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Schwinger terms in charge-density commutators
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The necessity for q-number Schwinger terms in the equal-time commutators between flavor charge
densities for chiral fermions in 3+1 dimensions is shown. The charge densities here are not coupled to
any gauge field. The number of quark species (colors) gives the central charge of an infinite-dimensional
Lie algebra. The result is obtained by considering the analogue of the double spectral function in
current-current correlation functions.
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An abiding mystery in the standard model concerns
electroweak symmetry breaking, whose origins probably
lie beyond the dynamics of elementary scalar fields [1—3].
Any such new dynamics that will do the job is described
by fields with stronger interactions than those mediated
by the gauge fields of the standard model. In this respect,
the situation is akin to that surrounding the nature of
strong interactions in the 1960s. A fruitful technique in
common use to investigate the strong interactions in-
volved the algebra of the electroweak currents [4,5]. In
this procedure, it is unnecessary to consider the currents
to be the actual sources of electroweak gauge bosons,
since these interactions are relatively weaker than the dy-
namics being studied at the scales under consideration.
The resultant plethora of sum rules in many ways helped
to define eventually quantum chromodynamics (QCD).

There has been a revival in the use of similar sum rules
to study electroweak symmetry breaking [6]. How can
electroweak current algebra be a useful guide in our
present dilemma? In answering this question, one must
first elucidate the structure of the algebra. The major
difference between a current algebra and its charge coun-
terpart is the presence of Schwinger terms in the local
algebra, whose nature is dependent on the dynamics be-
ing studied through the sum rules. We shall show in this
paper that in addition to the Schwinger terms examined
earlier in the 1960s, there must also be similar q-number
terms present in charge-density commutators, whose
properties are controlled by the dynamics of the fermion
fields which make up the currents in question.

Let J"'(x,t) be a local current, with Lorentz index p,
and flavor index a. The current algebra we shall be dis-
cussing here takes the form

[J"(x,x'),J'"(y,y') ]l„o,o

=f',J'"( ~x)5 (x—y}+S' "'t};5'(x—y) . (1)

Here, the quantity f '", is the structure constant of the
algebra in question. The quantity S' "', i denoting spatial
components, will be referred to as the Schwinger term in

what follows. Its presence is not supposed to alter the
algebraic structure of the charges obtained by spatially
integrating Eq. (1).

The necessity for such terms was first noted by
Schwinger [7], who considered the case of p=i in Eq. (1).
The left-hand side survives in the vacuum expectation
value (VEV), since it is given by the integral over the
spectral function defined by the currents. Since this in-
tegral cannot be zero on grounds of positivity of the spec-
trum, the existence of the Schwinger term on the right is
thereby established.

Actually, there is a direct check when the currents
consist of fermion bilinears. Since the VEV is evaluated
at equal times, the Schwinger term is given by the absorp-
tive part of the vacuum-polarization diagram. Perturba-
tively, this diagram is divergent, and is given by an in-
tegral over the positive-energy states of the fermion-
antifermion pair. The presence of other states in the
spectrum can only add to this result.

Several remarks can be made about this exercise.
Firstly, the VEV's considered are sensitive to c-number
Schwinger terms only. Secondly, there is no similar
necessity for c-number Schwinger terms in the time-time
component in Eq. (1). Whether there are q-number terms
remains an open question, since these will only appear in
matrix elements of Eq. (1) between excited states, or in
higher-point current amplitudes, which can mimic the
presence of such excited states.

Notice that for the charge and charge-density commu-
tator not to be disturbed, S ' in Eq. (1}must be automati-
cally divergenceless, and given by the curl of another vec-
tor. When the currents are made up of Dirac fermion bi-
linears, it is therefore safe to ignore such terms in the
time-time component, since they will not affect the ampli-
tudes of interest. On the other hand, electroweak in-
teractions involve chiral fermions, and in principle these
kind of terms can appear in physical amplitudes.

We show in this paper that in fact such terms are q
numbers, and must be present in any charge-density alge-
bra involving chiral fermion bilinears [8]. Furthermore,
unlike in the case of the c-number Schwinger terms, they
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are generally not canceled by seagull terms in applica-
tions to low-energy processes, and so control both high-
and low-energy behavior. They are explicitly dependent
on the number of quark species of the underlying theory,
and can distinguish between ( V —A ) currents and
( V+ A )-type currents. This extended algebra could
therefore constrain the underlying dynamics in a finer
way than the older algebra ever could.

Since the q-number Schwinger terms contain e sym-
bols, they show up only in the parity-odd parts of prod-
ucts of four or more currents. We shall examine the
relevant commutators through the double spectral func-
tion for the four-point correlation amplitude, defined by
having all internal fermions in the box diagrams on the
mass shell. In essence, we shall compute various vacuum
expectation values of charge-density operators at equal
times, and then assemble these pieces directly to form
multiple commutators for the algebra. This procedure is
to be contrasted with what happened in the original
Schwinger term, for which only the single spectral func-
tion need be considered [7].

We begin with the vacuum expectation value of the
product of four left-handed charges. For massless
quarks, the left-handed (V —A) currents can be written
in terms of the left-handed two components of the fer-
mions. L'=(V' —A')/2=:g T'g(x):, where P is the
two-component left-handed fermion field, o ~+ B„g=0,
(8, + cr 7 }=o~+B„—Here, [.T'I, a = 1, . . . , N, is a basis
for 1V XN anti-Hermitian matrices, normalized to
tr( T'T ) = —5' l2. They represent the generators of the
UI (N) left-handed flavor symmetries. We encounter two
kinds of terms in evaluating the amplitude by Wick con-
tractions:

(u, x)

(c,z)

FIG. 1. Contractions for the product of four charge densi-

ties.

(O~lt'(y)11(x)~0) =S (x —y),
&Olg(x)eg (y) ~0) =S+(x —y),

where

(2)

Let T'"' ' =tr(T'T"T' ) and

A [x(+,)y(+, )z(+, ) ]

=tr[$~ (x —y)S~ (y —z)$+ ] .

There are nine different contractions contributing to
(O~L'(x)L (y)L'(z}L"(m) ~0) (cf. Fig. 1):

~ OIL'(x)L (y)L '(z)L "(tU) IO ~

= T' ' A [x(+)y(+)z(+)m( —)]+T' ' A [x(+)w( —)z( —)y( —)]—T" A [x(+)z(+)m( —)y( —)]
—T' 'A [x (+ )y (+ )w ( —)z ( —)]—T' 'A [x (+ )w ( —)y (+ )z (

—
) ]—T" A [x (+ )z ( —)y (+ )w (

—
) ]

+T' T' A [x(+)y( —)]A [z(+)w( —)]+T"TdA [x(+)z(—)]A [y(+)w( —)]
+T' T 'A [x(+)w( —)]A [z(+)z( —)] . (4)

We need the parity-odd part of this quantity. Three out
of the nine contractions, i.e., the last three terms, can be
factorized into contributions of two-point functions
which cannot contain the e symbol. Since we are in-
terested in the equal-time commutators, we set the "prop-
agators" S+(x) to be also at equal time, and proceed to
extract the parity-odd parts from the remaining terms.
The three-dimensional Fourier transform of S+(x) has a

I

very simple form S+(p)=(1+cr p)/2 and can be regard-
ed as projection operators to the + energy states. In this
space, we can classify the terms by their degree of diver-
gence under momentum integration. As an example,
consider the term where S+ is strung together in the or-
der (++——). Write the three-momentum flow from
the first vertex to the second as p, 2 and S+(p2) =S,z+,
and so on. Using the identity S+S+ =0,

tr(S, Q+ SQ3+ S34 S4& ) =tr[S,2+ S33+ (S34 S23 )(S4, —S,2 ) ] .

The first two factors contribute a degree of divergence of 0 while that for the last two factors has been reduced to —1

each. The total degree of divergence under momentum integration then is 3 —2=1. The same result is obtained for
(+++—), (+———). For (+ —+ —),
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r(S,2+S23 S34+S~] ) =tr[S]2+ (S23 S]z )(S34+ $23+ )(S4] S,2 ) ]

so the degree of divergence here is 3 —3=0. Now, integrals with linear degrees of divergence depend on momentum
shifts, while those with zero degrees do not. To be explicit, we do the integration Jd I in a solid ball with a fixed origin
and the radius taken to be infinity. p]&=1+k,2, k&3

—k, 2=k2, etc. The parity-odd (PO) part of the integral is given by

PO J d I tr(S]z~ Sp3+ S34+ S4]+ ) ( —]}(—2)( —3)( 4)
(2m) 48

X [+](k23Xk3~) k~]+2(k34Xk4]).k]~ 3(k4] Xk]q) k23 4(k]2Xk23).k34] .

(5)
It is now a trivial matter to check that the orderings with linear divergences are not invariant with respect to shifts of
the momenta, k] i+]~ki ]+]+d, while the orderings, such as (+ —+ —), are invariant under momentuin shifts, con-
sistent with their zero divergence degrees. %'e will adopt a minimal regularization procedure with requisite momentum
shifts so that the four noninvariant integrals vanish. The remaining two types of integrals are unambiguous, and in
momentum space become

[T'~+(k] Xkq) k2+ T" (k] Xk3).k2] . (6)

So in coordinate space, we finally have

PO(O~L'(x)L (y)L'(z)L (w)~0)= 2(T" T' ')[—V5 (x—w)XV5 (y —w)] V'5 (z —w) .
1

48m'
(7)

It is obvious from the calculation that if the fermions are repeated m times, the results will be multiplied by m.
%'e are now ready to see what this result has to say about charge-density comrnutators. Consider the two quantities

(0~ jL'(z), jL (y), [L'(x),L (w)]]]~0},
(0([L'(z),[L (y), [L'(x),L "(w)]]](0) .

From Eq. (7),

(0~ jL'(z), jL (y), [L'(x),L (w)]] j ~0) = — f "d" V5 (x—w) [V5 (y —w)XV5 (z—w)] .
48m.

(8)

The flavor indices (a, d) appear symmetrically. Naive algebras can only give results antisymmetric in (a, d). So, there
must be a new term in [L'(x),L (w) ] which is symmetric in (a, d). We can take this new term to be of the form

(1/48vr )d' '[V Xb'(x)] V5 (x—w),
with 1' having then to satisfy

(0~[L'(z), jL (y), VXb(w) ]]~0)= mf "[V5 (y—w}XV5 (z ——w)] .

Our main conclusion therefore is that the naive commutator must be extended to [9]

[L'(x),L (y)]=f' 'L'(x}5 (x—y)+ d'"'[V'Xb'(x)]. V5 (x—y) .1

48m

(9)

(10)

The precise form of the operators b' cannot be determined without further dynamical input, for much the same reason
that the usual spectral function constraints cannot completely determine the form of the ordinary Schwinger terms.
However, its commutation relations with the charge density can be surmised.

For this purpose, consider next the triple commutator. Using Eq. (7) once again, we find

(0~[L'(z), [L (y), [L'(x),L (w)]]]~0)= f "d" V5 (x w). [V5 (y w)XV5 (—z —w)] . —
48m

This verifies the result for the triple commutator found recently from an effective anomaly functional [10]. For the
right-handed currents, the right-hand side of Eqs. (8},(11)will have sign flip.

The constraint expressed in Eq. (11)cannot yet by itself completely determine the Lie algebra of the charge densities.
However, minimally, taking into account Eq. (10), we may posit the following infinite-dimensional Lie algebra which is
consistent with Eqs. (8) and (11):

[p'(x),p~(y)] =f'~'p'(x)53(x —y)+ d'"'[V Xb'(x)].V5 (x—y),1

48m

[p'(x), bb(y)]= f' b'(x)5 (x—y}+k5' V5 (x—y),
[b' (x),bjb(y)]=0, [p'(x), k]=0, [b'(x), k]=0,

(12)
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where p' is the chiral charge density L'(R') [ll].
construction, the current algebras defined by fermions of
distinct chiralities are distinct from and commute with
each other. Substituting this algebra into Eq. (11), we
find the value of the central charge k =+m (

—m) for
left- (right-)handed currents.

It should be clear from the calculations leading up to
Eqs. (8), (11) that these results are valid even in the ab-
sence of gauge fields. That means that b' should be ex-
pressible entirely in terms of fermion fields. Indeed, for
free fields, we may take it to be of the form
b'=A:gtrT'g:, where A is a momentum cutoff It . is
important that this cutoff is not set to infinity premature-
ly, since that would have masked the presence of the ex-
tension term. Indeed, Eqs. (8) and (11) imply that the
central charge k is equal to the dimensionless quantity
X /A, where X is the coefficient of the ordinary
Schwinger term in the commutator between the charge
and current densities. This coefficient is divergent for
free quarks. As a result, the limits on X and A cannot be
taken independently for finite non vanishing central
charges. Generally, b' is sensitive to the interactions

among the fermions, so a study of the sum rules of
current correlation functions controlled asymptotically
by matrix elements of this quantity can be used to probe
what is actually going on at the deeper level.

In summary, we have established that the naive
charge-density algebra is inadequate in the studies of
Green's functions of currents, especially for four or more
of them, and additional terms are necessary. The result
follows from explicit forms for the quantity Eq. (8). We
have also verified in the quark model a formula for the
triple commutator which had been found indirectly in
a previous work [10]. In general, in dealing with
(time-ordered as well as ordinary) products of more than
four currents by Wick's theorem, terms involving
(O~L'(x)L (y)L'(z)L "(w)~0) will inevitably appear in
the contractions. In such cases, commutators of the form
displayed in Eq. (12) become significant, and can be used
to constrain the underlying dynamics.
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