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Two-photon width of singlet positronium and quarkonium with arbitrary total angular momentum
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In this paper we derive I » for S=O positronium and quarkonium states with all allowed quantum
numbers (J =0 +,2 +,4 +, . . . ), in both nonrelativistic and relativistic regimes. yy partial widths
have previously been published only for fermion-antifermion states with J =0+—+, 1++ {off-shell pho-
tons), and 2—+. The topic of higher-spin yy partial widths is of current interest in part because a recent
nonrelativistic qq calculation for 2 + finds a much smaller yy partial width than the =1 keV observed
for the I=1, J =2 + state m, (1670). We find very large relativistic corrections to the nonrelativistic
(contact) approximation for this width as well as large systematic uncertainties in the procedure used to
incorporate the physical resonance mass. Our relativistic qq estimate for I yy(~2(1670)) is 0.1—0.3 keV,
which is somewhat smaller than the experimental value. This discrepancy may only reAect inaccuracies
in the theoretical technique. Finally, we quote relativistic numerical results for the yy widths of various
0 +,2 +, and 4 + (uu —dd)/&2, cc and bb states in a Coulomb-plus-linear potential model.

PACS number(s): 13.40.Hq, 12.40.Qq, 14.40.Cs, 36.10.Dr

I. INTRODUCTION

It is now well established that two-photon couplings
provide a useful probe of the internal structure of
mesons. In particular, the "classic" light 0 + and 2++
states sr, g, ri', f2 (1270), a2(1320}, and f2(1525) and
the cc states g, (2980} and y2(3555) have been observed
at e+e machines with yy partial widths consistent with
quark-model predictions [1—10]. Although spin-1 states
cannot be produced from two on-shell photons, the
1++qq state f, (1285) has been observed with a yy cou-
pling consistent with quark model estimates for Q2%0
photons [6,10-13]. Conversely, mesons thought to be
non-qq states generally have yy widths far from expecta-
tions for a qq state. These anomalous states include the
fz(975) and ao(980) EK-molecule candidates [14,15], the
g(1440) and the fz(1720). Mesons that have yy widths
far from qq quark model predictions should evidently be
considered candidate non-qq states. For this reason it is
clearly important to have accurate quark model predic-
tions of yy widths for all experimentally accessible qq
mesons. This paper attempts to derive such yy widths
for the spin-singlet case.

We should caution the reader that the absolute scale of
yy widths of a light qq multiplet is a rather sensitive
quantity. One can easily be misled into believing that
yy-width calculations are relatively "stable" by models
that reproduce well-established 0 + and 2++ widths
with accuracies of typically —30 /o. This however
represents the quality of fit possible given good experi-
mental data, and the overall scale is actually quite sensi-
tive to relativistic effects, the quark mass assumed, and
the prescription used to incorporate the physical reso-

nance mass. Without experimental data to constrain the
overall width scale, order-of-magnitude uncertainties are
typically encountered in yy width predictions for I )0
light qq states. (See, for example, the relativistic qq calcu-
lation of Bergstrom, Hulth, and Snellman [16], which
predates accurate data on 2++ decays. ) For recently ob-
served states such as the light 2 +

qq system, the overall
theoretical yy width should only be considered an
order-of-magnitude estimate, whereas the relative rates
such as I=0/I =1 are of course much more reliably pre-
dicted. This uncertainty of overall scale generally in-
creases with increasing l and decreases with increasing
quark mass; the accuracy of yy partial width predictions
will presumably improve as data on more well-established

qq states becomes available.
The immediate motivation for this study is the recent

measurement of the two-photon width of the I = 1,
J~c=2 + state m2(1670) by the CELLO [17) and Crystal
Ball [18] Collaborations; their results are

and

I (mz(1670)~yy) =0.8+0.3+0. 12 keV

I (tr2(1670) yy ) = l.45+0.23+0.28 keV

respectively, which combined in quadrature give

I (vr&(1670) yy)=1. 13+0.24keV .

(2)

(3)

A partial width of = 1 keV for an I= 1 pseudotensor
state in this mass region appears plausible a priori for a qq
state, so both experimental groups cited their measure-
ments as evidence that the ~2(1670) is a conventional 'D2
(uu —dd )/&2 quarkonium state. [Compare the Particle
Data Group [10] average value for the well-established
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I= 1 tensor az(1320), I =0.902+0. 151 keV. ] Subse-
quent to these experimental measurements, Anderson,
Austern, and Cahn [19] published a result for the yy
width of a nonrelativistic 2 + quarkonium resonance of
mass M~, which is

2

I Ndqq(2
+

e M~
(4)

For their parameters this led to the surprisingly small
width estimate of

I NR{mz(qq) yy)=1. 2 —9.4eV, (5)

which is two to three orders of magnitude smaller than
the experimental results for the nz(1670). Either the ex-
perimental results are inconsistent with a qq assignment
or the estimate (5) is too small and the theoretical width
requires more careful investigation.

We consider it highly unlikely that the mz(1670) is not
a qq state, so the assumptions which led to (4) and (5) are
presumably inaccurate. Although there are expectations
of qqg hybrid mesons with these quantum numbers
[8,20,21] and others [22] in this general mass region, the
proximity of the 3 p3(1690) and 1 p(1700) strongly
supports the identification of the n.z(1670) with the 'Dz
member of an l =2 qq multiplet. Its detection in yy is a
very useful development, as we must have an accurate
understanding of the couplings of higher-mass conven-
tional qq states if we are to distinguish them from hybrid
mesons or other exotics. One should note in this regard
that Close and Li [13] have calculated 2 +/1 +/0
hybrid couplings to yy, and expect the 2 + hybrid to
couple quite weakly to yy.

In this paper we present results from a study of the yy
widths of positronium bound states and qq mesons. We
derive a general relativistic result for the yy width of a
singlet (S=0) state of arbitrary total angular momentuin,
and show that it agrees with the relativistic formula of
Bergstrom, Snellman, and Tengstrand [23] and Hayne
and Isgur [24], who considered the special case
J =0 +. We then derive the nonrelativistic limit of
our general result, and recover the 2 + I z& contact for-
mula of Anderson, Austern, and Cahn (4) as a special
case. The yy widths of all spin-singlet positronium
bound states are obtained in closed form in this limit. We
also evaluate the yy width of a relativistic 2 + state with
a Coulomb-plus-linear wave function numerically, and
conclude that (a) the relativistic formula gives a yy width
of about —,', to —,

' times that observed for the m.z(1670), and
(b) the nonrelativistic (contact) approximation (4) is inac-
curate for these states. This conclusion regarding the
contact approximation for light-quark qq states has been
reported previously [4,16]. Other reasons for the
disagreement between our numerical results and those of
Anderson, Austern, and Cahn are also discussed. Finally
we quote numerical results for I zz of I=1, cc, and bb
states with J =0 +, 2 +, and 4 in a Coulomb-
plus-linear potential model, and discuss the prospects for
detecting these states experimentally.

II. DERIVATION OF I FOR ARBITRARY J
The yy partial width of a positronium bound state is

given by [25]

dQ„32~2 ~ ~
(6)

where the bound-state amplitude JK(A, „A,z) is related to
the invariant amplitude Aff; and the positronium wave
function 4(p) =P(p) Yi (Qp) [which has an implicit
spin-singlet wave function ( ~

1'l ) —
I 1 T ) )/&2] by

1/2
1 mJK(k„iz)=,1 dp ~f;@(p),

(2~)3 E,Ez

and the arguments (A, &, i,z) refer to the polarizations of
the final photons. Our normalization condition for the
positronium wave function is f o dp p ~P(p)~ =1. We

approximate the invariant amplitude Atf, by the Feyn-
man diagrams of Fig. 1:

JM,f, =JN, , +Atz,

where

1
E', up, s,JKt= —ie u

g, —m

and

1
/2Q

1 1
JRz = iezu-

gz
—m

(8)

(9)

(10)

U —'g
2

0 p
E+m

Us
2

(12)

where the overall constant q is
1/2

E+m
2m

(13)

and the rest-frame Pauli spinors are

+1 0
Qy — 0, Qg— (14)

The momenta satisfy q i =p
&

A i
=k2 p2 and

q2 =p
& k2 =k

& pz. Specializing to the c.m. frame,
we d~fi~e pi p2=p &i k2=k E& =E2=E
=+p +m and k, =kz=~k, ~=~kz~ =co. (Note that us-

ing the free-quark JRf; actually introduces an ambiguity
in the relativistic decay rate, since the momentum con-
straints imply Ep =co, but we fix co at M/2 and Ep varies
when we integrate over p. This ambiguity is an artifact
of the neglect of binding in the free-quark P,f;. For-
tunately this ambiguity only affects the relativistic results
and appears at a high order in P.)

To evaluate Jkf; we introduce explicit Dirac spinors

1
Q =77

P$1 r ~,p
E+m
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(& —p)
kg, A2

FIG. 1. Diagrams incorporated in our I yy calculation.

0
+1 '~ 0

We may write the invariant amplitude Jktf; in terms of
Pauli spinors and 2 X 2 matrices as

fi ) s 811+E+ 812E+ +8212 t O'P O P O'P
E+m E+m E+m

ie8 = (E—w —m)
2Ew

re8 = — (E—w+m )
2Ew

and

+
1 —Pk p

2 1

1 —Pk p

1+Pk.p

+
1+Pk p

(18)

(19)

+8zz E+ us
O'P

E+m (16)

18= ie'—.gz
$1

—m gz
—m

(17)

where 8» 8zz are 2X2 submatrices of the Dirac ma-
trix

le ~2 ~11 ~1 02~2
81z= —8zi = - +

2Ew 1 —pk p 1+pk p

where P= ~p~/E. Using (16) and (18)—(20), we find that
the invariant amplitude Atf; for electron and positron po-
larization states s& and s2 is

and are defined by
Jib~((s, ,sz)=Au, Iu, +S u, ou,

2 1 2 1

(21)

8z1

81z

8zz

From (17) (and using the notation a =—o a), one can show
that

1 +
1 —Pk p

and

where the expressions A and g are

e k (ef Xez)
2E

1

1+Pk p
(22)

2

k61'ez+P e e p+ —1 e e 'p
e 1 -. . . , 2E

Z 1 2 2 1'p

2—P p p e1 ez —P p e; p ez p '+(e;~ez, k~ —k)E+m w E+m

le 1
p k@1 ezk p+ —(e; ez p+ez e1 p)

m 1 —Pz(k. p }z w

+p 1 ——k-p(ei ez.p —ez* e', .p)

—P ™P E] Pez P+e1 ' (ekz. P)E+m w
(23)

(Note that E and co are formally related in this amplitude,
as discussed previously. ) For spin-sin~let positronium
the matrix element of o vanishes and U, Iu, contributes

2 I

an overall factor of —&2, so that (21) becomes

e k. (e1 X ez }
JPLf;(S =0)=— 1 1+

1 —Pk p 1+Pk p

(24)
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This is a relativistically correct result given (9) and (10};
the use of Pauli matrices and spinors is simply a compu-
tational convenience.

To derive the yy decay rate it is useful to note that the
angular dependence of the final helicity-zero two-photon
state with J =even + and J,=M is unique, and can be
written in terms of helicity eigenstates IA, ,A,z) as [26]

lyy; JM)

dZ JM
=2r'„IY, (Q„)I'. (26)

We may therefore obtain I directly from the angular
distribution (26) with a particular choice for M and Qz.
Here we choose M =0 and k =z, which gives

so the distribution of emitted photons in singlet-
positronium decay must also be proportional to

I ~gM(Qk) I':

f dQ Y (Q)(Ip, Q;++ ) —Ip, Q; ——) } .1

(25)

I J(e+e —err) = (e e ~yy)1 dI +
2I YJO(z}I dQ~ k=z

(27)

From (25) one can see that the photon angular probabili-
ty distribution in this state is proportional to I YJ~(Q&)I,

I

On combining (6), (7), and (24), this gives a yy decay rate
of

I' (e e ~yy)=J + 1

64m
I YJO(z)I

dp
&(2~)'

—me k (ef Xe~ )

v 2Z'
1 + 1

P (g) 1+P (g) 0 P Jo (28)

The angles g and P in the integrand refer to the direction of p within the positronium wave function, not to the axis

k =z of the outgoing photons, so that k p =z p = cosg. The internal angular integral can be carried out in closed form

using the identity QJ(t) =
—,
' f +,'PJ(p}(t —)jt, ) 'dp, and after summing over photon polarizations we find

2
2Q 2

~rr)=
p f dPP 0(P) QJ(&

m.m
(29}

where Qz(x) is the Legendre function of the second kind. This is an exact relativistic result for singlet positronium,

given the diagrams of Fig. 1, the decay formulas (6) and (7) and the amplitude (24).

III. NONRELATIVISTIC LIMIT

From our relativistic formula (29) and the asymptotic form of QJ(P ) for P~O, we have
2

2a ~ 1 — 2 (J~)I N„(e+e ~yr) f dp p p(p)
'

p +'
77m o P (2J+ 1 }'

(30)

On substituting the nonrelativistic form P=p/m and assuming P « 1, this becomes

I NR(e e yy) = '

z ~~+& dp p P(p)~(2J+1)!' m "+' (31)

This may also be written in terms of derivatives of the
position-space wave function g(r) [normalized to
f0"r If(r)I dr =1]at the origin, using the result

1/2

For J=l =2 this is

yy}=
m

(34)

dpp p
2J+1!!

( —t) "P' '(0) . (32)Jf

2

rNR(e+e rr }= 2J+2 (33)

This gives the remarkably simple form

which agrees with the result (4) of Anderson, Austern,
and Cahn [19]after their quarkonium formula is divided
by a color factor of 3 and a fiavor factor of I(e /e ) I,
and their Mz is replaced by 2m.

For positronium with a pure —a/r potential, the
derivatives at contact can be evaluated analytically, and
substitution into (33) gives our general nonrelativistic re-
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suit for the yy decay width of singlet positroniurn with
radial quantum number n and angular momentum J= l;

IV. APPLICATION TO QUARKONIUM

A. Transcription to qq: mass dependence

yy)

n+l
21+11

2(l+ I )

l

n
—(2l+4)ma2I+5 (35)

1I Nz(n'So yy)= 3
ma

2n
(36)

In the I =0 case this reduces to the familiar result first de-
rived by Pirenne [27]:

We may use our relativistic result (29) to model meson
decays to yy under the usual quark model assumption
that the initial meson is a pure qq state with a wave func-
tion @(p), which we obtain from a nonrelativistic
Coulomb-plus-linear potential model. Of course this is
only an approximate method, and additional important
corrections may arise from effects such as gluon ex-
change, non-qq components in the meson wave function
and corrections to the free quark propagator assumed in

Application of our results to quarkonium requires mul-
tiplication of (29) by a color factor of 3, a liavor factor of
l ( eq /e ) l, the replacement of m by m in the ampli-
tude, and an experimentally motivated treatment of the
dependence of I ~z on the resonance mass Mz ( which we
shall discuss subsequently). For n ~y y this transcrip-
tion gives

yy)=, f dpp'P(p) Q (P ')
3m-m,' o P

f dp p (t'(p) —In
37TW

q

2

f dp p P(p) ln
37rmq o p~ (37)

This is identical to the relativistic result of Bergstrom,
Snellman, and Tengstrand [23] and Hayne and Isgur [24],
except that Hayne and Isgur then multiply the rate by an
ad hoc overall factor of (Mz /M„, &) to impose an expect-
ed approximate MR mass dependence:

'3

I (no)/M =2.96+0.08 keV GeV

I (r))/M„=3. 17+0.19keV GeV

I (rj')/M„. =4.84+0.22keV GeV

(42)

(43)

(44)

(38)

Multiplication of the rate (37) by (Mz/M„f) is pri-
marily motivated by comparison with experiment. The
yy widths of the light pseudoscalars ~, g, and g' seen in
e+e experiments [6] are known to increase rapidly with
M~.

I ( n ) =7.29+0. 19 eV,

I r~(ri}=0.524+0.031 keV,

I ~ ( ir')r=4. 25+0. 19 keV .

(39)

(40}

(41)

In contrast, direct evaluation of the theoretical decay rate
(37) (with the appropriate charge factor of l(e /e ) l )
would incorrectly give comparable yy widths for these
resonances, because this formula makes no direct refer-
ence to the physical resonance mass Mz.

Note that the observed yy widths are approximately
proportional to Mz ..

This approximate Mz dependence can be motivated by
consideration of a simple pseudoscalar-yy effective La-
grangian,

F„„F„
which leads to a 0 +

yy width proportional to M~,

2 31
~rr 6 g Mz.64~

(45)

(46)

The problem with the quark model calculation is that it
does not incorporate the physical mass of the initial state,
which must be restored as a phenomenological input. In
effect we treat the quark model calculation as a deter-
mination of g in (45) ( for 0 +), and then impose the
overall Mz dependence found in (46). There is clearly a
need for an improved calculation of these rates at the
quark level which incorporates the physical meson mass
ab initio.

Our prescription is thus to "correct" the Mz depen-
dence of the quark model I rr calculation by introducing
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an overall multiplicitive factor, as in (38}. This requires
specification of a "reference" mass M„f, which is a
characteristic mass scale in the qq model wave function.
Hayne and Isgur [24] originally suggested setting M„f
equal to the mass actually calculated in the quark model.
This has the advantage of eliminating this (Mz/M„f)
correction as models become more accurate, but the
disadvantage that adding a constant to V(r) changes M„f
and hence the predicted decay rate. A choice for M„f
that does not sufFer this unphysical feature is the expect-
ed rest plus kinetic energy; this was used by Godfrey

and Isgur [28], in the relativistic form 2Vp +m . There
is clearly considerable arbitrariness in the choice of M„f,
and hence a corresponding uncertainty in the overall
scale of decay rates.

For the yy decays of /=1 qq states and the l=2,
J =2 + state we also expect an Mz dependence in

I zz, since the effective Lagrangians

(47)

+(z ) —~lgf F F (49)

have the same number of derivatives. For higher-spin in-
itial mesons, more derivatives will be required to con-
struct an effective Lagrangian, which will lead to a higher
power of Mz. For example, in the 4 + case two addi-
tional derivatives are required, so we incorporate an

(M„ /M„f ) dependence in I (4 + ~yy ). The higher-

spin yy partial widths are evidently much more sensitive
to the choice of the reference mass M„f, and their abso-

lute scale is correspondingly less well determined.

M„,=2(y~(p'+m') ~1(
&'" (50)

8. The ~2{1670) yy width

For our numerical estimate of the nz(1670} decay rate
we take M„f to be the rms relativistic kinetic energy of
the quarkonium state,

(0++)
pv pv (48) in terms of which our yy partial width is

f, dpp'4(p») Qz(P ')
MR

Mref
(51)

where the Legendre function is

Qz(x) =—(3x —1) ln
1 2 x+1
4 x —1

51'rr 5a, 5~ 5m
=0.06 +0.32 —2.61

m~
(55)

3 x
2

(52)

and the rms relativistic kinetic energy (50) is

Mref 1. 164 GeV (53)

Combining these and taking Mz =1.67 GeV, we find a

yy partial width of

I'(mz(1670) ~yy )=0.105 keV, (54)

which is approximately an order of magnitude smaller
than the measured rates (1) and (2).

In view of the discrepancy between our result (54) and
experiment, it is important to investigate the stability of
this I zz with respect to changes in the parameters a„a,
m, and M„f. We find that the yy width is rather insens-
itive to a, and a but depends strongly on m and M,ef,

'

for small changes from the "standard" parameters quoted
above we find

We evaluate this decay rate numerically for Coulomb-
plus-linear wave functions, with a "standard" light-quark
parameter set a, =0.6, a=0. 18 GeV and m =0.33
GeV; the wave-function integral is found to be

2

f dp p P(p) Qz(P ')=2.617X10 GeV ~

I (n.z(1670) yy) =0.275 keV,

which motivates our final estimate of

I (nz(1670)~yy)=0. 1—0.3keV .

(57)

{58)

This is somewhat smaller than the experimental result of
=1 keV, but in view of the remaining freedom in the
choice of M„f and the rather ad hoc incorporation of Mz
in I rr, we do not believe that (58}argues against a qq as-
signment for the n.z(1670). The appropriate test of this
assignment is a search for the I=O partner gz( =1700),

so that the strongest dependence by far is on m . (M„r is

implicitly a function of a„a, and m here, as we have set
it equal to the rms relativistic kinetic energy. ) If we vary
the definition of M„f with fixed a„a, and m, we find

51'rr 5M„f"=-3 (56)
yr ref

so the scale of partial widths also depends strongly on the
M„f assumed.

The sensitivity of decay widths to m was previously
noted by Hayne and Isgur [24] in a study of weak and
electromagnetic quarkonium decays in a relativistic
quark model. They concluded that a better numerical fit
to the data followed from an "extended" parameter set
with a light-quark mass of m =220 MeV. As we have no
particular reason to prefer the conventional value of
m =330 MeV, we also quote results for this lighter m .
This gives
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TABLE I. Estimated and observed I=1 quarkonium yy widths for the range m, =330 MeV ~220 MeV.

0
—+ 2 +

m. (135)
Expt. [6]

~(1300)

77( 3S)(1880?)

3.4~6.4 eV
7.29+0.19 eV

0.43—+49 keV

0.74~1.00 keV

mz(1670)
Expt. [17,18]

mp(2D)(2130? )

0. 11~0.27 keV
1.13+0.24 keV

0.10~0.16 keV m4(16)(2330? ) 0.21~1.6 keV

which should have a yy width of about 2 —3 keV
[ —", I r~(~z)]. If the discrepancy between (58) and experi-
ment is confirmed, this will emphasize the importance of
developing more realistic techniques for the calculation
of yy widths. A method in which the approximate M&
dependence arises naturally in I ~~ would be a particular-
ly useful improvement in technique.

As our estimate (58) for the yy width of the mz(1670)
differs considerably from the previous numerical estimate
of Anderson, Austern, and Cahn (5), it is instructive to
compare our decay formulas to understand the origin of
this discrepancy. One important difference is their use of
the nonrelativistic "contact" approximation in evaluating
the decay amplitude. This assumes that it is a good ap-
proximation to keep only the leading term in a series ex-
pansion of the amplitude in (51) in powers of p/mz,
which for J=2 requires

three orders of magnitude [assuming the m.2(1670) is
indeed the 'Dz qq state]. The compensating factor is
their identification of the quark mass m with half the
resonance mass, m =Mz /2 =835 MeV, instead of the
usual constituent mass m =330 MeV. Since the nonrela-
tivistic decay formula (4) scales as m, replacing 330
MeV by 835 MeV reduces their I ~z by a factor of
(835/330) =262. The combination of these two large
factors scales their decay rate down from our relativistic
result by an overall factor of =4. Our phenomenological
(Ma /M„, &) multiplier in (51) increases the predicted I'~~
of the n.2(1670) by about a factor of 3. This together with
the =4 above accounts for the order-of-magnitude
difference between our result of 0.11 keV for mq 0 33
GeV in a Coulomb-plus-linear potential and their result
of 6 eV in the very similar Cornell model. [They also give
results for several less well motivated potentials, which
leads to their quoted range of 1.2 eV (power law) —9.4
eV (logarithmic). ]

0 =1 . (59)
C. I » for other S=Oqq states

For light-quark parameters a, =0.6, a =0.18 GeV and
m =0.33 GeV, we find that this ratio is actually

2 2

f,

dpi''4(s»

=7.996, (60)

f dp p p(p) Q, (p ')

so the contact approximation is a poor one for light 2
decays. Similar conclusions have been reported for other
light-quark qq states [4,16]. Note however that (60) im-
plies that the contact approximation should overestimate
the yy decay rate by about a factor of 64, whereas An-
derson, Austern, and Cahn underestimate it by two to

As we have derived a relativistic S =0 I z formula for
arbitrary total J, it may be of interest to present numeri-
cal results for other higher-spin singlet states as well as
for radial excitations. We give results for I=1 0
2 +, and 4 + states in Table I (we take a, =0.6,
a=0. 18 GeV, and quote a range which follows from
m~=330 MeV ~220 MeV), for the corresponding cc
states in Table II and for bb states in Table III. The cc
and bb parameter sets used are (a„a,m&)=(0.4, 0.18
GeV, 1.4 GeV) and (0.15, 0.18 GeV, 4.5 GeV) respec-
tively; these are typical of values found in fits to the spec-
trum of states. For levels without well-established experi-
mental candidates we use the mass estimates of Godfrey
and Isgur [28], which are indicated by question marks.
For the '64 cc and bb states, which are not discussed by
Godfrey and Isgur, we use an approximate mass extrapo-

TABLE II. Estimated and observed singlet charmonium yy widths.

0-+

q, (2980)
Expt. [30]

q, (3590)

71,(2S)(4060?)

4.8 keV
=8+2 keV

3.7 keV

3.3 keV

9,(1D)(3840?)

71,(2D)(4210? )

20 eV

35 eV 7/, (1G)(4350?) 0.92 eV
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0
—+

TABLE III. Estimated singlet bb yy widths.

2
—+

gg(1S)(9400?)

gb (2S)(9980?)

g (3S)(10340?)

0.17 keV

0.13 keV

0.11 keV

73 (1D)(10150?)

g (2D)(10450?)

33 meV

69 meV gb (1G)(10500?) 59 peV

lated from their l &4 results. We caution the reader that
the 4 + rates incorporate an (MR/M, «) factor, so the
M f ambiguity discussed previously is quite large, and
these rates are at best order-of-magnitude estimates. The
predictions are all more stable for cc and bb, although the
freedom to adjust m, and introduce a compensating Vo

can plausibly lead to factor-of-two changes in the cc
widths.

A qualitative conclusion regarding heavy quarks is that

ryy is quickly suppressed by orbital excitation. This or-
bital suppression grows more pronounced as the quark
mass increases, so that each step of Al =2 results in a de-
crease in I yy by about two orders of magnitude for cc
and about three orders of magnitude for bb. As the
current statistical accuracy in resolving cc states in yy
collisions is at the keV level, Tables II and III show that
it is unrealistic to expect to observe l & 2 singlet cc and bb
states at e+e machines.

In contrast, in Table I we do not find significant
suppression of light-quark qq yy widths with increasing
l, which is consistent with the observation of the
a2(1320) and the nt(1670) with comparable yy widths.
One may plausibly expect to observe higher-I states such
as the 1=3 4++/3++/2++ multiplet at =2050 MeV
and the l =4 m4(2330?) in yy collisions. Our preliininary
results suggest that the F4 should couple dominantly to
A, =2 yy states, whereas the F2 should couple
significantly to both A, =O and A, =2 yy states [29].

We do not find significant I yy suppression with radial
excitation in any of the qq systems considered here. This
suggests that the tr(1300), radially excited light g states,
the ri, (3590), radially excited 2 Pz qq states at =1800
MeV, and a radial n.2(2130'?} may all be observable in yy.
These states may provide particularly sensitive tests of
the quark model calculations presented here.

V. CONCLUSIONS

We have derived relativistic and nonrelativistic results
for the yy partial widths of singlet (S =0) positronium
and quarkonium states with arbitrary total angular mo-
menta. Our I yy formula agrees with previous relativistic
calculations of the 0 + width. There are, however, addi-
tional relativistic effects and binding corrections which
are not incorporated in this calculation; some of these are
noted in the text. Our nonrelativistic formula leads to a
closed form result for the I of any singlet positronium
bound state. For the 2 case, our nonrelativistic for-
mula agrees with the result of Anderson, Austern, and
Cahn, although we find large relativistic corrections, and
our relativistic 2 I is numerically much closer to
the observed n2(1670}~yy partial width. We find that
light-quark 2 + and 4 +

qq states should be observable
in yy collisions, but that l 2 cc and bb singlet states
have very small yy couplings. For a11 these systems we
find that moderate radial excitation does not significantly
decrease the yy coupling. These results suggest several
interesting possibilities for experimental searches.
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