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A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the
two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the
neighborhood of each point then de6nes in a natural way a local concept of dimension. We study our
model in the region of parameter space in which the resulting spacetime is not too different from a
smooth manifold.
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I. INTRODUCTION

One of the outstanding unsolved problems in theoreti-
cal physics is the description of the quantum effects of the
gravitational interaction (cf., for example, Ref. [l] for a
general review). Dimensional arguments indicate that
the energy scale at which these effects should become ap-
parent is the Planck mass mt, =&cfi/G, where G is
Newton's constant. Assuming the validity of the usual
Heisenberg uncertainty principle up to these energy
scales, this means that the length scale at which quantum
effects should modify the general-relativistic description
of spacetime as a differentiable manifold is the Planck
length lt, =+Gfi/c .

At still smaller distances, I (lp, it is likely that the
description of spacetime as a smooth manifold is not ade-
quate. It is actually possible that there is a minimal
(physically measurable) length; this is suggested, for ex-
ample, by the studies of the scattering of strings at very
high energies (cf., for example, Ref. [2]). Perhaps the
simplest intuitive picture one can get on the "melting" of
classical spacetime when one uses "probes" at length
scales of the order of /z is to imagine that the actual
"classical" metric is given by the expectation value of a
quantum operator: g„=(g„„).This raises the possibili-
ty that the metric (or the vielbein) can become degenerate
(det g =0), changes signature or even the dimension of
the spacetime itself. Of course more drastic possibilities
can be imagined, which are not by any means similar to
any smooth manifold whatsoever.

We are then led towards the most pressing physical
question: what is the mathematical structure most ap-
propriate for describing physics at those scales? There
are several possibilities, according, in particular, to the
more or less basic role one imagines for the spacetime sig-
nature; if one adopts the extreme point of view that this
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will be an essential ingredient of quantum gravity, in the
sense that no analytic continuation to "Euclidean" space
is possible or convenient, then methods specifically
tailored for signature s = —2 are probably most ade-
quate. Among them, let us mention the entire Penrose
program of twistors (cf., for example, the book [3]). A
strategy with the same starting prejudices is the one
which stems from the consideration of the ensemble of
partial ordered sets (or posets, for short, cf. [4]); and in

general the approach pioneered by Finkelstein (cf., for ex-
ample, [5]). Another extreme possibility is that only the
topology remains, that is, that there is a set of points
without any further physical specification in addition to
the one which singles out certain subsets as open sets,
thereby defining the topology itself; one is then led to
consider theories of quantum topology" such as the ones
recently put forward in Ref. [6].

The alternative we want to explore in this paper (and
which was first suggested by one of us in Ref. [7]) is much
more conservative in character; we shall assume that
quantum physics is best formulated in Euclidean space
"ab initio, '* and that a proper analytic continuation to
the physical signature can be performed at a late stage of
the computations. While there is no deep understanding
of why this should be so, it is in agreement with the
modern trends in quantum field theory. We shall also as-
sume, in particular, that it still makes sense to speak
about "spacetime events" even in the Planck regime,
when spacetime is not a manifold anymore. To be sure,
our intuitive notion of "event" stems from its description
in terms of four coordinates. What we are postulating
here is that the concept is more fundamental than the lo-
cal coordinates themselves.

We would like to endow this set of points with as much
mathematical structure as possible, but still without forc-
ing them to condense in a smooth manifold. The most
natural framework in this context is a "metric space, "
i.e., we assume that the set of events has a two-point real
function defined on it, with the properties that it is sym-
metric, that is, d (x,y) =d (y, x); it is zero only when
x =y, d(x,y)=0 x =y; and satisfies the triangular in-
equality, namely, d (x,y) (d (x,z)+d (z,y), Vz.
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To be specific, let us show a simple example of the type
of spaces covered by our formalism. Consider the subset
of R consisting of [z =0] U Ix =y =0] (which is not a
differentiable manifold, being the union of the plane xy
with the z axis). This set can be endowed with a structure
of metric space by defining d in an obvious way if both
x,y are either in the plane or else in the z axis; and when
pER' and qER, we define d =~z~++x +y . It is

plain that this is indeed a metric space which has locally
dimensions one or two. The aim of this paper is to study
the simplest quantum dynamics of this class of spaces.

This framework is obviously more general than the
general-relativistic one, in the sense that every Riemanni-
an manifold is a metric space, with distance given by the
"geodesic distance, " i.e., d(x,y)= f~ds. This is essen-

tially Synge's "world function" (cf., for example, Ref.
[8]). Actually, Synge worked in a pseudo-Riemannian
space, with the physical Lorentzian signature, so that he
squared the whole thing in order to have a non-negative
quantity. The world function Q(x,y) =d (x,y) is anyway
a more convenient quantity than the distance itself, at
least in the framework of Riemannian spaces. It is obvi-
ous that in order for an arbitrary distance to qualify as a
geodesic distance of a smooth manifold it should satisfy
necessarily certain additional constraints; for example,
given any pair of points (x,y), there is always a third
point z which saturates the triangular inequality, that is,
d (x,y) =d (x,z)+d (z,y). An arbitrary metric space will

not satisfy this property, which means that its distance is
not a geodesic distance of a certain smooth manifold.

The preceding analysis implies that a neighborhood of
a given point will not be generically homeomorphic to
R"; in other words, the events in the Planck regime will

not be described by coordinates except in the simplest ex-
amples.

In the general framework just introduced, the distance
is a quantum field itself. We have not been able to figure
out any general guiding principle, analogous to general
covariance, which would allow us to write an action for
the bilocal quantum field d(x, y). We shall not distin-

guish between the quantum variable d (x,y) itself, and its
average value (d (x,y) ), where the average value is
defined with respect to the functional measure associated
with the action for the field d(x, y). As a consequence
the models to be considered in this paper are just the sim-

plest ones, both analytically and from the point of view of
numerical simulations.

We would then like to write down an effective field

theory which aims to describe the physics corresponding
to an energetic regime in which E-m~, but definitely
not much bigger. It is natural to expect that the semi-
classical metric space defined by using as a distance the
expectation value of the quantum field d (x,y)
= ( d (x,y ) ), although not smooth, will be "almost
smooth" most of the time.

This means in particular, that if we count the number
of points in a closed ball centered at the point x and with
radius R,

A'(x, R )—:g 0(R —d (x,y ) ),

then, in some places at least, this will scale in the local
limit R ~0 as

This definition of dimension is known in the mathemati-
cal literature as "Kolmogorov capacity, " and is
equivalent in many simple situations to the Hausdorff di-
mension (cf. Ref. [9] for a clear, physicist-oriented, expo-
sition). ' The picture of spacetime implied by this
description is then a set of points that in the vicinity of
some particular point looks like a manifold with some
value for the dimension; whereas in the neighborhood of
some other point it looks again like a smooth manifold,
but with a different value for the dimension, and, finally,
around some other places (which are not expected to be
too frequent if the energy is not much bigger than
Planck's mass), it does not look at all like R ".

In some subset of the parameter space of the model,
spacetime will just look as an ordinary differentiable man-
ifold with constant dimension. Not far from this subset
(in a convenient topology), we will find other models in

which the dimension varies from place to place, but in a
smooth way. Those are the models which would describe
the physical situation we are interested in: we want to
understand what happens when the smooth spacetime
manifold disappears and melts into more complicated to-
pological spaces.

In this paper we are not able, unfortunately, to corn-
plete the above program. In Sec. II we shall study in
some detail some analytically tractable toy models, which
give an accurate description of the physical picture we
have in mind. In Sec. III some more general toy models
which require numerical simulations are discussed; these
simulations were performed using simple variations of the
Metropolis algorithm. In Sec. IV we establish some gen-
eral properties of models representing two extreme types,
namely, the most similar and the most dissimilar to R" in
a certain precise sense. Finally, our (provisional) con-
clusions are stated in Sec. V.

A point that will not be further elaborated in this pa-
per, but which is most interesting, is that our general
framework in the classical case (tree approximation) is
broad enough to cover large classes of singular space-
times (cf., for example, [10]); besides, as a metric space
there is a general way of completing it, in case it is not
complete to begin with. A brief presentation of the
present ideas can be found in [11].

iAs an example of the situations that we may encounter with

such definition, let us consider a discretization of the real line

with a density distribution of points given by some smooth

bounded function, which may have been dynamically generated.
At the points x where that distribution is nonzero we obviously

have n (x ) = 1, but if there is a zero of order k at a point x o the

dimension is n (xo ) =k+ 1. So that this space would be main-

ly one dimensional except at some points where it changes di-

mension.
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II. SOME ANALYTICAL TOY MODELS

do(x, y)—:1 —5„~. (2. 1)

It is obvious that the corresponding topology is the
"discrete topology, " in which all subsets of the topologi-
cal space are open sets. This topology is actually too
trivial to be of any physical interest: every function of
the space in itself is a continuous one. We certainly do
not want our spacetime to have as simple a structure as
that. Unfortunately, this is exactly what happens in
every finite metric space: let us call

@=min„~~~d(x,y) (xWy) . (2.2)

According to the postulates, this must be a nonzero num-
ber. Now, it is very easy to see that the set composed by
a single element x is an open ball of radius R (where R
can be any real number such that R & e),

In order to build up some tractable models, one could
try to discretize somewhat the problem, that is, to consid-
er that the spacetime has a finite number of points, N.
Now there is a small problem here: given any set of
points (either finite or infinite), we can endow it with the
structure of a metric space, by defining what is called the
"discrete metric, "namely,

traces of the first N powers of M. We will choose our
toy-model action to be

Z(g)= fdM exp —g g~trM ~

p=0
(2.4)

In the preceding formula, the coupling constants g have
been rescaled, g =g /N~ '. On the other hand, the
measure dM is the unitary (or orthogonal in the real case)
invariant measure on Hermitian matrices (cf., for exam-
ple, Ref. [12]). There is a large literature on the subject
of the dynamics of random matrices and, in particular, in
the references in [13], it has been noticed how the parti-
tion function could be expressed for arbitrary N in terms
of convenient orthogonal polynomials:

n

P„(A):—[Z„(g)] ' fdp(A, ) , dp(A, „)b,P (A, —)(,;),

S= g g~trM ~,
p=1

although this is not the most general invariant action, it
has enough parameters to be a nontrivial model, it is
amenable to analytic treatment, and exhibits some of the
features we expected from a more general model.

The partition function is defined by

[x ] =8„(R). (2.3)
(2.5)

Given that every union of open sets is still an open set,
this proves our claim on the triviality of a finite metric
space.

This means, of course, that we have to complicate
somewhat our model and consider, at least, the limit
N~ ao. For N points, it seems reasonable to start with a
model in which the dynamical variable is a symmetric
NXN matrix and to associate the distance between
points with the matrix elements M;. themselves. But M
will represent a distance only if it satisfies the distance
conditions: it must be symmetric, with vanishing diago-
nal and satisfy the triangular inequality. The last one
poses a very strong constraint on the matrices, and a way
of implementing this constraint is considered in the next
section, but it cannot be solved analytically.

However, one can circumvent this difficulty by defining
the distance just through the eigenvalues [ A,; ] of M in the
following way:

It can be easily shown that this definition satisfies the tri-
angular inequality automatically, as well as the remaining
distance properties provided that A, AAJ. , when i' It.
would appear that this definition corresponds to an in-
herently one-dimensional situation, but this is not the
case as we shall prove in what follows.

Next, we should postulate an action for the dynamical
field, M. Now, the distance is invariant under similarity
transformations: the distance one gets from M is the
same as that obtained from M =0 MO, where 0 is an or-
thogonal matrix. Thus, we can restrict the action to be
also invariant under such transformations. It can be
proved that any invariant object must be a function of the

where dp(A, ) is the measure determined by the potential,

dp(A. ) =d A, exp[ —V(A, ) ), (2.6)

where V(A, ) is the function associated with the potential,

V(A, )= g g A2~,
p=1

b, ()(,) is the Vandermonde determinant,

b, (A,„.. . , X„)=P (A, ;
—

A, ),

(2.7)

(2 &)

1 a dg w'(g)
7T ~2 ~y2 Q4g2 g2

where the auxiliary function w (g) is defined as

(2.9)

w(X)= g X z+ —(av)z z+-i dz 1 1

2' Z Z Z
(2.10)

This can easily be shown to be equivalent to

w(A, )—:g '
g A, ~(2p)!

p ((p —1)t
(2.11)

and the value of the parameter a is defined as a function
of the coupling constants by the implicit equation

and Z„(g)refers to the same integral as in the defining
formula of the partition function, in the case in which the
dimensionality of the matrices is (n, n) (with g kept
fixed). The final result of Bessis, Itzykson, and Zuber for
the density of eigenvalues in the limit N —+ oo is the even
function
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1=m(a)=2g, a +12g2a +60g3a6+280g4a8+

(2.12)

4a 1/2R 3/2

N, (R)=
377 g u (2a)~.

p=0

A beautiful proof of the preceding formulas can be found
in the papers of the Saclay group cited in the references.
Working out explicitly the integrals, one gets

1
oo

u(A, )= g u A, ~,
4a —

A, ~=p

where

(2.13}

uo=g, +4a g2+18a g3+80a g4+

u, =2g2+6a g3+24a g4+

u2=3g3+8a g4+

u3 =4g4+

(2.14}

The preceding expressions generalize Wigner's semicircle
formula, on the distribution of the set of zeros of Hermite
polynomials. We want now to estimate the Kolmogorov
capacity in the neighborhood of the point labeled by i.
The quantity to be computed is

This implies that n (e)=3/2.
The picture of the spacetime as implied by our toy

model is then a region mainly one dimensional, with a
higher-dimensional central neighborhood. This simple
model then embodies some of the general characteristics
we claimed any physically reasonable model ought to
have above the Planck energy. We have, in particular,
the possibility of introducing the dimension of spacetime
as a physical, dynamically determined, quantum field.

III. MONTE CARLO SIMULATIONS

d;J='l/ e (1—5;.)+4M; (3.1)

We do not want now to assume any special symmetry
property of the distance, so that we will essentially identi-
fy the value of the distance between the points i and j
with the element of the random matrix M; . To be
specific,

N, (R)= +8(R —d(i, j))
J

=f«u(&)8(R —l~; —~, I)

k,. +R= f dA, u(A, )

N;(R)=
4aR sin8;

ui(2a cos8, ) ',
7T l=o

which can be immediately worked out to be

(2.15)

(2.16)

where the small constant e has been introduced to avoid
d; =0 when i' As dis.cussed at the beginning of Sec.
II, the presence of that constant does not pose a problem
because the finite number of points considered in our
model implicitly imposes a lower bound for the values of
the distance. Note that we have to impose the further re-
striction M;; =0 in order for our definition to be con-
sistent.

To begin with a simple case, we have simulated the ac-
tion:

where we have assumed R «a, and that I,, is not close
neither to the end points nor to the central, symmetric
point. We have defined

S =g, Tr(M )+gzTr(M )

+—g exp[((d;J d;I,
—

d~k }] . —1

i,j,k

(3.2}

cos8;—:(A,;+R)/2a . (2.17)

In our simplest analytic model the Kolmogorov capacity
grows linearly with R (for small R), as long as the point
considered is not too close to the center of the spectrum.
This means that our semiclassical metric space has al-
most constant dimension one in this region. This is not
the case, however, for any neighborhood of the central
point, because there we can write

N, (R)= g "P R 'I'+'
vr o 2p+1

(2.18)

Still, in the generic case, when R~0, the dominant
power is 1, and the central zone is one dimensional as
well. But for interactions, of the type u =5, then the
central region has dimension 2m +1. This means that if
we fine tune our potential, we can get around the central
point as high a dimension as desired. It is perhaps worth
noticing that due to the fact that all coefficients in Eq.
(2.14) are positive, we need some g,. (0 in order to get
n(0) &1.

It is simple enough to derive an explicit formula for the
capacity in the vicinity of the end points:

The first term is analogous to an ordinary mass term.
The second term is really an interaction term (the only
reason why we have only a fourth-order interaction is one
of simplicity; we plan to consider higher powers of M in
future work) The la.st term has been introduced by hand,
in order to enforce the triangular inequality: in the limit

the action blows up unless d;1
—d;k

—dJ.„~O,
Vi, j,k = 1, . . . , 1V, that is, unless the triangular inequality
is satisfied. In this case, the prefactor ensures that the
contribution of this term is negligible. This term formal-
ly resembles an exponential potential of the Liouville
type.

The impossibility of numerically handling an infinite
number of points is a primordial handicap of all discreti-
zations. Following the standard philosophy of numerical
simulations in gauge theories, we have performed several
simulations using different lattice "volumes" in the hope
of determining the dependence of our results with the size
of the system, and in this way recover the infinite volume
limit. Actually, we have been severely limited by the
amount of time available in our computer, an IBM 3090
at the UAB (our longest runs took more than 100
minutes of CPU). We have been able to perform simula-
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tions with values of N in the range between 12 and 96, at
which point the amount of CPU time became prohibitive-
ly large.

It is well known (cf., for example, Ref. [14]) that in or-
der to define a continuum theory, with finite mass gap, we
have to look for a critical point of our discrete system:
when the lattice spacing a~0, the correlation length

The way this is done in practice is to plot as
many physical observable 6 as possible (in a dimension-
less form) for the value a of the cutoff, and, say, for the
value a /2, as a function of the length scale at which they
are defined, r, and a set of bare coupling constants, which
we represent generically by go(a). Since we assume 8 di-
mensionless, this itnplies that 6(2r, a, go(a/2))
=8(r,a, go(a)) [plus O(a ) corrections]. The study of
the corresponding curves, plotted for fixed r and a, allows
one to distinguish between ultraviolet repulsive and at-
tractive fixed points. Unfortunately, the inherent nonlo-
cality of our fundamental action exceedingly complicates
the simulations, so that we only have for the moment pre-
liminary results on the continuum limit.

Our program generates a random "initial
configuration, " i.e., an initial matrix M, and evaluates the
action of that configuration. The configuration's evolu-
tion is carried out by a Metropolis algorithm in the fol-
lowing way: the first d; ("link" ) is changed, and the ac-
tion of the new configuration evaluated. If the change in
the action AS is negative, the change is immediately ac-
cepted. If hS ~0 we accept the change with probability
exp( b,S). This p—rocedure is called a sweep. After
sweeping all the N(N —1)/2 links (that is, all the com-
ponents d;1 ), we are led to a different and nearly indepen-
dent configuration. The whole process will be called an
iteration. Only after an iteration can we average the in-
teresting quantities: (S), (d; ), . The average over
configurations obtained this way is equivalent to average
over completely random configurations weighted by
exp( —S). In Fig. 1 we show the evolution of the average
distance,
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FICs. 1. The average value of the distance,
D —= [1/N(N —1)]gd;, , is plotted as a function of the number
of iterations. It shows stabilization in the vrorst cases, after 300
iterations. The parameter p2 is just the g2 coe%cient in the
main text, and g I has been fixed (g I

= 1).

1

N(N —1),

the number of iterations of the algorithm as a check of
the stabilization of the method. The larger N is, the fas-
ter the stabilization takes place, and after that transient
period we compute the averages

K

) — y d(n)K„ (3.4)

of d "', the distance function at the nth iteration. The to-
tal number of iterations I(: depends on the length of the
computation, that is, on the number of points considered
N.

A reasonable running allows for 20000 iterations in the
case N =12, 3000 iterations when N =24 and only 500
when N=48, because the complexity increases as N .
The reason for that complexity is the Liouville term. We
can think of the points X; as belonging to a lattice, and
the d; as links between them. The Metropolis
algorithm's efficiency lies on the locality of the action,
but in our problem d, links any point with all the others,
and, in addition, the action is highly nonlocal. If the ac-
tion was indeed local, after a change of one "link" d;, we
would expect a change of a few terms in the action. But
in our case, a change in one component d; induces a
change in a lot of terms in the action, slowing down the
efficiency of the algorithm.

After having computed the (d;. ) we proceed to com-
pute the Kolmogorov capacity. For each point we con-
struct a set of balls of growing radius centered in that
point and we plot ln[N(x, R)] ln(R), [see (1.1)] so that
from (1.2) it follows that the slope is the dimension at x.
This program cannot be applied to all the cases studied,
as some of them need special care. When N is small,
problems of saturation can be present: as the radius
grows, all the points enter into the ball, and only the first
points in the plot can be taken into account [Fig. 2(b)].
Furthermore, when N is small (N =12), oftentimes the
distance is trivial, i.e., d, . =d =const Vi, j, and obviously
the procedure cannot be used because the slope cannot be
detertnined within a reasonable accuracy [Fig. 2(c)]. On
the other hand, when N is large (N =96) the statistics is
clearly insufficient, so that the slope error can be very
large.

In Fig. 3 we show the dimensions obtained at each
point for several values of the parameters. After a first
look at the dimensions plotted in each figure, one of the
most striking features is the homogeneity in the dimen-
sion values at different points. The dimensions at every
point in the toy world have the same order of magnitude,
and for certain values of the parameters, almost all the
dimension values are equal (within the error margins).
This fact is probably due to the use of a purely quartic in-
teraction in the potential. Future work should include
the exploration of interaction terms of the type g trM
for p &2, as well as forg (0.

Our numerical simulations do not provide a clear pic-
ture of the phase structure of the system. On general
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FIG. 2. Three types of fittings necessary to compute the local dimension, n {x): In {a),we have plotted a straightforward, unambi-

guous case; {b)we have plotted some saturated examples; in {c)some examples of the discrete metric.
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FIG. 2. (Continued).

grounds, we expect a phase transition to take place at a
"length scale" I -Ip between a "disordered phase, " in
which different pieces of spacetirne will have different di-
mensions or no dimensions at all, and an "ordered
phase, " in which the dimension will be constant.

A Landau-Ginzburg description of this transition
would be provided by an effective potential for the order
parameter, P =Bn (x), given by

V(P) =(l —l~)/2P +A,P"

which shows indeed a symmetry breaking between a
phase of zero derivative for the dimension field, the or-
dered phase at long distances, and a broken phase, with
constant nonzero values for the derivative of the dimen-
sion field, at short distances. (This phenomenological
description is of course only valid for l-ls, . ) What we

mean is something like lim& 0[n (x)—n (y)]/d (x,y),
which would reduce to a directional derivative in the
smooth case.

It is more difficult to find any mechanism to drive the
dimension not only to a constant, but also to an integer.
It is true, of course, that in the random dynamical models
of Nielsen and Ninomiya (cf. [15]), in which they started
from a non-Lorentz-invariant gauge theory (invariant,
however, under translations), and computed what
amounts essentially to the renorrnalization-group Aow of
the theory. The P functions worked in the sense of get-
ting deviations from Lorentz invariance smaller at long
distances; this means, of course, that even if the "funda-
mental" theory is non-Lorentz invariant, for a large class
of theories, the effective low-energy action possesses the
aforementioned symmetry. Actually, they argued subse-

IV. DYNAMICS OF METRIC SPACES

The toy models discussed in the two previous sections
illustrate how one can dynamically describe in the quan-
tum context metric spaces which do not behave as
smooth manifolds. In this section we would like to be
more specific and construct an action to characterize the
transition between a discrete space (as spacetime could be
before Planck's time) and a smooth space. One such ac-
tion could be of the form

S =bS (discrete)+ (1—b)S (smooth), (4.1)

where b (0(b ( 1) is the parameter governing the transi-
tion.

In order to get some intuition of this action, the first
thing to do is to obtain its explicit form in two extreme
cases: the "discrete action" $(discrete) describing classi-
cally the "discrete metric, "that is,

d,- =1—5;. , (4.2)

quently that the assumption of gauge invariance was not
essential, and that one should be able to recover an
effective gauge invariance at long distances independently
of the detailed form of the short-distance dynamics.

We can perhaps speculate on a possible generalization
of their claims in the sense that there are more symmetry
for integer values of the dimension than for noninteger
ones. [We mean more symmetry in the sense that in the
former case there is a Lie group with a natural action,
such as O(N); whereas the symmetry acting on fractal
sets is usually of the discrete type. ]
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and the "smooth action" S(smooth) describing the
"smooth metric, " that is, one which derives from a
Riemannian distance through a formula of the type

d„=f'ds. (4.3)

Spaces endowed with the discrete metric are in some
sense the most dissimilar to R "; for example, as we have
already seen in Sec. II, every mapping of the space in it-
self is a continuous one. Discrete spaces are the easiest
ones to characterize. In matrix form d =E —1, where E
is the dyadic matrix: E; = 1 Vi, j. E satisfies

E~=N~ 'E,
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It would seem that we have to impose an infinite number
of equations (for p = 1,2, . . . ), but actually all of them are
consequences of the first one:

where N is the number of points of our space. (Note that
this last formula does not imply E =N I because
detE =0.) But we can use it instead to derive a necessary
condition for the metric d; to represent a discrete metric
space, namely,

30
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But the discrete metric matrix (discrete matrix) is not
the most general solution to Eq. (4.5), since we may con-
struct a solution from any one, say D, by transforming it
with an arbitrary orthogonal matrix 0: 0 DO. This is a
consequence of the invariance of Eq. (4.5) under similari-

ty transformations. Thus in order to obtain the discrete
matrix we must set some constraints to the solutions of
(4.5) and modify the action (4.6} accordingly. The most
obvious constraints is to set the diagonal elements to
zero, since we want this matrix to satisfy the properties of
a distance. Now, one can show easily that the most gen-
eral solution of (4.5) with the constraint

o 20-
C4

O

6 10-
C

1.25 1.50 1.75 2.00
dimension

&I/I/i rl//4
2.25 2.50

FIG. 3. We have plotted here the local dimension as a func-
tion of the point; for different values of N, and for different
simulations. As in Fig. 1, gl = 1 and p is the g2 coefficient in the
text.

d, , =O, i =1, . . . , N (4.7)

is the discrete matrix. In fact, let D be a solution, since it
is symmetric it may be diagonalized by means of an or-
thogonal matrix 0: D =0 MO. Then Eq. (4.5) for the
diagonal matrix reads

M —(N —2}M —(N —1}I=0 (4.8)

and therefore the eigen values of D, A, , satisfy
A,

—(N —2}A., (N —1)=0, with —solutions —1 and
N —1. Since D has vanishing diagonal, it is traceless (and
so is M). The traceless condition fixes the eigenvalues
multiplicities, and we can choose those to be A, , =N —1,
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= —1. Then the components of D, in
terms of M, are

D~~
= g Ok;MkIO(~ — 5—;~+NO„O,) . .

k, l

(4.9)

Now the constraints D;; =0 determine the 0&; coefficients
to be 0„=1/&N,i =1, . . . , N so that, finally, D is the
discrete matrix d.

As a consequence, we have to implement in the action
the constraints (4.7). This can be easily done, for example,
by introducing N Lagrange multipliers, p, :

S (discrete) =Tr — d (N ——1)d
d (N —2)
3 2

(4.10)

Note that this action is not bounded from below due to
the cubic term and this may cause problems in the path-
integral quantization. However one may prove that the
action,

S (discrete) =Tr — d
4 2

(N —1)(N——2)G

—gp, ;d,, (4.11)

leads to Eq. (4.4) for p =3 and that the solution of such
equation with the constraints (4.7) is the discrete metric,
provided N is not divisible by 3.

The "smooth metric, " on the other hand, is more
difficult to characterize. In the simplest case of R", for
example, the usual Euclidean distance

' 1/2

d(x,y)= g (x' —y') (4.12)

satisfies the equation

dS„d=1—(S„d)
where the (directional) derivative is defined through

S„d=u"B„d.

(4.13)

(4.14)

d (x,z) —d (x,y)
d(z, y) 0 d (z,y)

(4.15)

A natural question in this context is the following: to
what extent does our posited Eq. (4.13) determine unique-
ly the "smooth" metric? (That is, the Euclidean metric in
the example we are considering. ) If we make a change of
dependent variables, and use

Q(x",y ) =d (x",y")

then (4.13) implies that

(4.16)

A remarkable thing is that the former Eq. (4.13) is valid
for an arbitrary vector u. An obvious generalization of
(4.14) for an arbitrary metric space is

S 0=2.
U (4.17)

The general solution of these equations can be easily
found choosing u along the n independent directions:

B,0=2, i =1, . . . , n (4.18)

and noting that a particular solution for 0 is II = g, x, ,
and the most general solution for the homogeneous equa-
tions is a polynomial of the x,. s, containing each variable
at most once in each term (so that the second derivative
vanishes). The smooth distance is exactly the particular
solution, so we can throw away the homogeneous solu-
tion by imposing as boundary condition:

lim 0—gx; =0 . (4.19)

A typical action which would posses (4.13) as its classi-
cal equation of motion and which we will take as our pro-
visional prototype of an action characterizing "smooth
spaces, " is

S(smooth)—= gd„($,d„)2+d2 (4.20)

Path-integral quantization with action (4.1) and the
corresponding Liouville term to enforce triangular in-
equality in the numerical simulations is much more
difficult to implement than in the toy models considered
in Sec. III. This is due to the presence of the directional
derivative terms in (4.20) and it will be the subject of fur-
ther research.

Since the metric action (4.20) is supposed to fix the dy-
namics of a smooth space, i.e., the type of metric space
one would expect to find after Planck's time, we would
like to see how one might recover on some low-energy
limit the Einstein-Hilbert action. Since we were forced to
introduce the operator S to characterize the smooth dis-
tance we will first consider this operator and its connec-
tion with the usual directional derivative.

In an arbitrary metric space, there will in general be
several inequivalent ways of defining the operator S; they
correspond to all the independent directions one can
choose in the tangent space of a manifold at a given
point. In the case our space is a linear one, i.e., when
d(x, y)= llx —yll we can also define derivatives of func-
tions defined on the metric space, y =f (x) at the point
x =x0 as the unique linear mapping Df„such that

g (x)=f (x0)+Df„(x—x0) is tangent to f (x) at x =x0,
i.e., such that lim„„I If (x) g(x) I I xl lx —x,—I I

=0.
This definition of derivative reduces in the smooth mani-
fold case, in a particular coordinate patch, to the usual
Jacobian matrix: Df =d, f~, and is thus a matrix .with n
rows and m columns. Directional derivatives are obvious-
ly additive for linear spaces. It can happen, in particular,
that there are exactly n independent ways of defining the
directional derivative. Let us call them
V,d„y;a=1, . . . , n. (They would be equal to e,"B„d„in
a smooth manifold, where e,", a =1, . . . , n are the n vec-
tors of a "vielbein. ") In the standard framework of
Einstein's general relativity, the square of the geodesic
distance 0 (Synge's world function) enjoys several useful
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properties in the limit x ~y:
lim 0=0, lim B„Q=0,
x~y x~y

limb„B Q=g„, limB„B0 A=O,
x —+y x~y

limB„B,B 8 II=—', (R, „+R„).x~y

(4.21)

where the inverse matrix of second derivatives is defined
through

We can now be more precise about the iong-distance
("low-energy") limit of our theory. Our point of view will

be most conservative: we shall assume, that our theory
behaves like an ordinary quantum field theory, which
means in particular that there should exist an effective
low-energy Lagrangian obtained from the fundamental
one by keeping local terms, and performing an expansion
in derivatives around them. In the situation where this
hypothesis holds true, we are guaranteed that the lowest-
dimension local scalar is the trace of the Ricci tensor:
that is, the Einstein-Hilbert term will always dominate in
the regime (cf. Ref. [7]). But in order to recover general
relativity, we need to implement its most important sym-
metry as well, namely, general covariance. This means
that a good guiding principle for constructing candidate
actions in our generalized theory of metric spaces should
be the independence on the basis chosen in the space of
linearly independent directional derivatives. (Of course
this restriction is very difficult to implement in general,
and has a clear meaning only in the case in which this
space has integer dimension n + 1. )

V. CONCLUSIONS

We have presented in this paper a model of the space-
time which one might expect physically to work not too
far above Planck's mass.

The intuitive picture one gets from our results is a to-
pological space, with some pieces in it which resemble lo-
cally some R (that is, quasismooth regions, in which
semiclassical physics should work well); some transition
regions, from one value of the local dimension, n, to
another, which are much more difficult to describe in a
semiclassical way; and, finally, some "quantum
nonsmooth" pieces, which do not resemble at all R".
Our framework is able to embrace all these regions in an
overall coherent scheme.

We have not yet discovered, however, what the funda-
mental symmetry principle of this theory should be. In
other words, we lack the principles of general covariance

This means that the world function can be used as an al-
ternative variable to the usual metric (or vierbein), and
actually, an action completely equivalent to the usual
Einstein-Hilbert one is

S =f d(vol)lim( —3/2a )(8"B~II)(B"8II)B„B,B 8 II,
x~y

(4.22)

and low-energy expansions of effective actions in terms of
the number of derivatives (because we do not have such
things as coordinates in our framework). The models
studied so far should then be considered as a preliminary
exploration of the whole approach.

A point worth making is that several topologically
equivalent distances give different values for the local di-
mension. For example, if we define d'(x, y)—:d(x, y)",
where 0&k & 1, then, as is easily checked, (H, d) and
(H, d') (where H is the set of spacetime points) are
equivalent topologically, and yet the local dimension
changes in 1/k. Although our explicit models are not in-

variant under those transformations, it is tempting to
speculate that this is the symmetry used to rescale the di-
mension to an integer, once the phase of constant dimen-
sion is reached.

On a more speculative note, we would like to close by
stressing a fascinating analogy with the celebrated work
of the French mathematician Connes (cf. Ref. [16])on the
application of his own theory of noncommutative
geometry to physics. He starts with some abstract alge-
bra, and defines the physical spacetime as a derived ob-

ject, reconstructed from the spectrum of operators
defined on that algebra; essentially, as far as we under-
stand, the Dirac operator. He actually defines it in an
abstract way as the generator of the E-cohomology, and
using heavily a very special notion of trace, namely, the
Dixmier trace, which gives zero on trace class operators,
he is able to relate the logarithmic divergences present in
usual renormalizable quantum field theories, with certain
nontrivial homology classes.

Our analytic models in Sec. II are essentially a
physicist's implementation of the above ideas. We also
started with an algebra (which we identified with the
algebra of ordinary matrices), and defined spacetime as a
derived concept, either using the spectrum of the ma-
trices, or the entries themselves. Our general theories, on
the other hand, have been constructed through a limiting
process. We did not try to construct them directly. It is
obvious that the overall approach is quite similar, and we
would not be surprised if some deeper interconnection be-
tween our work and noncommutative geometry is to be
found in future work; we beheve, in particular, that the
"continuum theory" corresponding to our discrete limit-

ing procedures will imply some models of noncommuta-
tive geometry.

Given the fact that there seems to exist some deep rela-
tions between Connes' work and tmistor theory as mell, it
could be that all conceivable generalizations of geometry
at very short distances are intimately related.
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