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Thermodynamics of event horizons in (2+ 1)-dimensional gravity
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Although gravity in 2+1 dimensions is very different in nature from gravity in 3+ 1 dimensions, it is

shown that the laws of thermodynamics for event horizons can be manifested also for (2+ 1)-dimensional

gravity. The validity of the classical laws of horizon mechanics is verified in general and exemplified for
the (2+1)-dimensional analogues of Reissner-Nordstrom and Schwarzschild-de Sitter spacetimes. We
find that the entropy is given by 4L, where L is the length of the horizon. A consequence of having con-

sistent thermodynamics is that the second law fixes the sign of Newton's constant to be positive.

PACS number(s): 04.20.Jb, 05.70.—a

I. INTRODUt:r iON

The theory of general relativity in 2+1 dimensions re-
tains the same formal structure as the (3+1)-dimensional
theory. The metric g,b, connection I",b, and Riemann
tensor R,b,d are defined in the same way, and the Einstein

equation still holds. However, this similarity is mislead-

ing; the nature of the theory in 2+ 1 dimensions is quite
different [1].

In 2+1 dimensions, the number of independent com-
ponents of R,b,d is six, the same as that of the Ricci ten-

sor R,b. The Weyl tensor C,b,d vanishes identically.
Consequently, the Riemann tensor can be expressed in
terms of the stress tensor and the metric alone. There-
fore, in contrast to gravity in any higher dimension, the
stress tensor has only a local effect on the curvature, i.e.,
the curvature at a point is nonzero if and only if the
stress tensor is nonzero. It is this which changes dramat-
ically the nature of the theory.

Because curvature requires a source, one does not have
a solution of the 2+ 1 vacuum Einstein equations which
would be the analogue of a 3+1 black hole. In fact, in
2+1 dimensions the "Schwarzschild" and "Kerr" solu-
tions [2] give rise only to a globally nontrivial geometry;
locally, except at the source spacetime is flat. Further-
more, the "Newtonian" limit of this theory breaks down
[1,2] and does not fix the value or the sign of its analogue
of Newton's constant.

In 3+1 dimensions there is a well-known connection
between themlassical laws for event-horizon mechanics
and the laws of thermodynamics [3-5] which has led to
some far-reaching suggestions on the nature of the theory
of quantum gravity [6-8]. Therefore, if this connection
holds also for 2+1 dimensions, then thermodynamics
may be of significance to the quantization of 2+ 1 gravi-
ty. The purpose of this work is to show that one can still
manifest the thermodynamical laws for event horizons
with all of its ramifications (entropy, Hawking radiation,
etc.), even though the nature of gravity in 2+1 dimen-
sions is very different.

Pure gravity is flat in 2+1 dimensions; however, by

coupling gravity to some extended source, one finds clas-
sical solutions with event horizons [11—14]. We examine
the general validity of the classical laws of horizon
mechanics. Following Bekenstein [3,4], we will then re-
gard these to be the laws of thermodynamics. As a
consequence of this procedure, we can conclude that, if
(2+1)-dimensional gravity is to have consistent laws of
horizon thermodynamics, then the sign of Newton's con-
stant must be fixed as positive. As examples, we study
the thermodynamics of the (2+1)-dimensional analogues
of the Reissner-Nordstrom and Schwarzschild-de Sitter
spacetimes. If gravity is coupled to other fields [9,10],
similar behavior is expected.

The plan of the paper is as follows. In Sec. II, we de-
scribe some classical solutions of the Einstein equation in
2+1 dimensions, which possess event horizons. In Sec.
III, the first law of event-horizon mechanics is construct-
ed and the entropy and temperature are identified. Final-
ly, in Sec. IV we verify the general validity of the second
law and discuss its relation to the sign of Newton's con-
stant. We shall adopt units such that 8=k~ =c=1, and
use a metric with a signature ( —,+, + ).

II. EVENT HORIZONS IN 2+1 DIMENSIONS

In this section we shall discuss some examples of exact
solutions of Einstein s equation in 2+1 dimensions cou-
pled to an extended source. Provided that Newton's con-
stant is positive, the resulting spacetimes possess an outer
event horizon similar to a cosmological horizon.

The simplest solution of the Einstein equation

G,b =R,b
—

2g,bR =8mGT, g
—Ag, b (2.1)

with a horizon is obtained by setting T,b
=0 and A&0.

The solution, known as the de Sitter spacetime, is given
in static coordinates as

ds = —(1 Ar )dt +(1 —Ar ) 'dr +r d8—(2.2)

The singularity of the metric at r =1/A corresponds to
the cosmological event horizon.

When a massive point source is added, we obtain the
(2+1)-dimensional analogue of the Schwarzschild —de

45 2151 1992 The American Physical Society



2152 BRIEF REPORTS

Sitter spacetime which reads [11] V/U= —exp[(P/aro)e ~t] . (2.12)
' —1

dr +r dg

(2.3)

where a=1—4Gm and m is the mass of the source. Un-
like the solution in 3+1 dimensions, there is no black-
hole horizon. The effect of the mass is to shift the
horizon's location to r =a /A. It can be shown [11]
that the mass changes the global structure of this space-
time from a sphere to a sphere minus a wedge with the
edges identified.

Normalizing the Killing vector g=B/Bt to have unit
length at r =0, the surface gravity K, defined by

P;bk'=&V (2.4)

takes on the horizon the value

@a~=(1—46m )/46e, (2.13)

K = expRN 2p cx

Q2
(2.14)

It is interesting to note that, if Newton s constant is
negative, the outer horizon becomes an inner horizon and
the spacetime (obtained also by rotating the U-V axis by
90'} becomes very similar to that of the (extended)
Schwarzschild spacetime, i.e., to that of a black hole.
However, as we shall see, this spoils the validity of the
second law of thermodynamics.

Finally, normalizing the Killing vector to have unit
length at r =rp, the surface gravity and electric potential
@=a,P are given on the horizon by

KsD = (2.5}

Now, consider the coupling of Einstein's equation to a
charged massive pointlike source. Then, in addition to
(2.1), we have the Maxwell equations

F".
b =2m'', (2.6)

F(~b.q)
=0 . (2.7)

The stress tensor is the sum of the stress tensor of the

field

b

Tr'b =(1/2n )(F',Fb' ,'g'bF )——
and the stress tensor of the rnatter.

The solution of Eq. (2.1), (2.6), and (2.7), with A=0, is
given by [12-14]

r

ds =— 1 — ln dtP
a rp2

+a 1 — lnP r
Pp

2
dr +r dg (2.9)

(2.10)

The function X(r) is regular everywhere except at the
source. The coordinates U and V are related to the
Schwarzschild coordinates r, t through the relations

UV= [(P/a }ln(r lro) —1]e*'"', (2.11)

where P=46e, e is the charge of the source and ro is
some constant. This spacetime is the (2+1)-dimensional
analogue of the Reissner-Nordstrom solution.

The metric (2.9) possesses a regular singularity at
a /Prtt =roe ~~, which (provided that 6 )0) corresponds to

an outer event. horizon. A second singularity exists at the
location of the source (r =0}. Since the curvature scalar,
R' R,b=p lr, diverges at this point, r =0 is a real
singularity. However, it is the infinite electric field gen-
erated by the charged point source which is responsible
for this singularity. The singularity can be avoided by re-
placing the point charge by a smooth charge distribution.

The full structure of this spacetime is obtained by an
extension to Kruskal coordinates. In these coordinates
the metric reads [13,14]

ds = 4a e itte x'"'dU—dV+r dg

III. THERMAL RADIATION AND THE FIRST LAW

T~~ = = —exp2~P 4~&

KRx

2' (3.1)

By the same procedure, the temperature of the
Schwarzschild —de Sitter space time, with respect to an
observer at r =0 is

TsD =&A/2m'=KsD/2n . (3.2)

Therefore, the factor of proportionality between the tem-
perature and the surface gravity (which is constant over
the horizon} is given by 1/2n.

In order to identify the entropy related to this tempera-
ture, we shall derive the first law of horizon mechanics
[18] and subsequently identify it as the first law of ther-
modynamics. We shall consider a spacetirne with an
outer horizon, since, provided that G )0, black-hole hor-
izons do not exist. Also, as will be argued later, G )0 is
required for consistent thermodynamics. For simplicity,

The presence of an event horizon implies that our
(2+1)-dimensional spacetime should have a temperature
and particles should be created with a thermal distribu-
tion. In order to calculate the details of this process, and,
in particular, the temperature of the radiation, one could
use the standard method of Bogolubov transformations
or the path integral method [15,16]. However, the sim-
plest way to derive the temperature is to examine the
analyticity of the Green's function G(x', x } with respect
to the Schwarzschild time coordinate in the complex
plane [17].

The Green's function 6(x',x ) is analytic with respect
to the Kruskal coordinates U and V. However, an ob-
server limited to the static region r &rz should be de-
scribed by the Schwarzschild coordinates r and t. By Eq.
(2.12), the Schwarzschild imaginary time coordinate is a
multivalued function of U and V with a period
P =2ro(a/P)exp(a /P). Therefore, 6(x', x ) is also
periodic, in these coordinates, with the same period. This
implies that, with respect to an observer who sits at r =pp
of the Reissner-Nordstrom spacetime, the Green's func-
tion describes a thermalized state whose temperature T is
given by
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we assume that there is no angular momentum.
Let S be a two-surface tangent to the timelike Killing

vector g and bounded by the horizon. Then by the identi-

ty

Nordstrorn spacetime, which is generated by a charged
pointlike source, the two last terms on the right-hand
side of (3.6) vanish. Therefore, the first law takes the
form

ga;b — R a gb
7

(3.3) —5m =T5S+45e, (3 7)
we get

P 'bdS, b
= —f T'b gbd X, — f R Pd X, .

(3.4)

The integral on H is taken over the intersection of the
two-surface S and the horizon. The stress tensor is given
by T' =g~+ Pz, ~here P~ is the matter part and Pz
is given by (2.8). Substituting the electromagnetic stress
tensor and using the constancy of the surface gravity and
the electric potential on the horizon we get

L —@' QH= f (Tbrbk' J'~, V—)dX.

+ R+2GF X, . 3.516~6 s
The length of the horizon is denoted by L, QH is the total
charge con5ned within the horizon, and j' is the electric
current. From (3.5) we can obtain a diff'erential form of
the energy conservation law (i.e., the first law of event-
horizon mechanics). The variation of the right-hand side
with respect to the metric vanishes and gives rise only to
surface terms, which cancel with the variation of the
terms on the left-hand side with respect to 5a and 54 .
Therefore, only the variations with respect to the matter
and electromagnetic field degrees of freedom are left.
The final result for the first law is

—f 5TMbg dX, = 5L+4 5QH+ f pA, (5j')dX,

+f j('p)(5A, )dX, . (3.6)

The term on the left-hand side is the variation in the
matter energy-momentum tensor within the horizon.
The two first terms on the right-hand side are to be
identified as the TdS+PdQ terms of the first law. The
third term represents the change in the self-interaction of
the charge density, while the last term will vanish for a
static source. The minus sign occurring on the left-hand
side of (3.6) (see also, Ref. [16])does not mean a change
in the first law since f5Tbrbg d X, corresponds to a vari-
ation in the mass (i.e., the mass energy associated with
Tbr) within the region S. Dynamically, the first law
states that a decrease of the mass in S will cause an in-
crease of the horizon's length. An observer who sits in
region S and drops some of the mass beyond the horizon
is an example of such a process.

We have verified that sc/2m. plays the role of tempera-
ture, therefore, we suggest that in 2+1 dimensions it is
—,'L, which plays the role of entropy. Following Cxibbons
and Hawking [16) we interpret the entropy 'L as the in-—
formation hidden beyond the outer horizon to an ob-
server who sits in the region S.

Let us apply the general results for the spacetimes dis-
cussed in Sec. II. For the (2+1)-dimensional Reissner-

where the temperature is given by (3.1) and the entropy
by

a n (1—4Gm)S =—r exp =—r expRN 2 0 P 2 0 4Ge2
(3.8)

As a check, we calculate 4 and T directly from Eq.
(3.8). Inverting Eq. (3.8), we get a formula for the mass in
terms of the entropy and the charge

m(S, e)= — 4Ge ln
I 1 2 2S

n.ro
(3.9)

Then, the temperature and the electric potential are given
by

amT=-
as

P —a /p
4&ro A 2K

+RN ~ (3.10)

am 1 —46m
a. 46. (3.11)

in agreement with our former results.
For the Schwarzschild-de Sitter spacetirne, the first

law reads

(3.12)

The temperature is given by (3.2) and the entropy by [20]

SsD =(n. /2)(1 —4Gm )/&A . (3.13)

Finally, one can verify that the entropy (3.8) or (3.13)
cannot decrease by a classical process that changes the
total mass or charge in the region r (r&. For example,
suppose a particle of charge eo and mass mo is dropped
beyond the horizon of the Reissner-Nordstrom space-
time. If this process increases the charge e of the source,
it seems, by Eq. (3.8), that the entropy will go down.
However, not all values of eo and mo are allowed. The
radial "effective potential" equation for the particle is

2 '2
1 dr e r

mo+ eo —ln
cx ro

1 —— ln-—P r
a ro2

L 2

1+
r

(3.14)

where v. is the proper time and I is the angular momen-
tum. A particle will cross the horizon provided that
dr/d~ 0 at the horizon. Therefore, since 5e = —eo and
5m =—mo,

—5m ~5e(e/a)ln(rH/r)=@5e (3.15)

must be satisfied, which leads, by (3.7), to 5S ~0. This is
an example for the validity of the second law. The gen-
eral validity of the second law will be studied in the fol-
lowing section.
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IV. THE SECOND LAW AND THE SIGN
OF NEWTON'S CONSTANT

We wish to demonstrate the second law of event-
horizon mechanics, i.e., that the length of the horizon
never decreases. Consider a general spacetime with a
horizon defined as follows [16]: Let A, stand for an
observer's world line which has an infinite length in the
future direction and does not run into a singularity.
Then, the event horizon is defined as I (A, ) (I is the
chronological past), the boundary of the past of the time-
like curve k. This observer-dependent definition is suit-
able for the spacetimes discussed previously. For exam-
ple, we can regard the world line of an observer who sits
in the Reissner-Nordstrom spacetime at a constant dis-
tance from the source. We shall assume that the horizon
is predictable; that is, the portion of the event horizon
I (A, )AJ+(1) is contained in the future Cauchy devel-

opment, D +(1),of the two-surface S.
The horizon is generated by null geodesics. Therefore,

to demonstrate the second law, it will suffice to show that
the generators of a predictable event horizon cannot be
converging. To this end, let us consider a smooth one-
parameter subfamily y, (r) of null geodesics in a
congruence, and the vector field k' of tangents. The
physical class of deviations spans, in general, an (n —2)-
dimensional space denoted by V . The projection of a
tensor into this space will be denoted as "hatted. " In
particular, the metric g, b gives rise to the hatted metric
A b.

The expansion of null geodesics is described by
Raychaudhuri s equation [19]. Since, in 2+ 1 dimensions
the subspace of deviations V is one dimensional, the
shear and twist vanish [21] and Raychaudhuri's equation
is given simply by

bwhere O=h' V&k, is the expansion. By the Einstein

equation, the right-hand side of Eq. (4.1) is negative pro-
vided that

(4.2)

A sufficient condition for this inequality to hold is that
the stress tensor satisfies the weak or strong energy condi-
tion (i.e., for any timelike vector u', T,b u 'u b ~ 0 or
T,bu'u T;u u&, respectively). If the stress tensor T,b is
diagonalizable, with eigenvalues )Lt and p, (i = 1,2), stand-

ing for the energy density and the principle pressures, re-
spectively, the strong energy condition is satisfied if
g,.p, ~ 0 and p+p, ~0 (i =1,2).

The validity of Raychaudhuri's equation for null geo-
desics is of great importance. Assuming the inequality
(4.2) holds, one can show that the null geodesics, which
generate a predictable event horizon, must have t9~0.
An immediate consequence of the positivity of the expan-
sion is the following mechanical law for event horizons,
which will be regarded as the second law of thermo-
dynamics: The length of any connected one surface in a
predictable event horizon cannot decrease with time.

Notice that, since this result depends on the validity of
the inequality (4.2), the second law would not necessarily
hold if Newton's constant would have been taken as neg-
ative. In fact, for the Reissner-Nordstrom and
Schwarzschild —de Sitter spacetimes discussed above, one
can show that, if G is negative, the second law fails.
Therefore, even though in 2+1 dimensions Newton's
constant cannot be determined from a Newtonian limit, if
the theory under question is to satisfy the second law of
thermodynamics, the sign of Newton's constant must be
fixed to be positive.

ACKNOWLEDGMENTS

k'V H=d8ldr= —0 —R k'k (4.1)
I would like to thank G. L. Comer, F. Englert, and L.

Vaidman for helpful conversations and comments.

[1]S. Giddings, J. Abbott, and K. Kuchar, Gen. Relativ.
Gravit. 16, 751 (1984).

[2] S. Deser, R. Jackiw, and G. 't Hooft, Ann. Phys. (N.Y.)

152, 220 (1984).
[3]J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[4] J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974).
[S]S. W. Hawking, Phys. Rev. D 13, 191 (1976).
[6] S. W. Hawking, Phys. Rev. D 14, 2460 (1976).
[7] S. W. Hawking, Nucl. Phys. B144, 349 (1978).
[8] A. Casher aud F. Englert, Bruxelles University Report

No. ULB-TH 01/91, 1991 (unpublished).

[9] G. W. Gibbons, M. E. Ortiz, and F. Ruiz Ruiz, Phys. Lett.
B 240, 50 (1990).

[10]D. Harari and A. P. Polychronakos, Phys. Lett. B 240, 55
(1990).

[11]S. Deser and R. Jackiw, Ann. Phys. (N.Y.) 153, 40S (198S).
[12] S. Deser and P. O. Mazur, Class. Quantum Grav. 2, L51

(1985).
[13]J. R. Gott III, J. Z. Simon, and M. Alpert, Gen. Relativ.

Cxravit. 18, 1019 (1985).

[14]B. Reznik, Tel-Aviv University Report No. TAUP-1834-
90, 1990 (unpublished).

[15]J. B. Hartle and S. W. Hawking, Phys. Rev. D 13, 2188
(1976).

[16]G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738
(1977).

[17]G. W. Gibbons and M. J. Perry, Phys. Rev. Lett. 36, 985
(1976).

[18]J. M. Bardeen, B. Carter, and S. W. Hawking, Commun.

Math. Phys. 31, 161 (1973).
[19]R. Wald, General Relatiuity (University of Chicago, Chi-

cago, 1984).
[20] Since, in 2+1 dimensions, Newton's constant has dimen-

sions of (mass) ', a fundamental unit of length (ro) must

be put in by hand. A cosmological horizon, however, does
not require an arbitrary constant.

[21] For timelike geodesics, the shear and twist do not vanish

and are given by u, b =V~bk-,
~

—20h, b and co,q =V~bk, ~,
re-

spectively.


