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Diagrammatics for finite-temperature reaction rates
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We give a diagrammatic algorithm for calculating the reaction rate of a generic process taking place in

a thermal reservoir in equilibrium. The derivation is performed by introducing a specific path in the
complex-time plane and employing the path-integral method, and thus the algorithm is formulated
within the framework of a real-time thermal field theory.
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I. INTRODUCTION AND SUMMARY

With the rapid progress in heavy-ion collision experi-
ments [1], the formation of the quark-gluon plasma
(QGP) in laboratory systems has come to be real, and the
generic dynamical process taking place in the QGP to-
gether with the properties of the QGP itself come to be
actual important physical subjects to be investigated in
great detail. In this sense it is urgent to develop an
efficient method to calculate the reaction rate of any
given dynamical process taking place in a heat bath.

Up until now, a general prescription to calcuiate the
thermal reaction rate for a generic process in the heat
bath has not been available. The only exception is the
rule to evaluate the thermal single-particle decay (pro-
duction) rate, which can be expressed in terms of the
thermal two-point functions. For more general process-
es, e.g., even the two-particle scattering process, we have
had no general prescriptions to evaluate their reaction
rates.

Recently the rules (the diagrammatic algorithm) that
work for any thermal reactions have been formulated [2].
The derivation is, however, rather heuristic in the sense

that it is based on the idea of statistical mechanics and
the average over a statistical ensemble is directly taken.
This algorithm, regarded as a generalization of the Cut-
kosky rules at zero temperature (T =0), is formulated in
terms of the circled diagrams [3,4] with corresponding di-

agrammatic rules. With this algorithm it is shown [2]
that the imaginary part of a forward "scattering" ampli-
tude of physical fields in real-time thermal field theory
(RTFT) is expressed as a sum of reaction rates of various

reactions taking place in the heat bath, and thus has no
direct physical relevance.

The purpose of this paper is to present a more elegant
derivation of the same diagrammatic algorithm as in Ref.
[2]. The present approach consists of introducing a
specific path in the complex-time plane (as shown in Fig.
1 below) and employing the path-integral method. One
of the new outcomes from the present approach is that
the circled-diagram rules formulated in Ref. [4] are noth-
ing but the Feynman rules in the RTFT formulated on
the choice of the above real-time path [5] (see also
[6—10]). This RTFT is introduced in Ref. [5], which we
refer simply to as CD-RTFT (circled-diagrammatic
RTFT) hereafter. It is worth mentioning that the beauti-
ful circling rules of Kobes and Semenoff [3,4] to make up
a set of circled diagrams are introduced to evaluate the
imaginary part of a given causal amplitude, and thus can-
not be used for evaluating the reaction rate for a generic
thermal process, except for thermal one-particle decay
and production.

We show that any circled diagram representing some
specific reaction rate can be cut into two diagram seg-
ments: one represents the S-matrix element part and the
other the S'-matrix element part (a generalized Cutkosky
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FIG. 1. The time path C =Cl+C2+C3 on the complex-time
plane. The segments C&+C& are the so-called "closed-time
path".
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rule). This fact enables us to get a visible image of how
the physical process is going.

Also discussed are rules on how to calculate the imagi-

nary parts of physical Green's functions other than the
time-ordered one (which is fully analyzed in Refs. [3—4]),
such as the retarded and advanced Green's functions that
are directly relevant to physical quantities.

$H(r, t)lp(r);t ) =p(r)lP(r);t ),
and these state vectors form a complete set of states:

D;t;t =1.

(3)

(4)

gument of P suppressed, is the eigenstate vector of the
Heisenberg operator PH(r, t) [8,11],

II. INELASTIC "LEPTON" SCATTERING
OFF OF CONSTITUENTS

IN A "QUARK-GLUON" PLASMA

For definiteness, we examine the inelastic scalar-lepton
scattering off of neutral scalars P's in a heat bath of
thermal P's. The techniques and results, however, are
general enough and thus can be applied to any reaction.

Let us now consider a grand-canonical ensemble con-
sisting of a huge number of identical systems. The in-

teraction Lagrangian of the system is

X,„,=eg'fA+ —P A+ —,P +X„„„„,, (1)

(2a)

J(x)=P (x)/2, (2b)

where q =p —p' is the momentum of the virtual photon,
and lP);„and lP),„, are, respectively, the initial and final
state of the system considered, which are defined by
lP);„,„,—:lP;t=+ 00). Here lP;t)i, with the spatial ar-

where g, A, and P stand for the complex-scalar "lepton, "
massless neutral scalar "photon, " and neutral scalar P
constituting a heat bath, respectively. We are to adopt a
renormalization condition

Tre ~
tI)( x) /Tre ~ =Tre ~ A(x)/Tre ~ =0 .

Therefore, strictly speaking, it is necessary to include
terms linear in P and in A in X;„,. Although we simply
decline to write down these terms explicitly in Eq. (1), in-
clusion of them does not obstruct our following deriva-
tion, so that our conclusion is not spoiled. The following
arguments do not depend on the explicit form of X;„,.

We pick up one system out of the grand-canonical en-
semble and consider the inclusive process taking place in
this system:

P(p)+heat bath~/(p')+anything,

where p(p') stands for the momentum of the incident
(scattered) lepton. In the lowest order in e, the relevant
S-matrix element is

2

S(P',p';P, p) = f d x e '~ ",„,(P'l J(x)lg);„,
q +i@,

'2e'
2Ipl(2~)' q'

X fd'x e"",„(PlJ(x)J(0)lg),„, (6)

where use has been made of Eq. (4) with t =+~.
D(p', p), the differential transition rate, is evaluated by
taking the statistical average over the grand-canonical
ensemble:

D e
—PE(P)D

D (p', p) =
D D e

—PE(P) 2

where E(P) is the energy of the in state lP);„.
Substituting Eq. (6) into Eq. (7), we have

e'
D(p', p)= » G(q),

2p(2m) q

where

G(q)= f d x e'~'"G(x, O),

D;„e ~ JxJO
G(x, O) = fDy,.&yl.

(8)

(9a)

(9b)

with H the total Hamiltonian. The approach adopted in
Ref. [2] is to directly perform the statistical average in
Eq. (9b) as well as the sum over the final states, the sum
which we already did in going to Eq. (6).

Going into the interaction picture [5], Eq. (9b) takes
the form

The transition rate of the reaction is given by

1 1
4»P, NP, ,4, , 2l l

XS(P',p';P, p),
which describes the reaction rate per unit volume and per
unit incident jeux. Inserting Eq. (2) into Eq. (5), and sum-
ming over the final P states, we get the difFerential transi-
tion rate

D(p' 0 p) —=2pa
, dR (p';d, p)

d p

D e U&TJxU T JOU
G(x, O)=

D e UpU U

U= 1+ y ', f '"g dt; T[H;„,(t, ). . . H;„,(t„)],n!

(10)
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( &)"
U&=1+ $ [jdr, T,[H;„,( —~ —ir&) . H;„,( —~ —ir„)], (12)

Ut3T[J(x)U )T[J(0)U]=Tc[J(x)J(0)UpU U] .

Noting that U~ and U& can be written as

(13)

with H;„, the interaction Hamiltonian. T in Eq. (10)
stands for taking the anti-T-ordered product, T, in Eq.
(12) is the symbol of the r-ordered product, and all quan-
tities in Eqs. (10)—(12) are those defined in the interaction
picture, e.g. , U = U(+ ~, —~ } is the time-evolution
operator from t = —0o to t =+ ~ in the interaction pic-
ture.

Now we introduce the path in the complex-time plane
[5] as shown in Fig. 1. This is a time-path C with three
segments C„C2, and C3, i.e., C =C, +Cz+C3, which
goes from —~ to + ~ along the real-time axis (C, ),
then returns back from + ~ to —~ also along the real-
time axis (Cz), and finally goes down vertically to
—oo iP—(C3).

In Eq. (10) the time argument 0 of the current J(0) and
the time arguments in the time-evolution operator U,
which sweep from —~ to + oo [see Eq. (11)], lie on the
segment C„xo of J(x) and the time arguments in U lie
on the segment C2 and those in U& on the segment C3.
We assume the direction along the path C, to which the
arrow flows in Fig. 1, to be "future" direction. Then in-
troducing the generalized time-path ordering operator
Tc along C, we can trivially write

U =1++
n=i

n

X dtTc H,„, t, H,„, tn
2i=1

(14a)

Utt= 1+ g ( i )"—

n!
n

x f; g dt; T [H;„,(t, ) H;„,(t„)],
(14b)

we can show that U& U U can be cast into the form

'M—:UpU U

(15)

Substituting this expression into Eq. (10) we have [12]

e c JxJO
G(x, O)=

fDy&yl

Starting from this expression, through the standard ar-
gument [5,7 —11,13] we arrive at the two-component
theory, one of the RTFT's, in which G(x, O), Eq. (16), is

given as

G(x, O) =
g4

exp i dz X;„,
[[i5j2(x)) /2] [[i5j,(0)] /2]

'"' i5j, (z)
5

i5j~(z)

xexp ——f d gd g g [j„(g)D„,(g —g)j, (g)]
t')s =1 conn

(17)

p —m +iz
Dzz(p}= —ID»(p}1*

2~ant ( IpoI
—)5(p' —m'), (18a)

P foal
2m in~ ( Ipo I

)5—(p —m z), (18b)

D, 2(p) = 2vri [0( —p—o ) +n~( Ipo I ) ]5(p z —m '),
D )(p)=D, ( —p)

2~i [@po)+ ng( Ipo I ) ]5(p' —m ' },
where m is the mass of p, and

1
n~(x) =

e~ —1

(18c)

(18d)

where the Fourier component of the 2 X2 matrix propa-
gator D„, is given by [7]

In Eq. (17), "conn" means taking the connected part. In-
serting Eq. (17) into Eqs. (8) and (9), we have the pertur-
bative expression for the di8'erential transition rate D.

What we have achieved is to represent the rate D by a
"forward" amplitude, more precisely the one-particle-
irreducible "off-diagonal" scalar photon self-energy part,
in the CD-RTFT constructed on the basis of the path as
in Fig. 1. Now it is easy to read out the following impor-
tant fact: Mathematical tools with which our calcula-
tional rules settled above are formulated have a one-to-
one correspondence with the circled-diagram rules intro-
duced by Kobes and Semenoff [4] (see also [2]}. In fact,
vertices of the first- (second-) component fields corre-
spond to the uncircled (circles) vertices, and the four
types of propagators (18) have just the right correspon-
dence to the propagators between (un)circled and
(un)circled vertices. It is obvious that the reaction rate D
of Eq. (8) with Eq. (17) is represented exactly by the cir-
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int

FIG. 2. The diagrammatic representation for the differential
transition rate D. The solid lines denote g, the wavy lines P,
and the arrows on them express the directions to which the en-
ergies flow. The sum is taken over all possible ways of circling
the internal vertices.

FIG. 4. Two-loop (second order in A, ) circled diagram that
contributes to the finite-temperature current-correlation func-
tion (9)~

cled diagram depicted in Fig. 2. The sum is taken over
all possible ways of circling the internal vertices.

III. DRELL-YAN PROCESS
IN "QUARK-GLUON" PLASMA

In this section we study the "inverse" process to the
one in the last section, namely, the scalar-"lepton" pair
production in the heat bath of thermal light neutral sca-
lar P s. In quite a similar way as in the last section, we
have for the differential rate P of dilepton production,
heat bath ~f(p) +g'(p ') +anything,

P(p p )—:2p02po
dR (p,p')
dpdp

4 2

& (p,p') = s, G( —q),
(2m) q2

(20)

(21)

where q =p'+p is the virtual-photon momentum, R is
the dilepton production rate per unit uolume, and 6 is
given by Eq. (9) with Eq. (16). This result is also identical
with the one obtained in Ref. [2], and the graphical repre-
sentation of Eq. (21) is immediately obtained as depicted
in Fig. 3.

IV. PHYSICAL INTERPRETATION

To make clear the physical meaning of the results ob-
tained in Secs. II and III, let us consider a two-loop dia-
gram (second order in A, ) contributing to the finite-
temperature current-correlation function (9) with (17), as
shown in Fig. 4. As mentioned in the end of Sec. II, the
uncircled (circled) vertex in this figure represents the in-
teraction vertex of the first- (second-) component field in
the CD-RTFT. In fact, it can be easily seen from the
analysis given in Sec. II that the uncircled vertex in Fig. 4
comes from T[J(0)U] in Eq. (10), namely, from the S-
matrix element part in the formula representing the in-
elastic lepton scattering reaction rate R, Eq. (5), while the
circled vertex comes from T[J(x)U ], namely, from the
S matrix element part.

These facts mean that the propagator D»(D22) be-

int

FIG. 3. The diagrammatic representation for the dilepton
production rate (per unit volume) R. The meanings of the sym-
bols are the same as in Fig. 2.

tween uncircled (circled) vertices represents the thermal
propagator of the type-1 (-2) field that propagates inside
the S- (S'-) matrix element part. As is also clear from
Eqs. (18a) and (18b), these propagators D» and D2z are
nothing but those of the physical and thermal ghost fields
in a general RTFT [8,9), respectively. The propagator
Dz, (p) (po &0) from an uncircled vertex toward a circled
one represents that of the final-state particle [involved in

,„,(P~ in Eq. (2)] "propagating" from the S part toward
the S' part [see, Eq. (5) with Eq. (2)], and D~2(p) (po & 0)
from a circled vertex toward an uncircled one represents
that of the initial-state particle "propagating" from the
S* part toward the S part. Explaining with the example
of Fig. 4, the propagator, say D2~(p2), represents for

p20 & 0 the propagation of the final-state particle from the
S part toward the S' part, while for p20 &0, it represents
that of the initial-state particle from the S* part toward
the S part.

To clarify the above proposition, let us show here that
the circled diagram shown in Fig. 4 can be expressed as a
sum of "cut diagrams, " any one of which has the struc-
ture SS* [Eq. (5)] and thus represents a square of the
physical reaction amplitude in a heat bath. As a matter
of fact, given a circled diagram, a set of cut diagrams is
unambiguously determined and vice versa as codified
below in the form of rules.

The cutting rules (in constructing cut diagrams). For a
given circled diagram, perform a continuous deformation
without changing their topological structure so that all
the uncircled (circled) vertices are laid within the left
(right) side of the original diagram. Cut all the propaga-
tors linking an uncircled vertex to a circled one, i.e., link-
ing the left half to the right one. Thus, we get a "dia-
gram" with a vertical cutting line in the middle. Then
deform each piece of the cut propagator so that the posi-
tive energy flows from the left to the right direction. The
left (right) portion of the diagram thus obtained
represents the S- (S*-) matrix element part in Eq. (5).
This is regarded as a finite-temperature generalization of
the Cutkosky or the cutting rules in vacuum theory.
(Here we do not touch on the method of circling of the
propagators D» and D22, full details of which are given
in the last paper in Ref. [2]).

As an example, we take the circled diagram Fig. 4,
with qo )0 and q (0. Applying the above cutting rules,
we can cut the diagram, Fig. 4, to get a set of cut dia-
grams depicted in Fig. 5. Let us pay attention to the
propagator D2, (p, ) in Fig. 4, which expresses the propa-
gation from the uncircled vertex to the circled one. If
p to & 0, then from Eq. (18d) it takes the form
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(a)

q p

(b)

P,
p I

~p

(c).

FIG. 5. Cut diagrams obtained from the circled diagram Fig.
4 with the use of cutting rules (qQ &0, q' &0). Each diagram
corresponds to the following region of the loop momenta in the
circled diagram, Fig. 4: (a) p&Q and pzQ & 0, p3Q &0; (b) p&Q & 0,
pzQ and p3Q & 0; (c) p&Q and pzQ &0, p3Q & 0; (d) p, Q and p3Q &0,
pzQ &0

(b)

FIG. 7. Cut diagrams obtained from the circled diagram Fig.
6. Each diagram corresponds to the following region of the
loop momenta in the circled diagram, Fig. 6: (a) p&Q pzQ, p3Q,
and p4Q & 0; (b) p lQ, p3Q, and p4Q & 0, pzQ & 0.

the structure S(3)S* and thus representing a squared
physical reaction amplitude in a heat bath. In this exam-
ple we again find for any "propagator" a right physical
correspondence with the cut diagrams. For example, the
propagator Dz, (p2 ) in Fig. 6, which has the expression,
for p20 &0

Dz, (p, ) = 2rri [—I+no(pro))&(P i
m') Bio»

D2&(p2 ) = 2trin—tt( lp201@(p2 —m'), p2o & o (24)

(22)

which expresses the sum of spontaneous and stimulated
emissions of P quantum with momentum p, into the final

state (i.e., the heat bath). This fact correctly reflects on
the corresponding cut diagrams Fig. 5(a), which represent
the region p, o )0 of the original circled diagram, Fig. 4.
If p, o & 0, on the other hand, D2, (p, ) takes the form [see,
Eqs. (18c) and (18d)]

D»(p &
) =D»( —p &

) = —2~in&( lp )o l )&(p
&

—m '),
p, o &0 (23)

from which we can see that it expresses the induced ab-
sorption of the initial-state P quantum (with momentum
—p, ) from the heat bath, and that the corresponding cut
diagrams, Figs. 5(b) —5(d), correctly represent this fact.
Other "propagators" in Fig. 4 also have the correspond-
ing physical interpretations in terms of the cut diagrams
(namely, the physical reactions in the heat bath). Thus,
we can understand that the sum of "cut diagrams" in

Figs. 5 correctly represent the physical contents involved.
As another example, let us consider the circled dia-

gram, Fig. 6, which contributes to the "Drell-Yan" pro-
cess. This diagram survives only when m =0 with the di-
mensional regularization method employed to regularize
the infrared divergence. Following the cutting rules stat-
ed above, we can manage to express this figure as a sum
of cut diagrams as shown in Figs. 7, each of them having

represents the induced absorption of the initial-state P
quantum from the heat bath. This fact is neatly ex-
pressed in the corresponding cut diagrams in Fig. 7(b).

Finally, it is worth mentioning the following: A some-
what bizarre diagram Fig. 6 has been regarded so far only
as playing the "passive" role of eliminating a
[5(pf —I )] singularity [4,14] and has been thought to
be noncuttable. It is now obvious, however, that it really
represents a set of physical processes such as those de-
picted in Fig. 7, and thus can be cut in the sense defined
above.

V. DISCUSSION
A. Generalization

All the arguments presented so far can be straightfor-
wardly generalized to any generic process involving more
general fields. We reach the circling rules: When a
thermal process is given, the rules identify a set of circled
diagrams to evaluate the reaction rate. Here we give only
one example. By taking the model (1), let us consider a
gedanken experiment: m Uirtual scalar photons with in-
cident mornenta k& k2 . . ~ k go into a heat bath and
interact with thermal P's to produce n Uirtual scalar pho-
tons with outgoing momenta k', , kz, . . . , k„'. Then the
reaction rate 8 of this process is represented in terms of
the circled diagram depicted in Fig. 8. An analysis on
the basis of cutting rules presented in Sec. IV in the cases
of two-body circled diagrams that contribute to the in-
clusive lepton scattering and to the Drell-Yan process
can also be developed in the present case straightforward-
ly, and leads us to a proper physical interpretation of the
final formula that has a sophisticated circled-diagram ex-
pression.

FIG. 6. Two-loop (second order in k) circled diagram that
contributes to the finite-temperature "Drell- Yan process'*

(qQ &0, q &0).

B. Calculational rules for evaluating the imaginary part
of Green's functions directly related to physical quantities

Here we address the following question: How can we
calculate the imaginary part of Green's functions or am-
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2

~m

/r2

tities, such as the retarded and the advanced ones, can be
represented [7] as linear combinations of various Green's
functions (amplitudes), G's, in the CD-RTFT which is
defined on the time path depicted in Fig. 1. Also to be
noted is that any such Green's function (amplitude) G in
the CD-RTFT is related to the corresponding one, G, in
the standard RTFT:

FIG. 8. The reaction rate R of a process where arbitrary
numbers of scalar photons with momenta k& —k interact and
produce those with momenta k

&

—k„'.

plitudes other than the causal ones? What Kobes and
Semenoff have established by the circled-diagram rules is
the perturbative diagrammatic algorithm [3,4] in evaluat-

ing the imaginary part of a causal amplitude in the stan-
dard RTFT. By the standard RTFT we mean
thermofield dynamics [8,15] or the RTFT based on the
time path [8—11],
—co ~+ oo ~+ oo —iP/2~ —oo —iP/2~ —oo —iP,
in the complex-time plane, both of which are equivalent
[8—10] as far as perturbative expansions are concerned.
Here let us recall the fact that the Green's functions (am-
plitudes) which are directly related to the physical quan-

p&(+qo ) /2G=e (25)

y(x) —ePHI2$ (x)e fjHI2— (26)

Now the imaginary part of each G, and hence through
Eq. (25), of any physical Green's function (amplitude) G,
can be evaluated thanks to the algorithm settled by
Kobes and Semenoff in their first paper [3].

As an example, the retarded Green's function (spatial
variables suppressed)

where qo s with + ( —) sign are the outgoing (incoming)
energies of the external thermal ghosts. The above Eq.
(25) follows directly from the following fact [8,9]: The
type-2 field $2(x) in the CD-RTFT and the so-called
thermal-ghost (or tilde) field P(x) in the standard RTFT
are mutually related through the imaginary-time transla-
tion

G„(t(,t2, . . . , t„)=—( i)"— &(t, —t, )8( ,t—t, ) 6(t„, t„)Tre t'H[ —. [[P(tr),P(t2)], P(t3)], . . . , p(t )]

(27)

with a sum being taken over all permutations of
t2, . . . , t„, is shown [7] to be represented by the linear
combination

i%1
G„= g G(xr, . . . , x„;z ), (28)

where the sum runs over all arrangements of type-1
(uncircled) and type-2 (circled) external vertices (denoted
by x's) as indicated and of type-1 and type-2 internal ver-
tices (z's). It should be noted that the right-hand side
(RHS) of Eq. (28) is equal to what Kobes writes as Pz'
[16] in discussing the "retarded functions" at finite tern-
perature. Also noted is that the equality (28) has also
been proved by Evans [17] for the three-point (n =3)
case in a somewhat different context. Using the relation
of the same type as Eq. (25), we can evaluate the imagi-
nary parts of the iG's in Eq. (28) through the standard
method presented in the first paper of Kobes and
Semenoff [3], where general Green's functions including
both physical and thermal-ghost fields were treated.
Each term thus obtained, which constitutes ImiG„may
be translated back into a Green's function G in the CD-
RTFT through an analogous formula to Eq. (25). In the
case of a "forward" G„, in the light of the analysis in the
present paper, we can interpret each of the final (ampu-
tated) G's in terms of the reaction rates, i.e., the reactions
taking place in a heat bath (see Sec. IV). An analysis of

X„(q)= g X(q;x„x2,z„z2) .
X2,'Z I,Z2

(29)

With the help of Eq. (25), the RHS of Eq. (29) can be ex-
pressed in terms of Green's functions in the standard
RTFT as

X„(q)= g [X(q;xr,x2;z, ,z2)
Z]pZ2

Pqo /2+e ' X(q;x, ,x~;z„zr)] . (30)

Z) ~Z2

x) x2

LD
Z2

FIG. 9. Set of two-loop circled diagrams that contributes to
the two-point amputated retarded Green's function —i X„ in the
scalar A,P theory. The sum over z, and z2 runs over all possible
arrangements of type-1 and type-2 vertices.

I

various Green's functions along this line will be a future
work.

Finally, as an illustration of our general program, we
briefly consider a simple example of two-point amputated
retarded Green's function G„(q) [—:—iX„(q)] in the AP
theory, and study the contribution from a set of circled
diagrams shown in Fig. 9. (This analysis is only for an il-
lustrative purpose because this X, has been studied al-
ready in the literature, see e.g., [16].):
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From here to Eq. (32) below x; (x } denotes the vertex of
the physical (thermal-ghost) field. The sum over internal
vertices z, and z2 runs over all possible combinations of
the physical and the thermal-ghost (or tilde} vertices.

The imaginary part of each two-point Green's function
(in the standard RTFT) can be evaluated through the
method in Ref. [3]: e.g. ,

ImX(q;x „x2;z],z2 ) = ——[ X(q;x],x2;zt, z~ )

+X(q;xt, xz, z„z2)] . (31)

Thus, as the imaginary part of X„(q), Eq. (30), we get

where x; denotes the vertex at the point x; to be type 2,
i.e., a circled vertex, and here again the sum over internal
vertices z, runs over all possible ways of circlings.

The physical contents of the quantities on the RHS of
Eq. (33) can be disclosed through the rules developed in
this paper. In fact, we can see that the first (second) X on
the RHS of Eq. (33) represents the decay (production)
rate I z (I ~) of P in the heat bath, so that the quantity in
Eq. (33) is proportional to the net decay rate I d

—I~.
This result is of course, already known [16], but we re-
peated it here just for the illustrative purpose of our gen-
eral program.

—X(q;x „x2;z„zz)], (33)

X g X(q;x ),xz, z„z~ ) (32)
Z] yZ2

Now we again use Eq. (25) to rewrite the RHS of (32) in

terms of corresponding Green's functions in the CD-
RTFT, and finally get

ImX„(q) = ——g [ X(q;x „xz,z„zz )

Zf yZ2
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