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R. G. E. Timmermans, Th. A. Rijken, and J. J. de Swart
Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands*
(Received 24 May 1991)

A model is presented for the production of antihyperon-hyperon pairs in antiproton-proton scattering
in the energy region below 2.0 GeV/c antiproton laboratory momentum accessible at CERN’s Low En-
ergy Antiproton Ring. An antibaryon-baryon potential is constructed from the Nijmegen soft-core one-
boson-exchange nucleon-nucleon and hyperon-nucleon potential. Using this potential as an
intermediate- and long-range interaction the multichannel Schrodinger equation is solved with a com-
plex boundary condition at r=b=1.2 fm. The model is applied to the elastic pp — pp scattering data,
cross sections, and asymmetries at intermediate energies around 1.5 GeV/c¢ antiproton momentum.
Next we compare it to the full set of data, cross sections, polarizations, and spin correlations on the
strangeness-exchange reaction pp— AA which has its threshold at momentum 1435 MeV/c. Excellent
results are obtained. Fitting 157 observables at 6 different energies we reach y2,;,=180.6, corresponding
to y2/data = 1.15. The results demonstrate the dominance of the strangeness-changing tensor force due
to the combined exchange of the K(494) and K *(892) mesons. The method of calculation is similar to
the one employed in the Nijmegen partial-wave analyses of low-energy proton-proton and neutron-
proton scattering data. In the same manner we perform a “model-independent” partial-wave analysis of
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the reaction p — AA close to threshold. The S-matrix elements are presented.

PACS number(s): 13.75.Cs, 11.80.Gw, 12.40.Qq

I. INTRODUCTION

Recently the data taken in the first runs of the PS185
experiment at the Low Energy Antiproton Ring (LEAR)
at CERN have been published [1-3], as earliest results of
the ongoing investigation of the antihyperon-hyperon
channels below 2.0 GeV/c antiproton laboratory momen-
tum. These new data on the reaction jp— AA are quali-
tatively much better than the old bubble-chamber data
[4,5]. The YY thresholds that LEAR is planned to reach
in the immediate future are shown in Table I (the E0=0
and E7 =" channels are not yet within the energy range
of LEAR). Experimentally the antihyperon-hyperon final
state can be detected clearly because the hyperons decay
weakly into a nucleon and a pion. In the case of the
Pp — AA reaction all four charged decay products can be
detected. In pp —>AZ°, S%A the fast electromagnetic de-
cay of 20 into Ay can be experimentally taken into ac-
count [6]. In charged =¥ production only two out of four
decay particles carry charge, but on the other hand the
hyperons themselves leave traces. As a consequence in
all these reactions the kinematics of the two-body scatter-
ing process can be reconstructed completely. Moreover,
since these parity-nonconserving decays have a large
asymmetry with respect to the polarization axis of the
hyperons, a complete set of observables including polar-
izations and spin correlations may be measured without
the need for a polarized target or secondary scattering.
Referring to these favorable circumstances, these reac-
tions are called “‘self-analyzing.” Another nice feature is
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that the LEAR beam can be tuned to energies close to
threshold where only relatively few partial waves contrib-
ute.

Theoretically the pp— YY reactions constitute a
unique means for studying strangeness production. This
can be done either in a conventional meson-exchange ap-
proach where the exchange of at least one strange meson
is required, or with constituent-quark models where at
least one Ss pair must be created. In fact hopes have been
expressed that with these reactions one can probe the un-
derlying quark structure of the baryons involved. One
simple example is the following. In the quark model the
spin of the hyperon can be related directly to the spin of
its strange quark. For instance, it is easy to see that in
the reaction pp—AA the spin of the 55 pair is exactly
equal to the spin of the AA pair. Experimentally near
threshold the AA pair is produced almost exclusively in
the triplet state. The S5 pair is thought to be created ei-
ther with 3S| or 3P, quantum numbers, corresponding to
JP€=1"" or JP°=0*". The threshold behavior of the
cross section is given by &' "!/2. Here e=V's —2m, is
the kinetic energy and / is the relative orbital angular
momentum of the AA pair (s is the total energy in the
center-of-mass system). The argument is often made that
from the threshold behavior of the pp — A A reaction it is
possible to determine which is the underlying pair-
creation model. Thus S-wave behavior should corre-
spond to the S, and P-wave behavior to the P, pair-
creation model. However, things are not that simple.
The argument disregards the Fermi motion of the specta-
tor nonstrange quarks. As a result even in the *P, pair
creation model S-wave behavior of the cross section close
to threshold is possible instead of the naively expected P-
wave behavior [7].
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TABLE 1. Antibaryon-baryon final states accessible at LEAR with their threshold energies in pp
scattering. I denotes the isospin. AQ and AS refer to the number of charge and strangeness quanta ex-

changed.
E, (MeV) Py (MeV/c) I AQ AS

Pp 1877 0 0,1 0 0
fin 1879 100 0,1 1 0
AA 2231 1435 0 1 1
A SO0A 2308 1653 1 1 1
STt 2379 1853 0,1,2 0 1
3050 2385 1871 0,2 1 1
33" 2395 1899 0,1,2 2 1
== 2630 2582 0,1 1 2
E =" 2643 2620 0,1 2 2

Before 1980 several Regge-pole models were proposed
to explain the bubble-chamber data [5,8,9], which were
taken mostly at higher energies. The most successful
models included the K *(892) trajectory as the dominant
ingredient, combined with some sort of absorptive mech-
anism. Stimulated by the expected result of PS185
several groups have studied the YY production reaction.
This was done in 1984 by Tabakin and Eisenstein in their
extensive meson-exchange calculation of the pp — AA re-
action [10]. A Born approximation method with im-
proved initial- and final-state interactions was used. A
delicate destructive interference between the K*(892)
and K3 (1430) exchanges was needed in order to describe
the data. The importance of incorporating the K3 down
to threshold was stressed. At the same time the YY chan-
nels were studied in Nijmegen by Timmers [7], using a
full coupled-channels formalism, including quasi-two-
body mesonic annihilation channels, similar to the one
used in the Nijmegen model for low-energy antinucleon-
nucleon scattering [11]. The existing bubble-chamber
data from Jayet et al. [S] were described well by this
model. It turned out to be surprisingly difficult to
achieve a detailed fit to the data, mainly because of the
very strong short-range strangeness-exchange tensor po-
tential. Apart from this, there existed the obvious com-
putational problem in dealing with many coupled chan-
nels (as many as 18 for each value of the isospin). In this
work [7] the suppression of the pp — A A transition due to
the strong final-state absorption and the importance of
the strangeness-changing tensor force due to K(494) and
K*(892) exchange were demonstrated. Other one-
boson-exchange (OBE) studies are the coupled-channels
model of Niskanen [12] and the distorted-wave Born-
approximation (DWBA) kaon-exchange model of Kohno
and Weise [13]. The latter authors also demonstrated the
presence of a substantial S-wave suppression due to the
strong short-range absorption. For more recent studies
of the reaction pp —AA using a DWBA approach, see
Refs. [14,15].

All these studies emphasize the presence of strong
initial- and final-state annihilation effects which call for a
coupled-channels calculation. In earlier reports on our
model [16-18] we have shown the dominant role of the
tensor force in the pp — A A reaction, which accounts for
the strong anisotropy of the differential cross section and

the sizable polarization even close to threshold. In Ref.
[16], where the model was applied to the first data taken
by PS185 [1] we pointed out the need to use a good
meson-exchange potential. In our case this potential is
given by the Nijmegen soft-core nucleon-nucleon [19] and
hyperon-nucleon [20] OBE potential, properly adapted
via the C-parity transformation to the antibaryon-baryon
channels. It is satisfactory to see that the same potential
can account also very well for antibaryon-baryon scatter-
ing. The model was subsequently applied to the data [2]
at one higher energy [17], and next to the data [3] taken
very close to threshold [18].

Several quark model studies have been attempted, not-
ably the 3S, pair-creation model of Kohno and Weise
[13] and the more extensive work of Furui and Faessler
[21], which favors the 3P, pair creation model because it
allows tensor-force transitions between pp and YY. Ru-
binstein and Snellman [22] have given some theoretical
justification for the use of perturbative QCD calculations
at these low energies. An interesting alternative develop-
ment is the diquark study of Kroll and Schweiger [23].

Ultimately both the meson-exchange and the quark-
creation mechanism are probably present at the same
time. The K(494) and K *(892) potentials extend well
beyond the inner region of the interaction, while short-
ranged quark mechanisms may be hidden due to absorp-
tion in initial and final states. In view of these considera-
tions we present a model for describing antibaryon-
baryon scattering in the LEAR momentum region that
offers some clear advantages over other approaches. A
coupled-channels partial-wave calculation using the mul-
tichannel Schrodinger equation is performed, taking into
account all relevant baryonic channels. The interaction
region is divided into two parts. A coupled-channels
antibaryon-baryon meson-exchange potential is used in
the outer region, which is connected to the inner region
with the use of the P-matrix formalism [24]. The short-
range physics is treated phenomenologically. This allows
us to incorporate initial- and final-state absorptions prop-
erly and also to study the tail of the nuclear interaction.
In particular the influence of the different strange mesons
is investigated. This separation of very complex short-
range and well-known long-range dynamics and the use
of a meson-exchange potential of good quality allow an
excellent description of the available data. We show how
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these data convincingly reflect the presence of a strong
tensor force which is due to combined exchange of the
K (494) and K *(892) mesons.

The methods used in our model are in fact quite similar
to the ones used in the Nijmegen phase-shift or partial-
wave analyses of low-energy pp and np scattering data
[25,26]. We decided to present also a partial-wave
analysis of all the low-energy pp —AA data taken at
LEAR. We think that we are able to pin down reliably
the behavior of the important transitions. We finally
point out that this is the first time a multienergy y fit is
done to all the published LEAR data on the reaction

The organization of this paper is as follows. Section II
is devoted to the density-matrix formalism and the
definition of the observables. In Sec. III we review the
multichannel scattering and P-matrix formalism and ex-
plain its use in this particular scattering problem. Sec-
tion IV contains a description of the antibaryon-baryon
potential and in Sec. V we present the results of the com-
parison of the model with the new LEAR data. Finally,
in this section we perform a partial-wave analysis of the
pp—AA data and present the corresponding ‘“model-
independent” S-matrix elements. In Appendix A we ex-
plain the SU(3)-flavor formalism, necessary for the
derivation of the antibaryon-baryon potential and in Ap-
pendix B we derive a partial-wave decomposition of the
relevant observables in pp — AA.

II. DENSITY-MATRIX FORMALISM
AND OBSERVABLES

In this section we will briefly review the density-matrix
formalism [27] applied to the pp — YY strong interaction,
to the subsequent electroweak decay of the hyperons and
its relation to the scattering observables: cross sections,
polarizations, and spin correlations. To be specific the re-
action pp—AA is taken as an example throughout the
section. The initial pp state is described with a density
matrix Po which is the outer product of the density ma-
trices for the antiproton beam (with polarization P?) and
for the proton target (with polarization P?) and is thus
given by

(1+o,PPe(l+0o,PP). ()

Pop =
In the case of scattering of an unpolarized beam on an
unpolarized target we simply have

p,,=1(181) . )

The strong interaction with amplitude M| transforms this
into the density matrix for the AA final state

+
Pin=Mp;,M; . (3)
This scattering amplitude M, is the quantity which is an-
alyzed in our model. The density matrix pz;, can be ex-
panded in the 16 basis matrices o,®0 ), which are the

outer products of the three Pauli matrices and oy=1:

pir=+I, 3 Cplolteal) . @)
Vil
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Here I,=do /dQ, Coy=1, C;,o=P}, Co; =P}, and C;
are the spin-correlation coefficients. From the above ex-
pression for p+, we can deduce easily

IOZTerA ’

I,PA=Trpz,0 ",
_ _ (5
IOPAzTrp/—\AOA N

— Agp A
I1,C;;=Trpz,0i®0] .

Another useful observable is the so-called singlet fraction
S defined by

IOS=TerA§=TerA7(1—a ®ah)

=+(1-C,,—C,,—C,), (6)
where the operator S projects out the singlet state.
Analogously we can define the triplet fraction T:

1, T= TrpMT TrpAM(ZH-U ®ah)
=%(3+Cxx+ny+sz). (7)

It is obvious that S+ 7T =1. As to the kinematic limits on
these observables we have that —1=P,C;<1and0=S,
T <1. When the spins of the outgoing particles are un-
correlated one has S =4, T=3.

It is customary to use a right-handed coordinate sys-
tem in which the y axis lies normal to the production
plane and in which the z axis is parallel to the direction of
motion of the outgoing A (in the center-of-mass system).
Using this set of axes and assuming the invariance of the
strong interaction under the P and the C transformation
separately one can prove important symmetry relations
for the spin observables. Applying conservation of parity

it is easy to deduce that

PA=pA=pA=pAri=0,
X z X z (8)
C¢,=C,=C,=C,=0,
while charge-conjugation invariance adds the further re-
strictions
PA=P% C,=C;, 9
in case of self-charge-conjugate reactions (such as
Pp — YY). These symmetry relations leave us with five in-
dependent spin observables: the polarization normal to
the scattering plane P, and the spin correlations C,,, C,,
C,,, and C,,, which are all functions of the center-of-
mass scattering angle 6. From rotational invariance fol-
low some simple relations. Both in the forward direction
0=0 and in the backward direction =7 one has P,=0,
C,,=0,and C,, =C,,.
Experimentalists usually give the observables using two
different sets of body-fixed axes, (x,y,z), and (x,y,z)3,
which are rotated over 180° with respect to each other
and where the z axes are parallel to the momenta of the
respective particles. This then gives a sign change in C,,,
C,,, and C,,. We will conform to this convention. It

should be mentioned here that the data at p;,, =1546.2
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MeV/c do not satisfy the requirement C,,=—C,, at
backward angles.

This completes the discussion of the strong-interaction
density-matrix formalism relevant for our theoretical
model. For the sake of completeness we will say a few
words on the experimental determination of these observ-
ables. After the production by the strong interaction the
hyperons decay weakly (with the exception of the Z9).
The experimentally detected charged decay modes in
pp—AA are A—pr~ and A—pm’. The parity-
breaking, CP-conserving weak interaction produces a
density matrix

Py =MupaM) , (10)

where p, is the density matrix for the polarized A hype-
ron

pa=1(1+0,Ph) . (11)

Likewise for the decay A—pw'. Unlike the strong-
interaction amplitude M, the form of the weak-
interaction amplitude M,, is known. From the observed
angular distribution of the final-state decay products
which is proportional to

M, M, pz MiM] (12)
the polarization and spin correlation of the AA system
can be experimentally inferred. This is due to the fact
that the weak amplitude M, contains a parity-breaking
term. As a happy consequence, the weak decay produces
a large asymmetry with respect to the polarization axes
of the hyperons. Essentially this means that in the rest
system of the A the proton is not emitted isotropically,
but that there is a preference on the part of the A to emit
the proton in the direction of its polarization.

III. MULTICHANNEL SCATTERING FORMALISM

A. Multichannel Schrédinger equation

Antiproton-proton scattering at intermediate energies
is a complicated many channels problem. Consider this
problem on the isospin basis. Restricting ourselves for
the moment to the two-particle antibaryon-baryon chan-
nels below 2.0 GeV/c momentum with isospin 0, 1, or 2,
the following three scattering problems have to be solved:

I=0: (NN,AA,23)—(NN,AA,Z3),

I=1: (NN,AZ+3A,23)—(NN,A3Z+3A,33), (13)
1=2: (£3)—(33).

For isospin O or 1 the potentials on the isospin basis are
3 X 3 matrices in channel space (6 X 6 matrices in the case
of tensor-force coupled partial waves). As an example for

isospin 0 we get, for the wave function and potential ma-
trix,

(rIsJ|NN) Vv Vaa Vas
D= |(risJIAA) |, V§= |Van Var Vas|> (14)
(risJ|1ZZ) Vsv Vsa Vss
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where the notation of the potential matrix elements is
such that, for instance, ¥,y =(AA|V|NN ). Similar ex-
pressions hold for isospin 1. These potentials are used in
the relativistic, symmetric version of the radial
Schrodinger equation in channel space. The relativistic
Schrodinger equation [28] is a differential form of the rel-
ativistic Lippmann-Schwinger integral equation, which in
its turn is equivalent to three-dimensional relativistic in-
tegral equations like the Blankenbecler-Sugar equation
[29]. For an isospin I partial wave with total angular
momentum J we have
d* L?

dr? r?

Here U/=V2m V{V2m, where V] denotes the
coupled-channels antibaryon-baryon potential (see next
section) and k and m are diagonal matrices containing
the channel momenta (in the center-of-mass system) and
reduced masses. The connection between the momenta k
and the total center-of-mass energy V's is given by the
relativistic expression k2=%s —m? (for equal baryon
masses). L2 is a diagonal matrix with entries /(/+1). In
order to have the correct thresholds and to be able to in-
clude the Coulomb interaction we use the physical parti-
cle basis in our calculation. Taking into account all
baryonic channels below 2.0 GeV/c antiproton momen-
tum, there are 7 coupled channels for partial waves with
1=J, s=0,1 and 14 coupled channels for tensor-force
coupled partial waves with / =J+1,s=1.

Uj+k? |®](r)=0. (15)

B. The P matrix

Up to this point only the two-body baryonic channels
have been accounted for, but the many mesonic annihila-
tion channels coupled to the pp system have not been in-
cluded yet. In these baryonic channels the long-range in-
teraction is in our model given by an antibaryon-baryon
meson-exchange potential. For the complicated short-
range interaction we think that the meson-exchange pic-
ture is perhaps of limited use, since here the physics is
probably dominated by a strong coupling to the many an-
nihilation channels and possibly by quark and gluon de-
grees of freedom. With the help of the so-called P-matrix
formalism [24] we will circumvent the problem of the
complex short-range physics. The P matrix is defined as
the logarithmic derivative of the solution matrix ®(7) at
a distance r =b from the origin:

Q@*l
r

P(k,b)=b , (16)

r=b

where the factor b is included in the definition in order to
make the P matrix dimensionless. In the original work
the P matrix was used by Jaffe and Low in the bag model
where at the energies of the eigenstates of the confined
quark and gluon degrees of freedom the P matrix exhibits
poles. More generally the P matrix relates the inner to
the outer region physics. In scattering problems the
short-range interaction is largely unknown and has to be
treated phenomenologically. The long-range physics is
much better understood theoretically. The P-matrix for-
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malism provides a useful separation between these two
regions and is a very powerful tool in analyzing scattering
data. Recently the P matrix has proved its power in the
Nijmegen partial-wave analyses of nucleon-nucleon
scattering data [25,26]. As already mentioned in the In-
troduction, using the same techniques here we can deter-
mine quite reliably the behavior of the most important
amplitudes.

We have put the boundary b at 1.2 fm. Any value be-
tween about 1.1 and 1.3 fm would allow us to get an al-
most equally good fit to the data but 1.2 fm is more or
less the optimal value. This is closely related to the range
of the annihilation potential. Outside r =b a (real)
meson-exchange potential is used, whereas the (imagi-
nary) annihilation potential inside r =b is completely
represented by the P matrix (see next section). This
shows that the annihilation potential is of intermediate
range because if we take the boundary at values smaller
than 1 fm it is impossible to fit the data on pp —pp in a
proper way. In particular it would be very difficult to
achieve a reasonable fit to the forward diffraction peak
and minimum present in the elastic differential cross sec-
tion.

Starting with the boundary condition (16) we integrate
the matrix equation (15) numerically for each partial
wave with J =J_ .. up to a distance r, well beyond the
range of the nuclear potential (we use r_ =12.0 fm).
There the S matrix is evaluated by matching ®(r_) to
Coulomb or spherical Hankel functions. All the scatter-
ing observables defined in the previous section can then
be calculated using standard methods.

C. Parametrization of the P matrix

In the previous subsection we explained how the com-
plicated short-range interaction can be represented by the
P-matrix boundary condition on the wave function. The
P matrix has to be parametrized in a phenomenological
manner. Many different parametrizations are possible.
Let us begin the discussion with single-channel scatter-
ing. A simple but very convenient choice for the short-
range interaction is a square-well potential of range b.
The P matrix for a single-channel square-well problem in
a partial wave with orbital angular momentum / is given
by

by=kp kD) (17)
Pk, D)=k oy

where J,(z)=zj,(z) with j;(z) the spherical Bessel func-
tion and k'?’=k2—2mV, V being the depth of the
square-well potential. The prime on the Bessel function
denotes differentiation with respect to the argument. The
many mesonic annihilation channels which are coupled
to each single antibaryon-baryon channel through a
short-range annihilation potential are taken into account
as an average by using a complex square well, leading to a
complex instead of a real P matrix.

The simplest way to treat the case of coupled channels
is to start from these single-channel P matrices (which of
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course are just complex numbers) and arrange them in a
diagonal matrix. The next step is to specify some sort of
coupling. The short-range coupling between different
antibaryon-baryon channels and the coupling due to the
tensor force are taken into account by adding a prescrip-
tion to parametrize the off-diagonal P-matrix elements.
Suppose we have a diagonal P matrix for two coupled
channels. A useful construction to describe the mixing
between these channels, and the one we will actually em-
ploy in our model is given by

P, 0
0 P,

—sinf
cosf

cos6
sin6

cosf sinf

(18)

—sinf cosé

In general the angle 6 can be parametrized as a function
of energy, although in our calculation we can take it as a
constant, dependent on the partial wave.

In this way we have finally arrived at a multichannel P
matrix. The fact that a complex annihilation potential is
used in the parametrization means that the correspond-
ing P matrix is no longer Hermitian, though still sym-
metric. This last fact follows from the time-reversal in-
variance, which allows us to choose the phases of our
physical states in such a way that the potential matrix
and consequently the P matrix is symmetric. This gives
us

Pl(k,b)=P,(k,b), Pj(k,b)#P,(k,b), (19)

where the T denotes transposition in channel space. For
the partial-wave .S matrix we then get

Stk)=8,(k), SJ(k)#S; (k). (20)

The fact that the S matrix is not unitary accounts for the
disappearance of probability (flux) into the mesonic chan-
nels.

IV. ANTIBARYON-BARYON POTENTIAL

In this section we want to sketch the derivation of the
antibaryon-baryon potential to be used in the multichan-
nel Schrodinger equation discussed in the previous sec-
tion. In keeping with the work of the Nijmegen group on
nucleon-nucleon and hyperon-nucleon potentials [19,20]
we will assume that flavor SU(3) holds for the coupling
constants between baryons and mesons. In order to im-
plement this assumption and to calculate the various iso-
spin symmetry factors, it is convenient to start the discus-
sion from a Lagrangian of baryons and mesons with un-
broken flavor symmetry, where the hadrons are assigned
to multiplets which transform according to definite irre-
ducible representations of SU(3). The formalism used
here to describe the mutual interaction of baryons and
mesons is explained in Appendix A to which we refer for
details.

Out of the baryon and meson fields direct products can
be formed with the help of the (real) SU(3) Clebsch-
Gordan coefficients [30]. This procedure leads to a local
interaction Lagrangian of the general form
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TABLE II. Interactions —.L;, of baryons and mesons. m and M are scaling masses, chosen as the
mass of the charged pion and proton, respectively. For pseudoscalars both pseudovector and pseudos-
calar couplings are shown.

Multiplet Jre —Lin
Scalar o+ g
Pseudoscalar o+ i%l}‘}/#‘yslﬁa“(ﬁp; ighy shdp
Vector | ig Jy“;bzb’,‘, + ﬁlﬁawdz( oy, —a"dy)
Tensor 2+ LRy o dow ey

M U ”27 ) (1)
Lix)=—3 gw) |, o . |8 TP ()P x) .
Yvvv, 1 2 2 !

The reader may easily verify that this interaction La-
grangian is a flavor singlet. The form (21) is equivalent to
the more familiar one which is obtained by constructing a
baryon current out of ¥(x) and #(x) and coupling this
current with the meson field ¢(x) to a flavor singlet. In
the expression for .L;, only flavor indices are explicitly

T

shown whereas Dirac spinor and Lorentz space-time in-
dices as well as possible derivatives acting on the baryon
and meson fields are suppressed. iT is an SU(3)-invariant
operator, for example, a Dirac matrix in spinor space.
Taking into account meson multiplets of different spin
and parity we distinguish in our model scalar, pseudosca-

TABLE III. Feynman rules for —iM; for baryons and mesons with unbroken flavor SU(3) symme-
try. The corresponding Lagrangian is given in Eq. (21).

F;"l h"l
e vertex factor: ’ > 912(7) fr b, r
Y v v i

— with (=)901) 4 (—)Q02) 4 (—)Q(")!= 1 from charge conservation
e internal lines:

~ meson propagator: WY @ -—c---—--gWV 8,,8,_, (=) DE(k)

— baryon propagator: hv e > o' 6 wu' 8., SF(P)
e external lines:

— absorbed baryon: > -0 u(p, s)

— absorbed antibaryon: < ° o(p, s)(_)Q(V)

— emitted baryon: .- > u(p, s)

— emitted antibaryon: (2 < v(p, s)(—)%®
e permutation factor: for B1B; — B3B, bp = —1

(from normal ordering)
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lar, vector, and tensor mesons. The interaction Lagrang-
ians for these exchanges are summarized in Table II
where this time the flavor indices and summations are
suppressed.

We apply this formalism to the case of antibaryon-
baryon scattering B;B,—B;B,. In doing this care has
to be taken with the phases of the antibaryon multiplet
J

*

By

Mfi=<ﬂ§V3ﬂ4V4|M|MfV|#2V2>:‘ 2 813(7)824(7") vy
YyY'v

-V V3
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with respect to the baryon multiplet. In order to make
the calculation more transparent as well as to keep track
of these phase factors a set of Feynman rules, derived us-
ing the conventions of Appendix A, is given in Table III.
_ Evaluating the one-boson-exchange diagram for
BB, —B;B, with the help of these rules gives for the
scattering amplitude

*
BBy | B2 BB,

[@(4)Tu(2))iDp(k)[5(1)Tw(3)],

vy, Vv,

(22)

is an obvious notation. The indices u and v denote the flavor-SU(3) quantum numbers of the exchanged meson. D (k)

is the Feynman propagator for the exchanged meson,

for a scalar or pseudoscalar meson given by

iDp(k)=(k*+m?—ie)”!. Although we will not use it here, we mention for completeness that with these conventions

the baryon propagator reads iSg(p)=(iy-p +m —ie) L.

As far as the masses of the baryons and mesons are concerned, flavor-SU(3) symmetry is of course broken in nature

and this breaking of the mass degeneracy can very easily be incorporated. Maintaining for the moment SU(2)® U(1)
isospin-hypercharge symmetry, contained in SU(3), let us calculate the scattering amplitude on the isospin basis. To
achieve this we split the SU(3) Clebsch-Gordan coefficient in the product of a SU(2) Clebsch-Gordan coefficient and a
so-called isoscalar factor [30] in the standard way

Hi H2 B3, I, 1, I, 1y H2
m; m, Ly, I,Y,

U3

Y

1Y,

. (23)

vy V2 V3 ms

Furthermore we take initial and final two-particle states of definite isospin and hypercharge obtained from the direct
products of the one-particle states with SU(2) Clebsch-Gordan coefficients. The scattering amplitude can be written in
the compact form

M= (LY 3ud Y I'Y'm! M pt L Y o0, Y, IYm )

=—8,8yyBpmm 3 GUY;I"Y")[@(4)Tu(2))iDp(k)[T(1)Tw(3)],
Iy

(24)

where I'" and Y’ are the isospin and the hypercharge of the exchanged meson. The factors G(IY;I"'Y"') in this expres-

sion read
* *
H M3 M,

GUIY;I"Y")= 2g13(1/)g24(‘}/') Iy” I3Y3 Il },v1

vy’

with the help of an SU(2) 9-j symbol. In order to arrive
at this specific form we employed some symmetry rela-
tions [30] for the Clebsch-Gordan coefficients and isoscal-
ar factors, valid for baryon octets and meson octets and
singlets. The factors G(IY;I"Y") given in (25), ex-
pressed in terms of the baryon-meson coupling constants

By p po, | |2 17 L
LY, 1"y | ny,||% s s> (25)
L I, I

zllre collected in Table IV for the case of pseudcscalar-
meson exchange. They were evaluated using the numeri-
cal values for the isoscalar factors given in Ref. [30]. In
the table the isosinglet 7 is actually the octet member 7.
The flavor singlet 7, couples universally to all members
of the baryon octet. The physical nonet members 1 and

TABLE IV. Symmetry factors G(IY;I"Y"') for pseudoscalar-octet exchange.

I=0, Y=0 NN AA 33
I_VN 3g1%/N7_'r; gl%an -2 g?\NK ‘/—6_g§z;'l(
éA _‘12g3\1v1< gimn —V3gis,
b V6gink —V3ghis. 2835 83,
I=1, Y=0 NN (AZ+3A)/V2 33
_ I—XN _ “8_1%/1%; gz%lzvn -2 8ANKE:INK _28 %‘,NK
(A2+_2A)/‘/2 _‘/ZgANngNK g%&Z_w; 8AAn833y ‘/28/\2178222"
23 2g %.NK V2 BAsr833n g2227r; 833q
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7' are mixtures of 7z and 7.

In the same manner as shown above the SU(2)® U(1)
symmetry can be broken further in order to account for
the mass differences within each isospin multiplet. This
is what we do in our calculation since otherwise the
different 33 thresholds would still remain degenerate.
For completeness we give the relation between the cou-
pling constants g(y) (y=1,2) used here and the F- and
D-type couplings found in the literature:

g()=—(2)"(a—1)g, g(2)=2V3ag, (26)

where «a is the F/(F+ D) ratio and g is for example the
pion-nucleon coupling constant gyy, in case of pseudo-
scalar mesons. All baryon-meson coupling constants can
be expressed in terms of g and a. As an example, for the
strange mesons we have

Fang=—f0+2a)/V3, fsyx=f(1—2a), (27)

where SU(3)-flavor symmetry is assumed for the pseu-
dovector coupling constant (so f = fyy.)-

To make contact, at last, with the baryon-baryon OBE
potential, we have to relate the factor [v(1)I'v(3)] to the
corresponding factor [#(3)Tu(1)] which occurs in the
analogous expression in baryon-baryon scattering. Some
gymnastics using properties of the Dirac spinors and
gamma matrices reveals that this relation is provided by
the C parity of the neutral member ¢° of the meson mul-
tiplet in the following way:

[3(1)Tv(3)]=— (=) [@(3)Tu(1)] . (28)

This relation leads to a connection between the potentials
for the two reactions B,B,—B;B, and B;B,—B B,
where the same meson is exchanged:

V(B,B,—B.B,)=(—)""V(B,B,—~B,B,) . (29)
For instance, we have that

V(pp—pp)=V(pp—pp) for 7° exchange ,

V(pp—7an)=V(np—pn) for 7" exchange ,

V(pgp—AA)=V(Ap—pA) for K exchange .

We remark that, in case one works on the physical parti-
cle basis, it is simpler to use the C-parity transformation
instead of the well-known G-parity rule. Finally, the non-
relativistic reduction of the Dirac spinors and a Fourier
transformation to configuration space leads in a standard
way to the meson-exchange potentials.

It is important that in the outer region a realistic po-
tential of good quality is used. The meson-exchange po-
tential we use is the Nijmegen soft-core hyperon-nucleon
OBE potential [20]. Our description of the intermediate-
and long-range interaction is thus parameter-free. This
OBE soft-core potential based on the Regge-pole nature
of the mesons [19] gives a very good description of the ex-
isting data on NN and YN scattering. The following
meson nonets are taken into account.

(i) The JP°=0"71 pseudoscalar-meson nonet
(m,m,m',K). SU(3) symmetry is assumed for the pseu-
dovector coupling constant f.
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(ii) The JP€=1"" vector-meson nonet (p,$,w,K *).

(iii) The JPC=0*" scalar-meson nonet
(a((980), £,(975), f((760),K 5 (1000)).

(ivv  The JP€=2%*  tensor-meson  nonet
(ay,f,P®f5,K5). Actually only the “diffractive”
JFC=0*"" contribution from the tensor Regge trajectory
is taken, leading to effective scalarlike potentials. This
also leads to a mixing between the Pomeron P and the
unitary singlet f5. In the Nijmegen potential the Pome-
ron is an important ingredient. It should be noted that
Low and Nussinov have demonstrated [31] in the context
of QCD that Pomeron exchange can be viewed as a two-
gluon-exchange effect.

The explicit potential functions as well as the numeri-
cal values of all the coupling constants and other parame-
ters can be found in Ref. [20]. Gaussian form factors are
used at the vertices, reflecting the quark structure of the
hadrons. The coupling constants of the strange mesons
at the AN and 2N vertices, of particular interest to our
problem, are summarized in Table V.

Some further remarks regarding details of our use of
this baryon-baryon potential have to be made. First of
all, the nonlocal terms of the potential are neglected be-
cause they cannot be handled in the Schrodinger equation
with the same method as used in NN and YN models [32].
Simply leaving these short-range terms out is a very good
approximation outside 1.2 fm where the OBE potential is
used. Second, charge-symmetry breaking [33,34] is in-
cluded and introduces a mixing between 7° and 7 and be-
tween A and 3°. It leads, for instance, to a long-range
one-pion-exchange potential in AA— AA scattering.

Some general features of the resulting potential are the
following. Very attractive potentials are present in the
elastic channels due to the coherence of w and f ex-
changes. In the pp — AA reaction we get a very strong
tensor force from the combined K and K* exchanges.
The spin-spin potentials of these mesons have opposite
sign, whereas their tensor potentials have the same sign.
Compare this to the case of charge-exchange pp —7in
scattering where the tensor potentials due to 7 and p ex-
change also add up. The five different potential forms,
central V¢, spin-spin Vg, tensor ¥V, spin-orbit Vo, and
quadratic spin-orbit ¥V, for this reaction are shown in
Fig. 1. We finally remark that in this way we do not, to
this order in the coupling constant, get a potential for the
double-charge-exchange reaction pp—2~2" [35] and
the double-strangeness-exchange cascade production re-

TABLE V. Coupling constants of the strange mesons. For
K (494) exchange also the equivalent pseudoscalar coupling con-
stants are given in parentheses for comparison.

M ANM SNM

K (494) f —0.27045 0.079 04
g (—3.98122) (1.207 49)

K*(892) g —1.54408 —0.89147
f —3.36708 1.693 15

K ¥(1000) g —2.63359 —2.006 82

K3 (1430) g —0.814 69 —0.51408
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actions pp —Z°Z° and pp—>Z_=~. These reactions are
mediated via 7K and 2K exchange. They can however be
treated analogously using the formalism outlined above.
We want to point out, however, that in a multichannel
calculation the transition pp—2~ 2~ is automatically
obtained as a two-step process, for instance,
pp—>AA—3 "3 via subsequent K= and 7= exchange.
The reaction pp — =920 can be generated for instance via
pp—37321 =20 through K° and K~ exchange. The
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relative importance of this mechanism involving only
OBE forces as compared to a direct transition via 7K or
2K exchange needs to be investigated.

We have taken everywhere the linear combination
A3°+39A and disregarded the orthogonal A3°—3°A
state, because the latter does not couple to the NN sys-
tem. The C parity of a NN state with orbital angular
momentum / and spin s is given by (—) "% This state
can couple to a A%+ 3PA state which has the same C

1000 300 . —
VSS in MeV
750 K (495)
0
500 rinfm
250
K'(892) -300 |- K'(892)
0
K" (1430) rin fm
-250 -600
2 0 1 2 0 1 2
50 200
Vryin MeV Vgoin MeV
100
% (1000)
0 t
. (4] T
rinfm
K (495) rinfm
-100 +
50 }
) 200 | K (892)
K (892)
- -300
100 b ’ 2 0 1 2
200 .
VQ in MeV
S ———
4] T
x (1000) rin fm

-50
0

FIG. 1. Soft-core strangeness-exchange potentials for pp — AA.
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parity. The orthogonal state A=°—3OA has C parity
(_)1 +S+1_

V. RESULTS, DISCUSSION, AND OUTLOOK

A. Elastic scattering pp — pp

With our model we will now analyze the scattering
data on pp —pp and pp — AA recently taken at LEAR.
Previous studies by others and ourselves have almost
without exception pointed out the importance of initial-
(and final-)state-interaction effects on the antihyperon-
hyperon pair production reaction. These should be taken
into account properly. In this subsection we will consider
the case of elastic pp — pp scattering. At these intermedi-
ate energies from 1.5 up to 2.0 GeV/c antiproton labora-
tory momentum elastic scattering occurs mainly in D, F,
and G waves, with many partial waves of both isospin 0
and 1 substantially contributing. To the charge-exchange
reaction pp — #in, data on which are unfortunately almost
completely lacking at these energies, even more transi-
tions contribute significantly. The data on pp —pp con-
sist of total and elastic cross sections, very accurate
differential cross sections of Eisenhandler et al. [36], and
high-quality asymmetry data of Kunne et al. [37,38], also
recently obtained at LEAR by the PS172 Collaboration.
We are able to achieve a nice fit to these data, an example
of which is shown in Fig. 2 for the differential cross sec-
tion at 1500 MeV/c, fitted with y*/data=1.5, and for the
asymmetry at 1550 MeV/c, fitted with y?/data=1.5.
Especially the characteristic diffraction peak of the for-
ward cross section is nicely reproduced. In Sec. III B we
remarked that this is connected to the range taken for the
annihilation potential. In our model this range is deter-
mined by the position of the boundary. The value
r=>b=1.2 fm gives the best results.

The fit is done with only one imaginary annihilation
potential parameter used in all partial waves of both iso-
spins. Furthermore we need 10 real potential parameters,

100
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5 for each isospin. Most of these parameters are neces-
sary to obtain a satisfactory result for the asymmetry.
With more parameters the fit could be even better, but it
is not our main objective to fit the elastic data. If we
were to look only at the cross sections, fewer parameters
would suffice. Moreover, it is important to note that with
the exception of the annihilation parameter to take care
of the necessary amount of annihilation, these parameters
are not essential for the quality of the fit to the data on
Pp—AA. It is only the long-range interaction in the ini-
tial state (which has no free parameters) that is relevant
for the strangeness-exchange reactions. This is shown by
the fact that with no short-range elastic potential apart
from one annihilation parameter an excellent fit to the
data on pp—AA is possible. We can understand this
physically since the most important transitions start in
the D-, F-, and G-wave pp channels. It thus appears that
we do not need to specify the short-range initial-state in-
teraction. In order to concentrate on the pp —AA data
and to minimize the number of parameters we will con-
tinue with the parameter set where we have only one pa-
rameter for the initial state.

B. Strangeness-exchange scattering pp — AA

In order to discuss the reaction pp—AA we have to
specify some sort of prescription for the final-state in-
teraction. Of course no data exist on the reaction
AA—AA, so that essentially nothing is known about the
final-state beyond what can be inferred from SU(3) sym-
metry considerations. Contrary to the initial state here
the short-range interaction is quite important. The avail-
able kinetic energy in the AA—AA channel is low and
scattering occurs mainly with the AA system in S and P
waves (with a rapid rise of D-wave contributions). The
final-state absorption, again one imaginary potential pa-
rameter for all partial waves, is important in scaling the
total cross section for the reaction pp —AA. Three real
parameters for the short-range potential in the final state

do/dQ in mb

Plab = 1500.0 MeV/c

10

0.1

0.01

0.5

\/[W | s

Pjab = 1550.0 MeV/c

'
-

-0.5 0 0.5 1

FIG. 2. Differential cross section in mb at momentum 1500 MeV/c and asymmetry at momentum 1550 MeV/c for pp — pp.
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are needed, one for the 3Sl wave, one for the 3P2 wave,
and one for all other partial waves. With only these 5
initial- and final-state parameters, already a reasonable fit
is possible to the data on pp —AA, with a ¥2/data=3.0.
This clearly shows the importance of the initial- and
final-state interactions, which determine the global
features of the data in a qualitative way. It also shows
the quality of the long-range Nijmegen potential tail,
especially the off-diagonal strangeness-changing part.

The differential cross sections exhibit a typical behav-
ior at almost all energies, namely, a peak at forward an-
gles, followed by a more or less flat backward cross sec-
tion. This already shows that a large amount of scatter-
ing occurs at longer range, in P or higher waves, even at
energies very close to threshold (¢ <5 MeV). The polar-
izations are positive at forward angles, go through zero
and stay negative at backward angles; except at very low
energies where the polarization is positive over the entire
angular range. The break in the differential cross section
and the zero in the polarization occur at all energies at
approximately the same value of momentum exchange
t'=t—t, in the center-of-mass system. Also the
minimum in the diffraction peak in pp —pp occurs at
about the same place. In a simple picture of absorptive
scattering the mean value of the slope of the forward
differential cross section corresponds to scattering off a
disk with radius » =1.2 fm.

Data are available at six energies; at the highest energy
enough events were measured to infer also the spin corre-
lations. To describe these data quantitatively, we have to
specify some parameters that correspond to short-range
couplings between pp and AA. As explained in detail in
Sec. IIIC this can be done by parametrizing the off-
diagonal P-matrix elements with the help of mixing an-
gles according to Eq. (18). An excellent fit is obtained to
the data set with the introduction of only five off-diagonal
mixing parameters describing the short-range coupling
between two channels. We need mixing angles in the
transitions 3S,, 3PZ, 3D3, and the three lowest tensor-
force transitions *D,—3S,, *F,—3P,, and ’G,—°D,.
The parameter for the D, —>S, transition can be taken
equal to the one for the S, transition. The fit is slightly
improved by parametrizing the other triplet P transitions
with the same parameters as the *P, transition. Transi-
tions with />3 or in singlet states are not parametrized
as the data are not sensitive to these parameters. The pa-
rameter set is summarized in Table VI, where we also
give the “errors” on the parameters, defined in the usual
way as the change in each parameter which gives a maxi-
mal rise in the total y2,, of 1.0 when the remaining pa-
rameters are refitted. These errors measure how sensitive
the fit is to the inclusion of a certain parameter. Note
that the mixing angles are quite small.

The results for this parameter set are given in Table
VII for the different groups of data. The final fit has
x%,,=180.6 for a set of 157 data, this means
x%/data=1.15. If we look at the different observables we
see that the 99 cross sections are fitted with x2, =106.2
(x?/data=1.07), 38 polarizations with x2,;,=37.9
(y*/data=1.00), and 20 spin correlations with
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TABLE VI. Parameter set of our fit. The pp—pp initial-
state annihilation parameter is W= —617+81 MeV, while for
the AA— AA final state it is W= —182+17 MeV.

AA—AA V(ir<b) p—AA 0 (degrees)
is, 94+26 38,,°D,—S, —6.6°+1.3°
P, 422+134 3Po1a 4.9°+1.1°
Rest —121+23 D, 8.6°+1.7°

F,—*P, —1.7°%1.2°
’G,—°D, 2.9°+1.9°

X2in=36.5 (x*/data=1.83). It should be mentioned that
2 out of 5 data points for C,, are outside their kinemati-
cally allowed boundaries, being more negative than —1.
Also we see from Fig. 5 that the spin-correlation data do
not satisfy the restriction C,, = —C,, at backward angles
following from rotational invariance (see Sec. II). Our
model of course does satisfy this restriction. A few data
were not included in the fit, first of all the 5 polarizations
at 1435.95 MeV/c (¢=0.24 MeV), since they give essen-
tially the same information as those at 1436.95 MeV/c
(€=0.59 MeV) and are of somewhat less quality. Also
one cross section and one polarization point were left out
because of their abnormal high contribution to 2.
These 7 data points are not included in the final data set
for which we quote the results.

The results for the different observables at the different
energies are summarized in Table VII. The integrated
cross sections oz, were not included, because they are
redundant and should follow from integrating the
differential cross sections. We tabulate also the rejected
data and the theoretical normalizations with which the
model results should be multiplied before comparing
them to the data. A 5% normalization error was as-
sumed for all data. As can be seen from this table the
overall picture is quite good with the possible exception
of the observable C,,. A large negative value of C,,
means that the antihyperon-hyperon pair is produced
mostly with opposite helicities. Here there is perhaps
room for improvement with the help of data at higher en-
ergies. From the table we see that there is a (slight) nor-
malization problem with the differential cross section at
1476.5 MeV/c (e=14.5 MeV).

The resulting fits at four energies are shown in Figs.
3-5. Partial cross sections at six energies are tabulated
in Table VIII. The dominance of the tensor-force in-
duced transitions even at low energies is immediately evi-
dent. We remind the reader that the threshold (¢=0
MeV) of the pp—AA reaction lies at p,, =1435.07
MeV/c, and that the lowest energy at which data were
taken corresponds to pp,, =1435.95 MeV/c (¢=0.24
MeV). The important 3P,, P, and *F,—>P, transition
are the cause of the nonzero polarization close to thresh-
old and their interference with the S, and *D,—°S,
transition explains the anisotropy of the differential cross
section at these energies. The combined tensor-force
transitions /(AA)=1(pp)—2 make up 90% of the total
cross section at p,, =1435.95 MeV/c (¢=0.24 MeV),
and still 56% at p,,, =1546.2 MeV/c (¢=39.1 MeV).
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TABLE VII. Reference table for the PS185 LEAR data on jp — AA.

Piav MeV/c) Ref. No. type Rejected Pred. norm Xin x?/data
1435.95 [3,39] 10do 0.9819 11.6 1.2
[3,39] 5P, All 0.9984 11.3 23
1436.95 [3,39] 10do cos60=0.3 1.0267 9.3 1.0
[3,39] 5P, 1.0047 33 0.7
1445.35 [3,39] 20do 1.0166 21.9 1.1
[3,39] 10P, 0.9993 7.2 0.7
1476.5 [1] 20do 0.8594 17.3 0.9
[1] 5P, 0.9736 11.9 24
1507.5 [1] 20do 0.9405 222 1.1
[1] 5P, 1.0009 44 0.9
1546.2 [2,40] 20do 1.0765 23.9 1.2
[2,40] 14P, cosf=0.55 1.0124 11.1 0.9
[2,40] 5C,x 0.9829 9.6 1.9
[2,40] 5C,, 1.0235 5.5 1.1
[2,40] 5C,, 1.0266 12.3 2.5
[2,40] 5C,, 0.9941 9.1 1.8

The S- and P-wave contributions to the integrated
cross section close to threshold are shown in Fig. 6. The
data here are from Refs. [3 and 39]. The P waves start to
dominate the S waves at very low values of €. Also ap-
parent (from Table VIII) is the dominance of scattering in
triplet states, the singlet fraction being practically zero
everywhere, even to such an extent that it is possible to
speak of a dynamical selection rule. Again this is mainly
due to the contribution of the tensor-force transitions.
As an additional bonus we can calculate in our coupled-
channels calculation the final-state total cross section
AA—AA, shown in Fig. 7. The curve shown here can be
parametrized as o,,,=a+b/p, where a =104 mb and
b=25mb GeV/c.

Concerning the importance of the different strange
mesons, the following can be said. The model is not very
sensitive to inclusion of the scalar K§ and tensor K3
mesons, but the strong K * potential has a large influence
on the parameters, and should of course be included in
any realistic potential model. Also quantitatively we can
see this. If we leave out the K* completely and refit the
parameters, Y2, rises by 5.0. As can be seen from Fig. 1
the scalarlike K5 potential is quite weak. If we were to
include the full tensor-meson-exchange potential, instead
of just its J=0 diffractive piece, it is not difficult to see
from Sec. IV that the resulting potential would contain a
tensor force again of the same sign as those of the K and
K* exchanges. So, in general, from a OBE model one

TABLE VIII. Partial cross sections in ub for pp —AA.

Pan (MeV/c) 1435.95 1436.95 1445.35 1476.5 1507.5 1546.2
e (MeV) 0.24 0.59 3.5 14.5 25.5 39.1
3D, 38, 0.89 1.36 2.9 4.2 43 4.0
3F,—3P, 0.01 0.05 0.7 4.0 6.7 8.9
3G,—’D; 1.2 40 9.6
1S, 0.01
'P, 0.1 0.1
38, 0.08 0.12 0.3 0.5 0.6 0.7
3P, 0.01 0.1 0.5 0.6 0.7
P, 0.01 0.04 0.5 2.9 4.5 5.3
P, 0.01 0.03 0.4 2.1 3.7 5.1
D, 0.1 0.2 0.5
D, 0.2 0.6 1.4
3D, 0.4 1.3 3.2
’F, 0.1 0.2
38, —°D, 0.1 0.3 0.8
3p,—3F, 0.1
J=>4 0.2 0.9
Singlet s =0 0.00 0.01 0.0 0.1 0.1 0.1
Triplet s =1 1.00 1.60 4.9 16.1 27.3 41.3
Total 1.00 1.61 4.9 16.2 27.3 41.4
Experimental 0.84(20) 1.44(32) 4.86(42) 13.8(5) 26.6(7) 44.6(1.5)
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gets a strong short-range strangeness-changing tensor po-
tential, which would in fact in a full coupled-channels po-
tential model where meson-exchange forces are taken
into account at all distances down to r=0 pose some
problems in achieving a very good fit to the data [7].

In hindsight, the dominance of the tensor-force transi-
tions can be understood using the following simple argu-
ment. The transition probability is in the first Born ap-
proximation maximal when the wave-function overlap is
maximal. In the case of free spherical Bessel functions
prj,(pr) this maximum lies at r~VI(I+1)/p. In our
case py, is much smaller than Py SO the overlap is maxi-
mal when [5, is smaller than lﬁp. These transitions are
moreover favored by the presence, in pp —AA, of a very
strong tensor force due to the coherent exchange of the K
and K * mesons.

Dalkarov, Protasov, and Shapiro [41] recently ex-
plained the specific features of the data on pp —AA with
the use of so-called P-wave ‘“enhancements.” This
phenomenon, caused by narrow resonances, was invoked
to explain the substantial P-wave contributions to the
cross sections at low energies. Tensor forces, however,
were not included in order to simplify the calculations.
In view of the results obtained with our model this seems
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shows that in a coupled-channels model that takes the
tensor force properly into account, there is absolutely no
need to resort to exotic things such as enhanced P waves.
Rather there is suppression of both S- and P-wave transi-
tions due to short-range annihilation and in particular of
the S-wave transitions (for which there is no centrifugal
barrier).

Several trends in the data can be nicely understood us-
ing a partial-wave decomposition of the observables [42]
which is derived in Appendix B. This decomposition al-
lows one to see the effects of certain transitions. Of
course this is best done close to threshold where only S
and P waves contribute to the scattering process. If more
waves contribute the results are no longer so transparent.
Let us first take the case where the only transitions con-
tributing significantly are 3S,—3S, and 3D, —>S|. As
can be seen from Table VIII this is the case only at very
low energies above threshold. Even at p,, =1435.95
MeV/c (¢=0.24 MeV) there is some P-wave scattering.
However, it is interesting to see how the different observ-
ables start out at threshold. The polarization is zero in
this case, and the spin correlations have the shape

Cii(0)=—1Cc0s26—1Csin’6 ,

« e . =1
a very unrealistic approach. Our calculation clearly C,(0)=3C,
do/dQ in ub do/dQ in pb
Pap = 1436.95 MeV/c Plap = 1445.35 MeV/c
£=0.6 MeV 1| e=35Mev

cosé

1 -05 0 0.5 1 1 0.5 0 05 1
8 15
do/dQin ub do/dQ in ub
Plab = 1507.5 MeV/c Plab ™ 1546.2 MeV/c
€= 255 MeV €=39.1 MeV

0 1 o 1
0

L cosé

FIG. 3. Differential cross sections in ub at four energies for pp — AA.
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C,,(0)=1C,c0s20—1C@,cos’0 ,
C.(0)=— 1€ sin20+1Cysin’6 ,

where the constants read @,=|S;+V2C,| and
@,=18;—1v2C,|. S| and C; denote the matrix ele-
ments {fI'|(S'—1)|li ) /2ik for the S, and *D,—3S,
transitions, respectively (see Appendix B). Looking at
Fig. 5 we see that at p,,, =1445.35 MeV/c the shape of
the spin correlations resemble those given by these ex-
pressions. Note that @, << ;. Deviations from this be-
havior are due to interference with the P waves. In the
data at p,, =1546.2 MeV/c it is still possible to recog-
nize the shapes given above. Explicit expressions due to
other transitions can be calculated, but in case of the spin
correlations we do not learn much new. What is clear,
however, is that we need the tensor-force transitions
3D, —3S, and 3F2—>3P2 to obtain the proper shape of
the spin correlations.

Turning to the polarization and including only transi-
tions with S- and P-wave final states, we have that

P,(0)=Im(?,sinf+P,sin26) .

In this expression 7, comes from the interference of the
3§, and 3D,—3S, transitions with the 3P, *P,, and
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3F,—3P, transitions, whereas 2, is the result of the mu-
tual interference of the P waves only. Thus we under-
stand the sin0 shape very close to threshold and the sin26
shape that becomes more important at higher energies.
Again it seems unlikely that the proper shape of the po-
larization at all energies can be obtained without tensor-
force transitions, since the *F,—3P, transition makes a
substantial contribution. The same is true for the in-
terference of the 3D, —3S, transition with the P-wave
transitions.

C. Partial-wave analysis of the reaction jp —AA

In the previous sections we have presented the results
of a coupled-channels model that gives a very good
description of the available data on pp—AA. In our
opinion the good results are mainly due to the use of a
coupled-channels formalism, to the quality of the
intermediate- and long-range interactions, and to the
phenomenological treatment of the very complicated
short-range dynamics. In this section we want to look at
the results from a different angle, namely, we will argue
that what we in fact can do is perform a partial-wave
analysis (PWA) of the reaction pp — AA close to thresh-
old. We mentioned in the Introduction that the method

1
PY PY
Plap = 1436.95 MeV/c Plab™= 1445 .35 MeV/c
€=0.6 MeV €=3.5MeV
05 05
o + l t t 0 4 + }
cosé -+ cos8
05} 0.5 |-
-1 -1
-1 -05 [} 05 1 -1 0.5 [} 05 1
1 1
PY PY
Plap, = 1507.5 MeVic Plap, = 1546.2 MeV/c
£=25.5MeV €=39.1 MeV
05 3 05} I
0 f—F—+ — +— 0 4 : H
l cosé } cosé
0.5 |- 05 { {
-1 -1
-1 -05 0 0.5 1 -1 0.5 0 05 1

FIG. 4. Differential polarizations at four energies for pp —AA.
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of calculation used is essentially the same as the one used
in the Nijmegen phase-shift or partial-wave analyses
(PWA) of all low-energy pp scattering data below
T, =350 MeV [25,26]. Let us look at the pp case for a
moment in order to compare it to our analysis of the re-
action pp — AA.

In a PWA one attempts to achieve a model-
independent parametrization of the partial waves as a
function of energy. A well-known model-independent
way to describe low-energy scattering data is, for exam-
ple, the effective-range formalism. One has to realize,
however, that even in the relatively simple case of single-
channel pp scattering, it is necessary to supply a substan-
tial amount of theoretical input in order to obtain good
results. In a pp PWA one has to take into account the
correct electromagnetic interaction, including relativistic
corrections such as the vacuum polarization and the
magnetic-moments interaction, and the one-pion-
exchange potential. These theoretically well-known in-
teractions can be considered as model independent. The
description is improved by using as intermediate-range
interaction a realistic heavy-boson-exchange potential.
In the formalism used in Refs. [25 and 26] the theoreti-
cally well-founded long-range interaction and the semi-
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phenomenological intermediate-range interaction are
used in the Schrodinger equation and the short-range in-
teraction is parametrized via the energy-dependent P ma-
trix. The P-matrix parameters are fitted to the data.
With this method very good results are obtained. As a
consequence, one now has a good idea about the behavior
of the model-independent phase shifts.

A PWA of the low-energy np scattering data below
T\, =350 MeV poses already much more problems.
Here one has both isospin 7 =0 and I =1. Since it is im-
possible to determine all amplitudes from the data, the
I =1 amplitudes are taken over from the pp case, after
applying corrections for electromagnetic effects and mass
differences. So in the np case even more theoretical input
than in the pp case is required to obtain good results.

The same techniques are used in our analysis of the re-
action pp —AA. The generalization to the case of mul-
tichannel antibaryon-baryon scattering is straightfor-
ward. Although the method of analysis is probably as
model independent as one can hope to achieve at this
stage, one cannot expect the results to be as unique as
those of a pp PWA. The complexity of the problem
necessitates the use of a lot of theoretical input. The
long-range interaction, the Coulomb force, the one-pion-

15

FIG. 5. Spin-correlation coefficients for jp —AA at momentum 1546.2 MeV/c. The dashed curve shows the spin correlations at

1445.35 MeV/c.
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In order to avoid systematic errors, we do not include
the spin-correlation data now, for the reasons mentioned
in the previous subsection. The data set used in the PWA
includes the cross sections and the polarizations, a total
of 142 observables at six different energies. We now
reach an excellent 2, =147.7.

As a result of the partial-wave analysis we give in
Table IX the “model-independent” S-matrix elements for
the relevant pp — AA transitions as they follow from the
fit to the data. In view of the quality of the fit, one can be
confident that the important transitions are well de-
scribed. It is not possible, however, to determine the be-
havior of all partial waves. For instance, the singlet tran-
sitions are not visible at all in the data. But even in most
of these cases one expects that the tail of the strangeness-
exchange potential, which is more or less model indepen-
dent, determines to a large extent the dynamics.

In tabulating the S-matrix elements we extract the
kinematical effects due to the vicinity of the threshold by
writing the elements in the following way:

L+172  L+172
S=p/ $p; .

(30)
Here p; and p, are the center-of-mass momenta in the ini-
tial and final states. The complex numbers & are written
in the form &=|&|exp(i®). For each transition the abso-
lute values |&| and the phases ® are given in Table IX.
As can be seen from Table IX this representation of the
S-matrix elements is quite nice, since many of the phases
& are remarkably constant in the energy region under
consideration. ’

In the pp PWA the method of analysis allowed a deter-
mination of the neutral-pion coupling constant from the
data [26]. We realized that analogously it should be pos-
sible to extract the ApK coupling constant from the data
on pp —AA. The coupling constant, which appears in
the tail of the one-kaon-exchange potential used outside
r=0>, is added as a further parameter and included in the
parameter set that is fitted to the data. We found [43]
that the result was consistent with the prediction from
SU(3) symmetry, if one assumes the pseudovector-type in-
teraction (see Table II). Details can be found in Ref. [43].
We stress that the reliability of the result depends crucial-
ly on the type of PWA we present here, which is as model
independent as possible.

D. Outlook

So far our model could only be applied to the data on
pp —Pp and pp —AA. However, from the experimental
side there is more in store for the future. The reaction
pp —AZ% 2 OA is being studied [6]. Very recently, more
data on pp—AA at higher energies have become avail-
able [44]. Especially interesting are the prospects of ob-
taining data on the = production reactions and in partic-
ular on the double-charge-exchange strangeness-exchange
reaction pp —2~ 27, which can possibly provide a win-
dow on physics beyond the OBE picture. A simultaneous
analysis of all these data on antihyperon-hyperon produc-
tion is of course a difficult enterprise, but the model
presented here is well suited to do this job. In the way
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demonstrated here for the case of the reaction pp — AA,
the model can be used to perform partial-wave analyses
of all the reactions pp — YY close to threshold. In this
way a lot of information can be obtained on the dynamics
of strangeness production in antiproton-proton scatter-
ing. We have shown how the data on pp—AA clearly
reflect the presence of a strong tensor force due to the
combined exchange of the K(494) and K *(892) mesons.

With data on several reactions available, parameters
can be constrained from SU(2) or SU(3) symmetry in or-
der to limit their number. One hopes especially to reduce
as much as possible the number of final-state parameters.
One major goal of this work will be to obtain more infor-
mation on the coupling of the strange mesons K (494) and
K *(892) to baryons. We intend to extract both coupling
constants f,x and fs,x from future data in the manner
demonstrated in Ref. [43] for the available data on
pp—AA. We hope to improve on the accuracy already
obtained in Ref. [43]. This will be a more severe test for
the validity of SU(3) symmetry and an independent deter-
mination of the a=F /(F + D) ratio.
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APPENDIX A: FLAVOR-SU(3) FORMALISM

An irreducible representation of the flavor group
SU(3), denoted by {u}, has a matrix representation in a
complex vector space of dimension N, spanned by the
basis £, where v summarizes the SU(3) magnetic quan-
tum numbers, v=(I,Y,m), with m the z component of
the isospin. Note that —v=(I,—Y,—m). For an ele-
ment U(a) of the group we have

Ula)EW=EWD") (a) . (A1)

This defines the matrix representation D *(a) of the ir-
rep {}. The contragredient representation {u*}, in gen-
eral not equivalent to {u}, is defined by the basis
g(u*):( _ )Q(\')g(ﬂ)’* ,
in a manner consistent with the Condon-Shortley phase
convention [30]. The matrix representation of the con-
tragredient representation {u*} is related to that of {u}
by
D (a)=(—)2 D ®)

— =y

(A2)

(a)(—)e™ . (A3)
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TABLE X. Terms occurring in M,,.,, apart from (S —1)/2ik. Here ¢ and s stand for cos@ and sin6,

respectively.

m'm 00 01 1—-1 10 11

'So 1 — — — —_—

P, 3c —_ —_— — —

3S, Iy 0 0 0 1
3D[ —>35'1 V2 0 0 0 - %‘/2

3Py c 0 0 —1v2s 0

3p, %1/— s 0 0 3c

p, 2c —3V2s 0 V25 ic
F,—P, Vée (2172 0 1v3s —(Z)e

Using these conventions we can now construct one-
particle states for mesons, baryons, and antibaryons in a
Fock space by the action of the usual creation and an-
nihilation operators on the vacuum, keeping in mind that
mesons are assigned to self-conjugate representations
{u*}={u}:
+
[k, u,v)=a* (k)[0) ,
t
Ip,s,u,v)=b'" (p,s)|0) , (A4)

.
Ip,s,u*,v)=d'*") (p,s)|0) .

Here s symbolizes the z component of the spin. In the ex-
pression for the meson state possible spin indices are
suppressed. These annihilation operators thus transform

spondlng creation operators transform with pw*
(D®* " for the antibaryon). The canonical
(anti)commutation relations, from which follow the nor-
malizations of the one-particle states, are given by

[a%)(k"),a® (k)]=(27)2E, 6 (k— k)8,,8,, »
{bi,#"(p',s'),b(v”’ (p,s)}
=(2m)2E, 8 (p—p')8,,8,,8, , (A9
(d%(p",s"),d® (p,s))
=(2m)2E, 8 (p—p")8,,:8,,8

where E, = V'p2+m? Finally second-quantized meson

with D™ (D" for the antibaryon) whereas the corre-  and baryon fields are defined by
]
d’k ; to
Wix)= [ ——5-—la"(k)e™+(—)2Va't) (k)e ~**], (A6)
% ) ey, ) ]
P (x)= f [ W (p,s)u(p,s)eP*+(—)2¥d (p,s)v(p s)e P ], (A7)

32E

The space-time signature used is (—+++).

Possible spin indices of the meson field are again suppressed. The fields

defined here transform with D" , whereas the Dirac conjugate field, given by

'U” x)-—¢(#)

transforms with D*

(A8)

APPENDIX B: PARTIAL-WAVE DECOMPOSITION OF THE OBSERVABLES

Consider a scattering process of two spin-1 particles where the beam comes in along the z axis and the y axis lies nor-
mal to the scattering plane. On the spin singlet-triplet basis and in the absence of spin-changing transitions, the scatter-

ing amplitude can be written as

M,..(6,6)= 3 Var(2I+1)i'"I'C
J, Ll

I s J
m—m' m' m

I s

0 m m —)i;ls) /2ik. (B1)

Y& (6,6)(f;1's|(S’
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For singlet states this expression reduces to tional invariance that the following symmetry relation

holds:

=S Va2l + 1YY . I_1);- ; .
M (0) ; 4L+ 1D)YO) f31s[(SI—1)is1s ) /2ik . M, (6,0=(— )" "M

(B2)

6,0), (B3)

e

which leaves us with five independent amplitudes. In
terms of these amplitudes M, ., the observables defined
in Sec. II read

The dependence on 6 is determined by the orbital angular
momentum of the final state. It can be shown from rota-

Io=2(M P+ M P+ M P+ Mo P+ LM P+ L M)

1
2

IoP,=—V2Im[(M,—M_ M +M M1,

I,Coo =1 — Mg P+ My P +2|My 1> —2|M,|*+4 Re(M,_ M}))],
IoC,, = = IMgs|*+ Mg |>+2[My, > +2|M |*—4Re(M,_ M}))],

(B4)
Ioczz:%[_sMsslz_|Moo|2_2|M01|2+2|M10|2+2‘M11|2+2|M1—1‘2] ,

IOCXZ=%\/§Re[(M“—M1A1 Mg +M Mg 1,
I,S=1|Mgl|* .

The different terms occurring in M, (6,0) apart from the factors (S’—1)/2ik are collected in Table X. In order to
conform to the convention of the experimentalists to use two sets of body-fixed axes for the final-state particles, a rota-
tion has to be performed in the x-z scattering plane, and C,,, C,,, and C,, change sign. Substituting the results of Table

X in the expression for the scattering amplitude provides us with a useful partial-wave decomposition of the observ-

ables.

[1] P. D. Barnes et al., Phys. Lett. B 189, 249 (1987).

[2] P. D. Barnes et al., Phys. Lett. B 199, 147 (1987).

[3] P. D. Barnes et al., Phys. Lett. B 229, 432 (1989).

[4]J. Button et al., Phys. Rev. 121, 1788 (1961); X. Xuong
et al., ibid. 128, 1849 (1962); J. Badier et al., Phys. Lett.
25B, 152 (1967); B. Y. Oh et al., Nucl. Phys. B51, 57
(1973); H. W. Atherton et al., ibid. B69, 1 (1974); N.
Kwak et al., Nuovo Cimento 23A, 610 (1974); H. Becker
et al., Nucl. Phys. B141, 48 (1978); S. M. Jacobs et al,,
Phys. Rev. D 17, 1187 (1978).

[5] B. Jayet et al., Nuovo Cimento 45A, 371 (1978).

[6] S. Ohlsson, thesis, University of Uppsala, 1990; P. D.

Barnes et al., Phys. Lett. B 246, 273 (1990).
7] P. H. A. Timmers, thesis, University of Nijmegen, 1985.
] D. P. Roy, Phys. Rev. 146, 1218 (1966).
] G. Plaut, Nucl. Phys. B35, 221 (1971).
] F. Tabakin and R. A. Eisenstein, Phys. Rev. C 31, 1857

(1985).

[11] P. H. Timmers, W. A. van der Sanden, and J. J. de Swart,
Phys. Rev. D 29, 1928 (1984).

[12]J. A. Niskanen, Helsinki Report No. HU-TFT-85-28, 1985
(unpublished).

[13] M. Kohno and W. Weise, Phys. Lett. B 179, 15 (1986);
206, 584 (1988).

[14] T. Hippchen, B. Holzenkamp, K. Holinde, and J. Speth, in
Physics at LEAR with Low-Energy Antiprotons, Proceed-
ings of the Workshop, Villars-sur-Ollon, Switzerland,
1987, edited by C. Amsler et al., Nuclear Science
Research Conference Series 14 (Harwood, New York,
1988), p. 371.

[15] P. Lafrance, B. Loiseau, and R. Vinh Mau, Phys. Lett. B

[
[
[
(1

214, 317 (1988); P. Lafrance and B. Loiseau, Nucl. Phys.
A528, 557 (1991).

[16] R. G. E. Timmermans, Th.A. Rijken, and J. J. de Swart, in
Proceedings of the International Symposium on Strangeness
in Hadronic Matter, Bad Honnef, West Germany, 1987,
edited by J. Speth [Nucl. Phys. A479, 383c (1988)].

[17]R. G. E. Timmermans, T. A. Rijken, and J. J. de Swart, in
Physics at LEAR with Low-Energy Antiprotons [14], p. 357.

[18] J. J. de Swart, R. Timmermans, and T. A. Rijken, in Inter-
sections Between Particle and Nuclear Physics, Proceedings
of the Third Conference, Rockport, Maine, 1988, edited
by G. Bunce, AIP Conf. Proc. No. 176 (AIP, New York,
1988), p. 366; J. J. de Swart, T. A. Rijken, P. M. Maessen,
and R. G. E. Timmermans, in Proceedings of the Interna-
tional Symposium on Hypernuclear and Low-Energy Kaon
Physics, Padova, Italy, 1988, edited by T. Bressani, F. Can-
nata, J. Lowe, and R. A. Ricci [Nuovo Cimento 1024, 203
(1989)].

[19] M. M. Nagels, T. A. Rijken, and J. J. de Swart, Phys. Rev.
D 17, 768 (1978).

[20] P. M. M. Maessen, Th. A. Rijken, and J. J. de Swart,
Phys. Rev. C 40, 2226 (1989).

[21] S. Furui and A. Faessler, Nucl. Phys. A468, 669 (1987).

[22] H. R. Rubinstein and H. Snellman, Phys. Lett. 165B, 187
(1985).

[23] P. Kroll and W. Schweiger, Nucl. Phys. A474, 608 (1987).

[24] R. L. Jaffe and F. E. Low, Phys. Rev. D 19, 2105 (1979).

[25]J. R. Bergervoet, P. C. van Campen, W. A. van der San-
den, and J. J. de Swart, Phys. Rev. C 38, 15 (1988).

[26] J. R. Bergervoet, P. C. van Campen, R. A. M. Klomp, J.-
L. de Kok, T. A. Rijken, V. G. J. Stoks, and J. J. de Swart,



45 STRANGENESS EXCHANGE IN ANTIPROTON-PROTON SCATTERING 2307

Phys. Rev. C 41, 1435 (1990).

[27] L. Durand III and J. Sandweiss, Phys. Rev. 135, B540
(1964).

[28] M. H. Partovi and E. L. Lomon, Phys. Rev. D 2, 1999
(1970); K. Erkelenz, Phys. Rep. 13C, 191 (1974); J. J. de
Swart and M. M. Nagels, Fortschr. Phys. 26, 215 (1978).

[29] A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento
29, 380 (1963); R. Blankenbecler and R. Sugar, Phys. Rev.
142, 1051 (1966); V. G. Kadyshevsky, Nucl. Phys. B6, 125
(1968); V. G. Kadyshevsky and M. D. Mateev, Nuovo
Cimento 55, 275 (1968).

[30]J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

[31] F. E. Low, Phys. Rev. D 12, 163 (1975); S. Nussinov, Phys.
Rev. Lett. 34, 1286 (1975).

[32] A. M. Green, Nucl. Phys. 33, 218 (1963).

[33] R. H. Dalitz and F. von Hippel, Phys. Lett. 10, 153 (1964).

[34]J. J. de Swart, M. M. Nagels, T. A. Rijken, and P. A.

Verhoeven, Springer Tracts in Mod. Phys. 60, 138 (1971).

[35] H. W. Atherton et al., Phys. Lett. 42B, 522 (1972).

[36] E. Eisenhandler et al., Nucl. Phys. B113, 1 (1976).

[37]R. A. Kunne et al., Phys. Lett. B 206, 557 (1988).

[38] R. Kunne, thesis, University of Amsterdam, 1988; R. A.
Kunne ez al., Nucl. Phys. B323, 1 (1989).

[39]R. von Frankenberg, thesis, University of Erlangen-
Niirnberg, 1987.

[40] W. Dutty, thesis, University of Freiburg, 1988.

[41] O. D. Dalkarov, K. V. Protasov, and I. S. Shapiro, Mos-
cow, FIAN, Report No. 37, 1988; Int. J. Mod. Phys. A 5,
2155 (1990).

[42] M. M. Nagels and T. A. Rijken, University of Nijmegen,
Internal Report No. THEP 70-11 1970 (unpublished).

[43] R. G. E. Timmermans, Th. A. Rijken, and J. J. de Swart,
Phys. Lett. B 257, 227 (1991).

[44] P. D. Barnes et al., Nucl. Phys. A526, 575 (1991).



