 8Q ln[(Q —s)(Q —t)/St]
(Q2 t)2

+
(Q~ —t)u

4Q (Q +3Q s —4Q s —3Q t —Q st+ 2s t+2st )
(Q —s) (Q —t) (Q —u)

SitQ SQ ln[(Q —s)(Q —u)/su]
(Q' —u)' t(Q —u)

4Q (2Q —7Q s + 5Q s —7Q t + 11Q st —6s t —2st )
(Q —s) (Q —t)(Q —u)

SqQ' 4Q'(Q' + 2s + 3t)
(Q' —t)' (Q' —t)'(Q' —u)

—SgQ 4Q (4Q~ —s —7t)
(Q' —t)(Q' —u)'

SgQ'(s+ Q')(t —u) SQ'(Q' —Q's —4Q't + 2P)
(Q' —t)'(Q' —u)' (Q' —t)'(Q' —u)'

+
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TABLE III. Color factors for quark-antiquark annihilation.

Graphs

1, 1x, 2, 2x
t, tx
g

SU(N)
—(N2 —1)/4N
(N —1) /4N

(N——1)/4N

/ED

(Q + )( —t)
(Q2 t)2(Q2 u)2

ln[(Q' —t)/s] ln[(Q' —u)/s] l
(q' —t)u (q —u)t

4q' (
tu l, (Q' —t)' (Q' —u)'

-2-- - - +
Q2(Q2 —s) —2tu 2s ln[(Q2 —t)/s]

tu(Q' —t)(Q' —u) (Q' —t)u'

+
2s In[(Q2 —u)/s] ~

(Q' —u)i2
(A6)

Although the final results are infrared and ultravio-
let finite, the contributions of the individual graphs are
infrared divergent. To deal with this problem we have
evaluated each graph in d space-time dimensions. Using
the Dirac algebra appropriate to d dimensions, we have
reduced the various traces to the form (3.7). The ex-
pressions in Tables I and II retain a formally divergent
factor

2
g = + constant,

d —4
(A7)

2i ln[(q' —t)(Q' —u)/tu] ~

S2 2 (A8)

4Q' & ('+2Q'), Q'-t(Q'- )

( (Q' —t)(Q' — )' (q —t) (q — )

2 ln[(Q' —i)/s]+

2 ln[(Q2 —t)(Q2 —u)/iu] )
s(Q —u) )

' (A9)

which cancels when one forms the physically observable
differential cross sections. This cancellation provides a
partial check of the validity of our calculations.

The gluon-quark scattering process (A2) is described
by the entries in Tables IV—XI. The labels for the vari-
ous cut graphs represented in these tables are defined by
Figs. 11 and 12. Tables IV—VII describe the scattering
process (A2) which involves an initially polarized quark,
while Tables VIII—XI describe the case (A3) of an initially
polarized gluon. The color factors associated with the
graphs of Figs. ll and 12 are given in Table XII. Com-
bining these color factors with the entries of Tables IV—
VII, one arrives at the invariant functions (4.8) and (4.9)
for an SU(N) color theory. The corresponding results for
@ED would be

4Q' / (u —2t) Q'(Q' —t) + st
su ( (Q2 —i)(Q2 —u) 2 s(Q2 —t) 2(Q2 —u)

Graph

TABLE IV. Invariant functions for gluon-quark scattering.

Polarized quarks: SiTp,

8gQ t — 2(7Q —10Q s+3Q s —13Q t+14Q st+ 3s t+8Q t +4st )

(Q —s) (Q —t)
+

(Q —s) (Q —t)(Q —u)

8rtQ't

(Q' — )'(Qs—t)
4Q (5Q —10Q s+ 7Q s —2s —12Q t+ 18Q st —4s t + 12Q t —8st —6t )

(Q2 —s) (Q2 —t) (Q2 —u)

8gQ't — 8Q't in[(Q' —t)(Q' —u)/tu]

(Q —t)(Q —u)
+

s (Q' —u)

4Q (—2Q s+Q s +2S +2Q t+3Q st+4s2t —2Q2t +2st )
s(Q2 —t)'(Q2 —u)2

2g(2Q —7Q s+ 8Q s —3s —5Q t+14Q st —5s t+4Q t )
(Q —s) (Q —t)(Q —u)

4(2Q —4Q s+2Q s —7Q t+6Q st+3S t+4Q t +2st )

(Q —s) (Q' —t)(Q —u)
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4Q' i (u —2«)
T2, —1

( (Q t)(Q ")

—2
Qz(Q2 —t) —s(2s+ t)

(Q' —t)'(Q' — )

2t in[(Q~ —t)(Q~ —u)/tu] ~
+

S2 2 (A10)

4Q' & (.+2Q')
T2 " ( (Q'-t)(Q'-u)'

—2
Q'(2u —Qz) + t(Q~ —u)

u(Q' —t)'(Q' —u)

2 ln[(Q' —t)/s]
Q2

2 In[(Qz —t)(Qz —u)/tu] i
s(Qz —u) )

(A11)

Similarly, if one combines the color factors of Ta-
ble XII with the entries of Tables VIII—XI, one arrives
at Eqs. (4.19) and (4.20) for the gluon-quark scattering
process in an SU(N) theory with initially polarized glu-
ons. The corresponding QED result would be

APPENDIX B:COMPARISON
WITH PREVIOUS CALCULATIONS

Previous literature [17] on the quark-antiquark process
(1.6) suggested an interesting possibility with regard to
measuring the polarized gluon structure function. There
are two classes of partonic processes which contribute
to (1.4). One involves the annihilation of a quark and
antiquark to produce a gluon and a virtual photon, as il-
lustrated in Fig. 1. The other, which is simply a crossed
version of this process, involves the scattering of a gluon
from a quark or antiquark to produce a virtual photon
plus a quark or antiquark. This process is illustrated in
Fig. 2. In Ref. [17] only the quark-antiquark annihila-
tion process was considered, and it was argued that the
resulting polarization asymmetry should be small —the
consequence of a small color factor for the graphs claimed
to dominate this process. The authors of Ref. [17] did
not consider the gluon-quark process, since they assumed
that the gluon spin fraction should be small.

Given that the gluon spin fraction might not be small,
the results of Ref. [17] raised a very interesting possi-
bility. If the contribution of the quark-antiquark process
to the polarization asymmetry is small and the contribu-
tion of the gluon-quark process is not small, then mea-
surements of the polarization asymmetry for muon pair

Graph

TABLE V. Invariant functions for gluon-quark scattering.

Polarized quarks: suT&,

Sqq (u —s)t(Q + t)
(Q' —s)'(Q' —t)(Q' —u)'

SQ (2Q —7Q s + 8Q s —3s —3Q t + 10Q st —Ss t + 4Q t —Sst —3t )
(Q2 —s) 2 (Q2 —t ) (Q~ —u) 2

Sgq t 2(5Q —6Q s —Q s +2s —11Q t+10Q st+7s t+10Q t +4st )
(Q —s) (Q —t) (Q —s) (Q —t)(Q —u)

t2 Sgq t 4—Q (3Q —5Q s+2s —7Q t+10st+7t )
(Q —s) (Q —t) (Q —8) (Q —t)(Q —u)

tx1
2 Q

tx2
8qq't 4Q'(3q' —2s)

(q' —t)(Q' —u)' (Q' - t)(Q' - u)'

gt
—2g(2Q —3s —5t)
(q' —«)(Q' —u)

4
Q2

—2(Q —2s —3t)
(Q —t)(Q —u)
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Graph

TABLE VII. Invariant functions for gluon-quark scattering.

Polarized quarks: suT&,

Sgq'(s —u)(Q + t)

(Q —s) (Q —t)(Q —is)

8Q (Q —2Q s+ 3Q s —3s + Q t —2Q st —3s t —2Q t —it )

(Q —s) (Q —t)(Q —u)

—Sgq 2{5Q —4Q s —5Q s —2i —9Q t —4Q st —s t)

(Q —s) (Q —t) (Q —i) (Q —t)(Q —u)

t2
Sgq' 4Q'(3Q' —4Q's —2s' —Sq~ t —st)

(Q2 —s)2(Q2 —t) (Q2 —s)2(Q2 —i)(Q2 —u)
+

t, xl
2 /g

tx2
—Sgq 4Q (4q —2i —t)

(Q' —i)(Q —u)' (Q' —t)(Q' —u)'

gt
—2g(2Q2 + 3s + t)
(Q —t)(Q —u)

4
Q2

—2(Q' + 2s + t)
(q' —t)(q' —u)

Graph

TABLE VIII. Invariant functions for gluon-quark scattering.

Polarized gluons: suTq,

2( —3Q y9Q s —7Q s +s ySQ t —12Q st+2s t —2Q t )
(Q —s) (Q —t)(Q —u)

4Q (3Q —9Q s+ 8Q s —2i —7Q t+ 13Q st —Ss t+ 4Q t —4st —t )
(Q —s) (Q —t) (Q —u)

2x
—Sgq't Sq't»[{q' —t)(Q' —u)/tuj 4Q'( —2i'+ 2Q'i —2Q'si —3s't —2Q't + st')

(Q —t)(Q —u)
+ s2(Q2 —u) (Q' —i)' s(Q' —u)'

gl
4Q (Q —Q s —Q t+ 2st+t )

(Q —s) (Q —t)(Q —u)

Sgq t

(Q2 i)(Q2 u)2

4Q'(2Q' —7Q's + 7Q's' —»' —Q't + 2Q'ii —2i'i+ Q't —3st —t )
(q' —s)'(q' —t)(q' —u)'
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G raph Polarized gluons: suT2,

t2

tx1

tx'2

gt

—2(Q + s)(u —t)

(Q —s)(Q —t)(Q —u)
4Q'(u —i)

(Q —s)(Q —t)(Q —u)

2(t —u)

(Q —t)(Q' —u)

8rlQ t 4Q (Q —s+ 3t)
(Q' —t)(Q' —u)' (Q' —t)(Q' —is)

4q(t —u)
(Q' —t) (Q' —')

2(t, —u)

(Q' —t )(Q' —is)

TABLE IX. Invariant functions for gluon-quark scattering. p ro duct ion might be a particularly easy way to isolate
the polarized gluon structure function. This was a prime
motivation for the present work. Our new calculation of
the quark-antiquark contribution fails to confirm the re-
sults of Ref. [17] in detail, but the order of magnitude
of our result is the same. We find further that the quark-
antiquark and gluon-quark contributions to the polariza-
tion asymmetry are comparable at the partonic level. If
the polarized gluon structure function were of the same
order of magnitude as the polarized antiquark structure
functions, this fact would make it dif5 cult to isolate the
polarized gluon structure funct ion experimentally, since
the effects of quark-antiquark annihilation would first
have to be subtracted from the measured asymmetries.
But if, as may be the case, the polarized gluon structure
functions are larger than the polarized antiquark struc-
ture functions, the experimental situation will be cleaner
and easier to measure.

Equation (3.10) may be compared with the result of
Ref. [17],

2Q2(N2 —1) ( —4(Q2 + s)(u —t)
!i N ( (i - Q2)"-( —Q&)2

3(Q' - 3 )[Q'(Q' - ') —(t —.)'](.—t)
s'Q'( —Q')(t —Q')(" —Q')

ln[(Q' —i)/s] ln[(Q' —u)/s] ~
+

(Q2 —t)u (Q2 —u)t

iA hiie tlie logarithms in Eqs. (3.10) and (Bl) have the same form and the same coefficients, there is a discrepancy in
the remaining terms. These terms appear with a color coefficient (N~ —1)2/Ns in Eq. (3.10), while in Eq. (Bl) there
is only a factor of (N2 —1)/Ns. This coefficient was emphasized by the authors of Ref. [17], as we shall discuss below.
Furthermore, Eq. (Bl) has a. term with an analytic structure which differs from that of any of the other terms in

Eq. (3.10). The denominator s2Q2(s —Q2)(t —Q2)(u —Q2) gives rise to singularities at s = 0, Q = 0, and s = Q .
These singularities have no corresponding particles in any of the Feynman graphs of Figs. 3 or 5 and can be excluded

by a direct analysis of the contributing helicity amplitudes. Suppose that we were to consider the asymmetry A' that
would result if one used the expression (Bl) of Ref. [17] and assumed that T2 z were to vanish. One would have

TABLE X. Invariant functions for gluon-quark scattering.

Graph Polarized gluons: SuT2,

—8Q ln[ —t/(s —Q )] 2(3Q +8Q i —8Q s +s +7Q t —7Q st —3Q s t+s t —4Q t +2Q it )
Q (Q —s) (Q —t)u(Q —u)

—8Q' 1n[(Q' —i)(Q' —i) /it]
Q2

4Q (3Q —11Q i+10Q s —2Q i —9Q t+19Q it —10Q i t+i t+8Q t —10Q it +2i t —2Q t +st )

(Q' —s)'(Q' —t)'u(Q' —u)

8gQ'

(Q —t)(Q —u)

8Q 1n[(Q —t)(Q —u)/tu] 4Q (2Q —2Q s —2Q t + 3st + t )
s(Q~ —u) (Q —t) (Q —u)

4g(Q + s) 4Q (Q' —2Q s —2Q t+ st)

(Q —t)(Q —u) (Q —s) (Q —t)(Q —u)
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TABLE XI. Invariant functions for gluon-quark scattering.

Graph Polarized gluons: suT2,

g2
—8 Q' 4Q (2Q —5Q's+4Q s —2s + Q t —4Q st+ s t —2Q t + st )

(Q t)(Q u) (Q' —s) (Q —t)(Q —u)

-2(Q'+ )'
(Q —s)(Q —t)(Q —u)

t2
4Q (Q +s)

(Q —s)(Q —t) (Q —u)

txl
—2(s+Q )

(Q —t)(Q —is)

tx2
—8gQ' 4Q (4Q —s)

(Q —t}(Q —u) (Q —t)(Q —u)

gt
—4g(s + Q2)

(Q' —t)(Q' —u)

—2(s+ Q )
(Q' —t)(Q' —u)

—ns ~r sin o, sin P[(r + 2)(r + 3) cos o —2(5 + r)~r sin n cos P]
4N (1+ r)2(1+ cos2 o)

(B2)

In the limit r ~ oo this expression grows indefinitely —a
consequence of the factor of Q in the denominator of the
second term of Eq. (Bl). This is an unphysical result.

Because of the discrepancy between our results and
those of Ref. [17] we performed a second, independent
calculation of the quark-antiquark process. Our second
approach employed the spinor helicity method [18],which
simplifies the computation to the extent that one can
compute all of the contributing Feynman graphs by hand.
We verified that these manual calculations agreed with
our machine results quoted in Sec. III. We will reserve
details of this approach for a separate publication, where

sQg —tu (B4)

or

we will also perform a check of the quark-gluon processes
considered in the present paper.

The authors of Ref. [17] did not compute the function
Tp ~, arguing that it would be relatively unimportant in
the kinematic region

Qg «s
where the unpolarized cross section (3.4) is largest. In
terms of relativisitic invariants one can write

TABLE XII. Color factors for gluon-quark scattering.
(Q + Q ) = (Q —t)(Q — )

Hence the region (B3) corresponds to

(B5)

Graphs

1, 2, 2x, txl
SU(N)
—1/4N

QED —i ((8

b, tl, t2, tx2 (N —1)/4N —u ((s. (B7)

gl g2 gt —1/4

Inspection of Eqs. (3.10) and (3.11) shows that T2 q and
T2 2 are of the same order of magnitude in this region.

Owing largely to the form of the color factor Eq. (Bl),
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the authors of Ref. [17] argued that the polarization
asymmetry associated with quark-antiquark annihilation
should be very small. This observation formed part of
the motivation for the present work, since a process in

which the quark-antiquark contribution to the polariza-

tion asymmetry would be small might be a process in
which it is particularly easy to extract the structure func-
tions for polarized gluons. Since our results difkr consid-
erably from those of Ref. [17], we have had to reconsider
their analysis completely.
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