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Collective modes in dense neutrino systems
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The behavior of a collection of neutrinos, due to the "magnetic" interactions mediated by the Z boson,
becomes nonperturbative in a certain kinematical domain. We give arguments that this is a manifesta-
tion of the system being dominated by a set of well-defined coherent states. We investigate the main
characteristics and the symmetry properties of the corresponding new phase of dense neutrino matter.
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The physics of weakly interacting matter has attracted
increasing interest during recent years. The prototype
candidate is neutrino matter (at high densities and/or
temperature), whose physics should reflect in a particu-
larly clean way the short-range electroweak interactions,
since it is not contaminated by strong or electromagnetic
effects. Furthermore, neutrinos characterized by the
above conditions constitute the most abundant form of
matter in the Universe. Consequently, a better
knowledge of the behavior of neutrino matter might be of
importance for the understanding of various phenomena
in astrophysics (solar-neutrino problem, supernovae, de-
velopment of white dwarfs, . . . ) and cosmology (dark-
matter problem, early Universe). Of particular interest is
the identification of the different phases in which neutri-
no matter can exist if its density is increased. Consider-
able work [1] has been invested in an analysis of the
phase structure of spontaneously broken gauge theories
including fermions under different circumstances [neutral
or (weakly) charged matter, chirally coupled fermions,
Abelian or non-Abelian groups]. It has been shown in
particular [2] that within the electroweak standard model
(SM) at very high (chiral) fermion densities (p & Mz )

gauge bosons start to condensate and fermion-number
conservation will be violated. Here, we shall concentrate
on the case of rather low neutrino densities (p &Mz).
We will show that even for this kinematical region a
phase transition is expected to occur leading to a state
which is characterized by a new collective mode and
lepton-number nonconservation.

Let us consider a system of neutrinos of a given type
(flavor), say electron neutrinos, at zero temperature but
finite density leading to a chemical potential p which is
connected with the conserved (electron-)lepton number
X. In the perturbative ground state, levels up to a Fermi
surface, which is characterized by the chemical potential,
are occupied. The neutrinos are considered massless, so
they do not couple directly to Higgs bosons, and their in-

teraction is exclusively due to the exchange of Z bosons.
Since the latter are massive (Mz = 100 GeV) this interac-
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tion is short ranged. The basic Lagrangian for such a
system is given by

v~e' v (2a)

and by

IPrgv~e v . (2b)

Actually, in the present case, where only the left-handed
neutrino field vL enters the Lagrangian, these two sym-
metries are the same since y5vL = —vL. Consequently,
there is only one conserved (Noether) charge N=N5,
generically called the lepton number in the following.

We will argue now that such a sea of neutrinos, at large
enough densities, has a phase that violates the lepton-
number conservation. The corresponding phase transi-
tion is different from the one considered in Ref. [2] which
also implies fermion-number violation but which is ac-
companied by the formation of a gauge-boson condensate
and takes place at much higher densities (p»Mz).
Since the phase transition promoted in this paper occurs
at lower densities (p&Mz) it might be of greater phe-
nomenological interest.

There are several indications leading to the conclusion
that a lepton-number-violating phase occurs at moderate
values of p. We are going to list them in the following.

We first investigate the coherent states of the neutrino
system. For this purpose it is necessary to calculate the
Z-polarization tensor II„„[3].In lowest nontrivial order
of (1) it is given schematically as

Il(p) —f d k S (p +k)S (k), (3)

where SF(p) denotes the neutrino propagator in the (per-
turbative) many-body ground state. It can be decom-
posed into particle, antiparticle, hole, antihole contribu-
tions in the well-known manner [4]. The resulting pole
structure of SF(p) is such that only particle-hole,
particle-antiparticle, and antiparticle-hole correlations
give nonvanishing contributions [5].

l VL tlvt g VL 7 VL Z

(g =g/2cos8ii, ). Because of the vectorial coupling (and
the vanishing mass) of the fermions, this theory is invari-
ant under the two global U(1) groups defined by
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The effects of the coherent states can be deduced from
the exact two-point function G of the Z boson which is
calculated from II by means of the usual Schwinger-
Dyson equation

6=6 +6 HG=G +6 HG +. . . (4)

and

2 2 1+x 2 2

II-"(p)= x ln — x (i%0) (6)
8+2 1-x 6m2

where

Pox=
Ipl

Let us now investigate both components in some details.
It is clear from (5) that the perturbation series for 1100"

diverges at x =1 due to the logarithm. This is as expect-
ed: it is known that precisely within this kinematical re-
gion perturbation theory will break down giving rise to a
collective mode similar to the zero sound [6] in liquid
He. As has been shown there, the divergence of the per-

turbation expansion at x =1 can be tamed by carrying
out a sum of a selective set of diagrams —the ring dia-
grams (random phase approximation). This procedure
leads to a coherent state (collective mode) with a disper-
sion relation analogous to the phonon.

The situation is different for II,;",the polarization due
to the "magnetic" interactions. Here, the divergence at
x = 1 does not lead to a pole of 6 near x =1 because II„
enters in the corresponding component of 6 with the
"wrong" sign. But there is another divergence of II„,
namely, for very large x, due to the second term in (6}.
This leads to a pole of G„at some large x value and, con-
sequently, to an additional collective state, which is
somewhat like the zero sound in the long-wavelength lim-
it. This pole is determined by the root of the equation

p —Mz —II„"(p}=0,

which satisfies po~0, lpl ~0 with x &&1. By expanding
the logarithm in (6) in powers of 1/x we thus obtain the
equation

1—x +O(x)= — Mz .
6m

2 g 2p2

This divergence is severe, and a summing of the ring dia-
grams would not be sufficient to tame it [7,8]. Further-

(G being the free Z propagator). The poles of G are
therefore stemming from pairings of the particle-hole,
particle-antiparticle, and antiparticle-hole type.

We are interested in the kinematical region
(p))po, lpl) where the matter contribution is dominant,
and therefore focus on the (anti)particle-hole pairing.
The corresponding contribution to II will be denoted by
II„". The components II00" and II;;" are calculated to
be [5]

llmsi( )
gP

1
x gP2 2 1+x 2 2

00

more, the corresponding collective excitation is charac-
terized by an imaginary dispersion relationship, since
from (8) we obtain

. &12m
co=czlpl, with c2=+i Mz .

pg
(9)

v"(r, t)=y2y, y3v'(r, —t) (10)

(up to an arbitrary phase factor). Here, the superscript c
denotes the ordinary charge conjugation. With the help
of (10) the true ground state (containing the condensate)

Thus it is a filamentation mode which blows up with
time, indicating that the neutrino system gets destabi-
lized.

It has to be concluded, therefore, that this divergence
essentially renders perturbative calculations unreliable,
and the latter are to be taken as mere indications of the
underlying complexity of the system. In fact, a straight-
forward calculation of thermodynamical quantities also
leads to a nonperturbative effect, as will be mentioned in
a minute. Nevertheless, we take this additional diver-
gence as an indication of a new collective mode and are
going now to investigate its possible physical signature.

The dispersion relation (9) indicates (forgetting for the
moment that c, is imaginary) that the mode is of Gold-
stone type. It is plausible, therefore, to believe that some
global symmetry of the system is broken and that the true
ground state of the system contains these Goldstone
modes.

The divergence of the theory at x &)1 in the random
phase approximation may also be taken as an indication
that a new scale at a lower energy is dynamically generat-
ed. The appearance of a Goldstone boson is a symptom
of this phenomenon. Since these types of modes are usu-
ally found in systems interacting with short-range forces,
such as in the case of He, we assume in this work that
the dynamic generation of a small scale really takes place.
This is crucial in our argument for a phase transition for
j &mz.

What is the symmetry which is expected to be broken
in the new phase?

Evidently, the modes under consideration stem from
pairings of (anti)particles and holes. Therefore, one is led
to conclude that the new ground state is characterized by
an (anti)particle-hole condensate which arises due to an
attractive (magnetic) interaction between neutrinos.
Indeed, the region of very large x where the new modes
stem from is special for magnetic interactions. Namely, a
large x implies lpl almost zero. Thus, a neutrino and a
hole, in this state, move relative to each other with (al-
most) equal and opposite momenta. The corresponding
parallel (weak) currents lead to a magnetic-type interac-
tion which is attractive, very much like the Biot-Savart
attraction between parallel electric currents. We believe
that it is this attractive interaction between parallel-
moving neutrinos which is responsible for the formation
of a (anti)particle-hole condensate and thus makes the
ground state unstable (filamentation instability).

The effects of the condensation can most elegantly be
described by introducing a (neutrino-)hole field operator
denoted by v", which is correctly defined [9] as
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can be characterized by a nonvanishing value of the order
parameter.

(vr vz+vr vr )ht

This is a Lorentz scalar which does not vanish identical-
ly, as is shown in the Appendix. It is essentially an in-
duced Majorana mass term. Furthermore, such a non-
vanishing vacuum expectation value breaks the global
lepton-number symmetry (2a) and simultaneously, of
course, also its axial version (2b). Consequently, in the
condensate phase, the lepton number X is not a good
quantum number. And it is this spontaneous breaking of
lepton number which leads to the Goldstone-boson mode
mentioned above. Note that the condensate is suggested
to be uniform in space since it arises due to a nonpertur-
bative phase at large x, i.e., at small ~p~.

The observations mentioned so far indicate that ordi-
nary (short-range interacting) neutrino matter, if its den-
sity is increased, undergoes a phase transition to a phase
characterized by a (nonvanishing) neutrino-hole conden-
sate as the true ground state. That the ordinary phase
will become unstable beyond a certain density has already
been observed earlier [7]. Calculations of free-energy and
pressure in this case show that at some densities lower
than Mz, the correlation energy becomes dominant and
the usual perturbative approximations break down. If
the perturbative techniques are extrapolated to this re-
gion, one obtains negative [7] and nonmonotonic [8] be-
havior for pressure. This is another indication that an in-
stability occurs and a phase transition takes place.

Unfortunately, our considerations do not allow us to
specify the exact value of the critical density at which the
phase will change; all we can say is that p &Mz, so the
transition might occur at a fairly low density. We gen-
erally expect such a phenomenon at the level of nuclear
densities (or higher) where the effect of the weak interac-
tions begins to be felt. Note that the condensation
phenomenon in many-body electrodynamics occurs at
several orders of magnitude below the usual electro-
dynamic scale of about an electron volt. This is due to
dynamical generation of smaller scales in the theory con-
nected to objects with phononlike dispersion. In the case
of weak interactions the random phase approximation
(RPA) shows that such dynamic generation of smaller
scales is also possible.

The possibility that the phase transition scale could be
much smaller than the weak-interaction scale leads us to
speculate whether neutrino densities in supernovae or
even in the center of stars might already be sufficient to
allow for the neutrinos being in the new phase. Since the
lepton number is not conserved in this phase, transitions
between neutrinos of different type and/or between neu-
trinos and antineutrinos can take place and would lead to
possibly spectacular effects. For instance, the neutrino
flux emerging from these objects will be changed consid-
erably if these neutrinos are originally created in a
sufficiently dense surrounding. Other effects might be
thought of as well. But due to our present uncertainty
concerning the exact kinematical region of the phase
transition we find it unreasonable to perform more de-
tailed speculations about possible additional phenomeno-

logical consequences [whether this effect could be (par-
tially) responsible for the "solar-neutrino puzzle, " for ex-
ample] at the moment.

In summary, we have found that for neutrinos there
exists a phase that is characterized by a spatially uniform,
lepton-number-violating particle-hole condensate. This
phase appears above a critical value of the chemical po-
tential p„which is so far undetermined but is generally
expected to lie below Mz. The existence of the new
phase might lead to interesting phenomena in astrophy-
sics and cosmology. We are planning to investigate these
physical consequences of the new collective state in a fu-
ture paper.
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APPENDIX

We show that, for a general fermion field g and its
hole-conjugate field g" [cf. Eq. (10)], the operator expres-
sions gr" gr and Pr l(r" are nonvanishing Lorentz scalars.

We start from the well known behavior of a Dirac spi-
nor under a Lorentz transformation A (A"„=5"„+co"„):

g(x) ~S(A)g(x),
P(x) ~l(t(x)S '(A) .

Here, the 4X4 matrix S(A) is defined by

S(A)y"S '(A)=y"A„",

which has the explicit solution

(Ala)

(A lb)

(A2)

lS(A) =exp ——o'""o1
h

(A3)

(o""=(iI2)[y",y"]). From (A2) we obtain

yoS'fyo S—
1 QS 0 (S

—1)$ (S+ )
—1

and

(A4)

[S,r5]=0 (A5)

Q' —+S (A)1tt',

since

(A6)

C 'S 'C =C 'exp +—o" co CPV

=exp + —C 'o." Ccu

g=exp ——(o." )coPV

St

Furthermore,

Consider now P'=Cg' and g"(r, t)=y y'y'P'(r, t). It-
is straightforward to show that, under Lorentz transfor-
mations,



45 COLLECTIVE MODES IN DENSE NEUTRINO SYSTEMS 2089

gh(r, r)~ y'y'y'S (A)lt'(r, —r) .

Now we have

(A7} As a result we see that

yh ty yhtS —lSy —yh ty (Alo)
y'y'y'S=1 yoy P =1yPys

=i(S ') yo1 3

—(S—1)ty2y ly3

Therefore,

(A8)

i.e., g" g is a Lorentz scalar.
The same is true for la(1 p" and also for the correspond-

ing left- (or right-} handed field components.
To demonstrate that QL QL does not vanish identically

it is sufficient to observe that

and

ltd"(r, r)~(S ') y y'y ltd'(r, —r)

(S
—1)'(ah(r r)

yht yhtS —1

(y )h (yh)

(A9a) Therefore

yhty —((yh) )ty —phd'1(1 yt)y

(A9b)

(A 1 1)
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