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We study the trace-anomaly-induced dynamics of the conformal factor of four-dimensional (4D) quan-

tum gravity. The resulting effective scalar theory is ultraviolet renormalizable, and possesses a nontrivi-

al, infrared stable fixed point. The exact anomalous scaling dimension of the conformal factor at the
critical point is derived. We argue that this theory describes 4D gravity at large distances and provides a
framework for a dynamical solution of the cosmological-constant problem.
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I. INTRODUCTION

In this paper we propose and study the theory of the
conformal sector of four-dimensional (4D) quantum grav-
ity. The conformal sector is described by the conformal
factor e "in spacetime metrics of the form

g,&(x)=e '"'g,s(x),
where g,b(x) is a fixed fiducial metric.

The basic motivation for this study is the
cosmological-constant problem [1]. The cosmological
"constant, " if not identically zero, is the smallest funda-
mental mass scale in nature, at least some 120 orders of
magnitude smaller than its "natural" scale in Planck
units. In contrast with other fine-tuning problems, an ad-
justment of its value once is not suScient to explain its
smallest at all epochs in the evolution of the Universe.
For instance, gauge theories of the fundamental interac-
tions will generate ejgetiue nonzero (and large) vacuum
energies through spontaneous symmetry breaking, even if
no such term is present in the underlying Lagrangian.
Thus any attempt at an explanation cannot rely on an ex-
act symmetry of the fundamental quantum theory of
gravitation (such as supersymmetry), if that symmetry is
ultimately broken in the low-energy effective theory. In-
stead, the fact that the effective cosmological "constant"
is dynamically dependent on the vacuum state of all
quantum fields in nature implies that not the physics of
the Planck scale, but the low-energy or infrared dynamics
of gravity is essential to a resolution of the problem.

Support for this point of view comes from earlier stud-
ies of quantum fields in de Sitter spacetime [2—4]. This
classical spacetime is the natural candidate for the
ground state of Einstein gravity with a positive cosrnolog-
ical term because of its maximal symmetry. Yet the ex-
istence of exponentially diverging geodesic world lines
and a cosmological event horizon lead to rather peculiar
long-distance kinematics for massless field theories in de
Sitter space. One indication of the infrared problems en-
countered is that the graviton propagator grows without
bound at large distances [3,4]. Moreover, the spin-0 or

conformal part of the propagator provides the dominant
contribution [4]. These infrared divergences indicate that
classical de Sitter spacetirne is not the ground state of the
quantum theory with a cosmological constant and sug-
gest that the infrared dynamics of the conformal factor
should be treated exactly. However, in the pure Einstein
theory, the conformal part of the metric is constrained
and cannot propagate [5]; i.e., it has no dynamics.

The situation in two dimensions is similar. The
Einstein-Hilbert action is proportional to the Euler num-
ber, a total derivative. Hence the classical limit of 2D
gravity has no dynamics either. As soon as we consider
quantized matter fields, the situation changes dramatical-
ly and discontinuously [6]. The quantum trace anomaly
of the matter fields generates an effective nonlocal action
for 2D gravity, which in the covariant, conformal coordi-
natization of (1.1) becomes a local kinetic term for cr

The Liouville field must now be treated as a quantum
field in its own right, and its dynamics may possibly hold
the key to a more complete understanding of string
theory.

Encouraged by this progress in 2D gravity, we carry
out the same program in four dimensions and study the
dynamical theory of the conformal factor induced by the
quantum trace anomaly. Of course, in two dimensions
this analysis is exact, there being at most a finite number
of modes remaining in the fiducial metric g,b related to
the global topology. In four dimensions the freezing of
g,b represents a severe truncation of the full theory.
However, our aim is the infrared dynamics of gravity,
and this we expect to be controlled by the conformal sec-
tor. Moreover, this truncated theory is a bona+de, non-
trivial field theory in its own right and, as such, already
much richer than the "minisuperspace" truncation to a
finite number of degrees of freedom [7]. There is no
reason, in principle, why the effects of spin-2 graviton
modes cannot be considered afterward in a more com-
plete theory.

The starting point for our analysis is the conformal
anomaly of matter fields in a fixed spacetime metric.
From the general form of this trace anomaly in four di-
mensions, we deduce the dependence of the effective ac-
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tion on the conformal part of the metric. Although this
action is nonlocal in terms of the full metric, remarkably,
it becomes local in conformal coordinates [Eq. (1.1)], in
analogy with the 2D case. In four dimensions the action
contains terms up to four derivatives in o.. Nevertheless,
the negative-norm state which appears in the four-
derivative theory should not cause a violation of unitari-
ty, if it is eliminated by the constraints in the same way as
the conformal factor in the Einstein theory [5,8]. The
Euclidean form of the induced action is bounded from
below, unlike the 2D case, where matter fields contribute
negatively.

The resulting theory of the o. field has nontrivial in-
frared dynamics. We first study this dynamics when the
fiducial metric g,b is taken to be conformally Aat. In this
case there is an exact global symmetry of the effective 0.

theory, which is a remnant of the diffeomorphism invari-
ance of the full theory, and is generated by the rigid con-
formal transformations of SO(4,2). Hence general covari-
ance of the full theory guarantees the absence of quantum
anomalies in these symmetries. This implies that the /3

functions of all couplings must vanish, and we are led to
study the critical scaling behavior of the 0. theory. We
should emphasize that in two dimensions, also, the re-
quirement of vanishing P functions and resulting anoma-
lous scaling behavior follows from the global conformal
symmetry group SO(2,2), independently of the infinite-
dimensional Virasoro algebra. Moreover, again, as in
two dimensions, the global conformal symmetry deter-
mines uniquely the form of the action, which is the same
as that obtained from the trace anomaly and guarantees
its renormalizability. Our principle result is the existence
of a nontrivial, infrared stable critical point, which we
calculate to all orders of perturbation theory. In particu-
lar, we find the anomalous scaling dimension of the con-
formal field e in one-loop perturbation theory and show
that the one-loop result is exact, just as in two dimensions

[9,10].
The Ricci scalar R also acquires an anomalous scaling

dimension under rigid dilations. This means that the ex-
pectation value of R may be used as an order parameter
for the spontaneous breaking of global scale invariance.
The cosmological-constant problem may be formulated in

a succinct and well-defined way in terms of this order pa-
rameter. It reduces to the question of whether or not in

the ground state of the effective 0. theory the exact con-
formal symmetry is spontaneously broken. We propose
a physically plausible mechanism by which this symme-

try, apparently spontaneously broken at the classical lev-

el, may be restored by quantum effects and the effective
cosmological constant thereby forced to vanish. This is
analogous to the restoration of global symmetries in two
dimensions due to infrared divergences in the massless
propagators of would-be Goldstone bosons [11]. A pre-
liminary examination of the behavior of the correlation
function of Ricci scalars at different points suggests that
the effective cosmological "constant" decays as a power
of the geodesic distance at scales larger than the horizon.

The outline of the paper is as follows. In the next sec-
tion we discuss the general form of the effective theory of
the o. field, as deduced from the trace anomaly in four di-

mensions, and discuss its conformal symmetries. In Sec.
III we calculate the anomalous scaling dimension of the
conformal factor. We further analyze the consequences
of scale invariance and find a nontrivial relationship be-
tween coupling constants at the infrared stable fixed
point. The details of the diagrammatic analysis necessary
for this section are contained in the Appendix. In Sec. IV
we apply the theory to de Sitter spacetime and describe
the mechanism by which quantum fluctuations may re-
store the conformal symmetry. We conclude with a dis-
cussion of the possible broader validity of our results in
the complete theory and suggest some directions for fu-

ture research.

II. EFFECTIVE THEORY
OF THE CONFORMAL FACTOR

In order to determine the Lagrangian which describes
the dynamics of the conformal factor in four dimensions,
let us first review the situation in two dimensions. In that
case the general form of the trace anomaly of the energy-
momentum tensor for matter in a background gravita-
tional field is'

Ta (rnatter) cm

24m

e (R —20rr ), d =2,
24m

(2.1)

in the decomposition (1.1). The coefficient c =X, +N&
for X, scalar and N& (Dirac) fermion fields. Considering
next the quantization of gravity, we may regard (1.1) as a

gauge condition with g,b fixed. Then the anomaly
coefficient receives a contribution of —26 from the corre-
sponding reparametrization ghosts and +1 from the o
field itself. Thus we should replace c by

c =X, +XI—25, (2.2)

XR (x) '(x, x')R(x')

f d xV —g ( —aUo+Ra),
24m.

where a o.-independent term has been dropped. To this
induced action we should add the classical action for 2D
gravity:

S,&= f d xv —g (yR —2k)

=4~yg —u, fd'x& —ge", (2.4)

We use the Lorentzian metric and curvature conventions of
Ref. [12] throughout the paper.

The trace anomaly may be derived from a nonlocal
effective action, which becomes, local in the conformal
coordinates (1.1) [6],

Ta 1 5
a g fi ( )

anom

(2.3)

S,„. = — ' fd'x& g fd'—x'& —g
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where g is the Euler number. Note that the Einstein
term alone describes no dynamics, since the scalar curva-
ture is a total derivative. Hence the anomaly-induced dy-
namics of the effective 2D gravity theory is very different
from the classical theory, even in the infrared, where
one's usual prejudice is that quantum gravity or trace
anomaly effects are "higher order" and irrelevant.

Let us now consider this same line of reasoning for
d =4. In four dimensions the general form of the trace
anomaly of the energy-momentum tensor is a linear com-
bination of the four terms R, R,bR'", R,b«R'"', and
OR [13]. Each of these corresponds to local counter-
terms in the dimensionally regulated effective action. Ac-
tually, since OR is a total divergence in any number of di-
mensions, adding it to the effective action gives no contri-
bution to the trace of the energy-momentum tensor.
Hence there can be at most three independent local coun-
terterms possible in dimensional regularization near
d =4, and the trace anomaly for matter may be written in
the form [14]

If the matter-field Lagrangian is invariant under local
conformal (Weyl) trasnformations classically, then the
coefficient b" vanishes at one-loop order [14]. However,
in principle, it corresponds to an arbitrary parameter,
since R is the variation of a local action:

v' —g OR = ——g,& d x&—gR
1 5 4

6 "Sg.b
(2.9)

which receives divergent contributions in general. Thus
we allow for b "%0 In .contrast with this term, the first
two terms on the right side of (2.5) do not arise from local
effective actions in four dimensions. However, in the
conformal parametrization of the metric [Eq. (1.1)], the
anomaly may be derived from a local effective action, just
as in the two-dimensional case [15].In fact, the quantity

gF b—ecomes independent of o (actually vanishing if
g,~ is conformally fiat), and the combination
&—g (G ——,'OR) is particularly simple, being only linear
in cr in analogy with Eq. (2.1):

""'=b(F+—'OR )+b'G+b "OR, d =4

where

F =R, , R' '"—2R, R'b+ —,'Rab«ab

(2.5)

(2.6)

e (G ——' R)=4 o+8R ' V, VI cr —
—,'ROo'

+ 34 ( V 'R )( V, o ) + G ——'OR .

(2.10)

is the square of the Weyl tensor in four dimensions and

G=R R'' —4R Rabed ab (2.7)

I
~ ( N, +6Nf + 12N„),

120(4%)

(N, +11Nf+62N„).
360(477)

(2.8)

is the Gauss-Bonnet integrand. In four (but only four) di-
mensions, 6 is a total divergence, and its integral is a to-
pological invariant. The coeScients b and b' have been
computed for scalar, Dirac fermion, and vector fields at
one-loop order, with the results

T' ""'=bF+b'(G 'OR)+[b—"+—'(b+b')—]OR

1 5
)

Sanom[~] (2.1 1)

the second term in (2.11) gives a contribution to the
effective action which is quadratic in 0., and the full
anomaly induced action reads

Here V is the covariant derivative operator with respect
to the fiducial metric g,b, =V,V, and all indices are
raised and lowered by this fiducial metric tensor. Thus, if
we rewrite the trace anomaly (2.5) in the form

S,„, [cr ]=b fd x+ gF cr +b' f—d x+ g[ cr [2O —+4R 'sV, Vq ', R O + —', ( V' 'R—)—V', ]o + ( G —
—,
' OR )o ]

—
—,', [b"+—,'(b+b')] f d x+ g[R ——6Ocr —6(V', o )(V'o )]

where we have used the expression

R =e [R —6Oo —6(V, o )(V'cr)],

(2.12)

(2.13)

for the Ricci scalar in conformal coordinates. We have omitted a o.-independent term in S,„, proportional to F. This
local action in the conformal parametrization of the metric corresponds to the fully covariant nonlocal action:

S,„, =—,fd4x& g fd4x—'& g'[bF+b'(G ——
—,'OR)]„1

X [2 2+4R'~V, Vq
—4RO+ —,'(V'R )V, ]„'[bF+b'(G —

—,
' R )],

—
—,', [b"+—', (b+b')] f d x& gR— (2.14)

The nonlocal term in (2.14) is the four-dimensional analogue of the nonlocal form of the 2D Polyakov action (2.3). As
in two dimensions, we add the anomaly-induced action (2.12) to the classical Einstein-Hilbert action:
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S„= fd'x& —g (R —2A)
1

d x —ge R —6 o.—6 V, o. V'cr —— d x —ge
2K K

(2.15)

where K= 8mG.
In the case that the fiducial metric is conformally flat, i.e., g,b

=e g,b, the effective action for o. may be obtained by
a translation o.~o.+o. of the simple flat-space action

Seff =S,„,m+S,

= f d x 2b'( o ) —[3b"+2(b+b')][ cr+(B,cr) ] +—e (c},cr } ——e
K K

(2.16)

up to a surface term. When g,b is conformally flat, the
effective action (2.16) may be derived by a completely
different method, based on global conformal symmetry,
which we now explain.

Conformal flatness implies that the fiducial metric has
a set of exactly d +1 special conformal Killing vectors,
g,', satisfying

5,$ = (x c)+5~)$ . (2.22)

This definition implies that e has classical scaling di-
mension equal to unity (as does Ocr) under the global dila-
tion g' +". The cr field itself does not have a well-defined

scaling dimension, since it transforms inhomogeneously
under 5, :

(I.g"),b V.g(b'——+Vbg(') g„—V —g,
')

d ' 5 o —x'Bo +1 . (2.23}

=0, i =1, . . . , d+1 . (2.17)

On the other hand, the decomposition, (1.1) is certainly
invariant under the relabeling (Weyl) transformation

g,b(x)~g, b(x)e "",
o (x)~(T(x)—co(x),

(2.18)

& —.()V cg(i)
(2.19)

we find that

b(i)g —(I g(i)) —0

b")~=g"'V ~+ Vg('—ao d a

(2.20)

must be a symmetry transformation of the o. Lagrangian
which leaves the fiducial metric unchanged. In flat space
the special conformal Killing vectors are

g(b)a 2X aX b ~abX cX

i(a) a i =d+1 .
(2.21)

The last of these plays a special role since it generates di-

lations, x'~e'x'. It serves to define the scaling dimen-
sion b,

&
of the general field (}1) by

for an arbitrary co(x). Lastly, any theory of gravity must

be invariant under coordinate transformations. The
infinitesima form of a combined coordinate plus relabel-

ing transformation is

~g.b Vakb+V bc—a+2~gab

5cT =@V,o —co .

Hence, by choosing

Since the global conformal symmetry for o is a rem-
nant of the coordinate invariance of the full theory with
total metric g,b, the effective action of the conformal fac-
tor must respect this symmetry. Invariance under dila-
tions along (2.23) determine the 4D action (2.16) up to
four derivatives, leaving only the freedom of introducing
two different coefficients for the fourth-order terms

0 (Bo ) and (c}cT) . Their ratio is fixed to be 2 to 1 from
the invariance under the remaining global conformal
transformations (2.21).

It is remarkable that global conformal in variance
determines uniquely the form of the effective action for
o. . Normally, we would expect that this classical scale in-

variance will be violated in the quantum theory. This is

precisely what the trace anomaly of matter fields in a
fixed gravitational background geometry [Eq. (2.1)]
reflects. Now that we are considering the quantum
theory of the geometry itself, and the global conformal
transformations are simply particular coordinate trans-
formations, an anomaly in this symmetry would imply a
breakdown of general covariance at the quantum level.
The invariance of the o. theory under the rigid scale
transformations generated by g' ' implies that the total
trace anomaly of the conformal factor plus matter plus
ghosts must vanish. In particular, this implies that the P
functions of rigid dilations must vanish identically, corre-
sponding to a critical point of the effective action.

This conclusion will seem less startling if reconsider
the 2D case in the covariant conformal parametrization.
In the language of string theory, if the target-space di-
mension N, +Nf in Eq. (2.2) is different from 26, then the
Liouville mode does not decouple and must be quantized.
The fact that all two-dimensional metrices are conformal-
ly flat guarantees the existence of residual symmetries

[Eq. (2.20)]. The conformal group in two dimensions is
infinite dimensional and gives rise to the Virasoro alge-
bra. However, the global scale invariance generated by
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J =det, (LtL ), (2.24)

where L is the Hermitian adjoint of L as defined in
(2.17). Explicitly,

(L L) = —2(5 CI+ 'V' 't)' +R )— (2.25)

the finite-dimensional subgroup SO(2,2) or
SO(3,1)=SL(2,Q is sufficient to enforce the vanishing of
the total trace anomaly.

To complete our construction of the effective theory of
the conformal factor in four dimensions, we should dis-
cuss the covariant measure to be used in the path integral
and the ghost contribution(s) to the o action. This fol-
lows along the same lines as the 2D case [16]. The con-
formal parametrization (1.1) amounts to a choice of coor-
dinates on the space of metrics. The covariant meaure on
the function space of metrics is defined by means of the
DeWitt supermetric on this space. The change of vari-
ables from g,& to ~ and g,& results in a Jacobian factor in
the measure:

covariant equivalent of the reparametrization constraints,
to enforce unitarity at the quantum level. Recall that the
o. field has a negative-metric kinetic term already at the
level of the classical Einstein action (2.15). In two dimen-
sions as well, the induced Polyakov action contains two
derivatives more than the classical action, and o has neg-
ative metric when c exceeds 26. Even in that case we
know that the theory is unitary [18]. In both two and
four dimensions, the higher-derivative terms in the o. ac-
tion emerge from the nonlocal terms induced by the trace
anomaly (with calculable coefficients). This should be
contrasted with local fourth-order gravity actions which
contain a massive spin-2 ghost, associated with the local
F term in the action with arbitrary coefficient. Of course,
the four-dimensional case is quite different in containing
spin-2 excitations which couple to the o. field. For this
reason it may not be meaningful to require unitarity of
the cr theory alone. Rather, it should probably be viewed
as an effective theory from which only limited informa-
tion can be extracted.

The prime in (2.24) indicates that the zero modes of L
must be excluded from J and treated separately. The
inner product on the full space of metrics induces a
Weyl-invariant inner product on the cotangent space of
conformal deformations [8]:

(5o,5o ) ii
=f d x V ge —(5o )' . (2.26)

After dividing out by the infinite volume of the
diffeomorphism group, we are left with the measure
J[2)5o ]s, where

f [2)5o ]ii,exp ——(5o,5o ) ~ =1 (2.27)

is the o.-dependent normalization condition.
It is more convenient to work with a o-independent,

translationally invariant measure [2No], defined with
respect to the usual scalar inner product:

(5cr, 5o), =fd x+ g(5a—) (2.28)

Changing from the Weyl-invariant measure to the
translationally invariant one results in another Jacobian
J', which can be written as the exponential of a renormal-
izable effective action. In fact, it should be of the same
form as the effective action S,„, found above, by reason-
ing exactly parallel to the two-dimensional case [10,16].
Likewise, the anomalous scaling of the ghost determinant
(2.24) inay be computed, as well as the quantum contribu-
tion of the fourth-order action of the o. field itself. The
inclusion of these effects leaves us finally with an action
of the same form as (2.12) with altered numerical
coefficients, a translationally invariant measure for the
effective o. theory, and the remaining ghost determinant
(2.24). The detailed calculation of the ghost and o con-
tributions will be presented in a separate paper [17].

The above construction of the effective theory for cr in
four dimensions has led us inevitably to a fourth-order
action. At linearized order such an action always gives
rise to two excitations, one of which has negative metric.
It is the role of the ghost determinant (2.24), which is the

III. ANOMALOUS SCALING
AND THE INFRARED FIXED POINT

In this section we study the consequences of the quant-
ization of the conformal factor with the four-dimensional
action (2.16). The trace of the energy-momentum tensor
of this effective scalar theory must vanish, because of the
coordinate invariance of the full theory, as discussed pre-
viously. This implies that the P functions of all couplings
must vanish, but does not preclude the possibility of non-
trivial anomalous scaling dimensions. In order to allow
for this possibility, let us assume that the field P=e,
which has classical weight equal to unity, acquires a scal-
ing dimension A&=a under the transformation (2.22).
Then the transformation of the o. field is modified to

5,o =x Bo+a, (3.1)

+&fd~x e~ao(5 a)2 d4x e4a~
CX

where we have introduced the notations

/l2
=2b +3b",

(4m. )

$=2b +2b'+ 3b",

=3

(3.2)

(3.3)

replaced S by a S, and dropped the caret on 8. Simple

while the rescaled field o'—:e/a transforms exactly as in
(2.22). In order to determine the anomalous scaling di-
mension a, we study the counterterm structure of the res-
caled action:

Fl2S=— fd x(Qo)
(4n. )

gfd —x[2 a(B, o ) Qo+a (B,o ) ]
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power-counting arguments, combined with the existence
of global symmetry [Eq. (2.20)], show that the fourth-
order Lagrangian (3.2) is renormalizable in four dimen-
sions in o. perturbation theory. The Feynman rules for
the quartic propagator and vertices derived from this La-
grangian are given in the Appendix, as well as the de-
tailed results of all the relevant graphs which we discuss
in this section.

Let us first consider the effect of the higher-derivative
cubic and quartic interaction terms parametrized by the
coupling constant g, which does not receive any renor-
malizations from the lower-dimension operators in (3.2).
Perturbatively in g, there are two divergent diagrams at
order g, illustrated in Fig. 1. Because of the propagator
involving p, these diagrams contain only logarithmic
divergences. The first of these renormalizes the three-
point function in the g interaction, while the second re-
normalizes the four-point function. Because of confor-
mal symmetry [Eq. (2.20)], the two are not independent.
Using dimensional regularization, we easily evaluate the
one-loop g counterterm

molodchikov theorein applies [19]. It is worth remarking
also that the requirement of a IR fixed point at /=0 fixes
the indeterminanteness of the b' term, which is usually
present in purely local higher-derivative theories of gravi-
ty.

The remaining theory is a Liouville-like theory, which
is actually easy to study in perturbation theory because of
the quartic propagator. In fact, it is superrenormalizable
and contains only a finite set of divergent diagrams. Let
us denote by V the number of vertices of the general
graph with the exponential interactions generated by the
Einstein term and by V& the vertices generated by the
cosmological term. Then elementary power counting
shows that the degree of divergence of the graph is given
by

D =4L —4I +2',
=4—2 V —4',

since the number of loops L is related to the number of
internal propagators I by the usual topological relation

80 2 2

(3.4)
L =I —V —V~+1 . (3.8)

where g& and g„are the bare and renormalized couplings,
respectively. From this we find the one-loop P function
for the coupling g:

2 2d ( 80tr a ~2)Pd t g4 I' (3.5)

Hence („=0is an infrared stable perturbative fixed point
(as in ordinary AP theory), if (~0, the same sign corre-
sponding to boundedness of the Euclidean action. Since
we are interested in this effective theory at its IR fixed
points, we shall set g, =0 henceforth.

At this fixed point we see from (3.3) that

Q = —32m b', (=0 . (3.6)

Recall that b' was the coefficient of the Gauss-Bonnet
term in the trace anomaly (2.5), which is negative definite
for all known matter fields [Eqs. (2.8)]. This corresponds
again to a bounded Euclidean action, in contrast with the
two-dimensional case [Eqs. (2.2) and (2.3)]. This quantity
has been proposed as the four-dimensional analogue of
the two-dimensional central charge c for which the Za-

Thus it is clear that there are only three classes of diver-
gent diagrams:

(i) Vi =0, Vr =1, D =2,
(ii) V~=0, V~=2, D =0,
(iii) Vi =1, V =0, D =0 .

(3.9)

The graphs of type (i) are the rosette graphs illustrated
in Fig. 2, with L =I, obtained by expanding the exponen-
tial interaction in the Einstein term. The divergences of
this set of graphs are removed by one counterterm deter-
mined at the one-loop level (L =I = 1). Analyzing the
one-loop graphs in detail (Fig. 3), we observe that there
are two types of contributions. Figure 3(a), where the
derivatives act on the external legs, denotes the contribu-
tion to the renormalization of the y vertex, which is only
logarithmically divergent. In Fig. 3(b) the derivatives act
on the internal lines and give rise to a quadratically diver-
gent e term, not present in the original Lagrangian.
This dangerous term will be cancelled by graphs of type
(ii), as we shall see in a moment.

The logarithmic divergence of the graph represented in
Fig. 3(a) gives rise to the following P function for the y
coupling:

FICs. 1. Two one-loop divergent diagrams at order g con-
tributing to the renormalization of the cubic and quartic ver-
tices, respectively, of the g interaction in (3.2).

FIG. 2. Generic rosette graph with any number of loops and

any number of external legs emerging from a single exponential
vertex V~ =1.
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grams with a quartic propagator.
The generic diagrams of type (ii}, which contribute new

primitive divergences, are illustrated in Fig. 4 and are
logarithmically divergent. The one-loop graph [Fig. 5(a)]
gives a sum of two terms:

8 2y2 4—d 16 2y2 4 —d

Q4 4—d Q~ 4—d
(3.15)

FIG. 3. One-loop diagrams of type (i) considered in detail.
The arrows on two of the legs of the y vertex denote derivatives
operating on the corresponding a fields, according to the Feyn-
man rules of the Appendix.

2a
pr=i2

d
1'R = 2 2a+

dp Q
(3.10)

The first two terms correspond to the "classical" scaling
dimension of the y coupling, for a%1, while the a term
arises from the one-loop counterterm. The vanishing of
this P function for y„+0 yields a quadratic relation for
the anomalous scaling of e:

a2

1 —a+ =0
2

(3.11)

with the solutions

1+(1—4/Q )'i
2/Q

(3.12)

a ~1+, Q ~oo.1
(3.13}

Unlike two dimensions, this limit is obtained by sending
the number of matter fields to +00, rather than —~.
The value Q =Q„=4 corresponds to c =1 in two di-
mensions, where the theory could exhibit a phase transi-
tion or qualitatively new phenomena. However, it seems
from (2.8) and (3.6) that the physically relevant case in
four dimensions is always Q )4, corresponding to c (1
in two dimensions.

We have checked the one-loop result for anomalous
scaling [Eq. (3.12)] by a method independent of the Feyn-
man graph analysis and any use of conformal symmetry.
Treating the lower-derivative terms in the Lagrangian
(3.2) as arbitrary functions of the o field, the background
field calculation for the vanishing of the P function of the
analogue of the "tachyon" field T of string theory gives

This result is completely analogous to the anomalous
scaling obtained for the Liouville mode in two dimen-
sions, except that in that case it is the P function of A,

which determines the scaling relation [9,10]. The classi-
cal scaling a=1 is obtained from the negative branch of
the square root, a, in the limit Q ~ oo:

d 8a
Pg=p A, ~ = 4 —4a+ A,~

dp Q2

8~a 2 &+4a +6a
Q4 }~ g2 Q4

(3.16)

As for Pr, the first two terms in P& represent the classical
scaling dimension of this coupling, while the remaining
terms are the loop corrections of Figs. 6 and 5, respec-

The first term is an additive renormalization of the k cou-
pling. The second part of (3.15), corresponding to a new
term not present in the original Lagrangian (3.2), is pre-
cisely that needed to cancel a similar contribution from
the graph of Fig. 3(b), which was naively quadratically
divergent. That these terms with different power-
counting divergences could end up canceling is a conse-
quence of the fact that dimensional regularization near
d =4 is sensitive to quadratic divergences only through
the additional power of the mass parameter y multiply-
ing the pole. The cancellation is not an artifact of the
regularization scheme, since it is essential to use a regula-
tor that respects coordinate invariance, such as dimen-
sional regularization. The remaining higher-loop graphs
of type (ii) in Fig. 4 contribute only to the renormaliza-
tion of A, . In fact, an analysis of the divergence of these
graphs shows that the only new primitive divergences
arise at the two- and three-loop level, illustrated in Figs.
5(b) and 5(c) and cataloged in the Appendix.

Finally, we have the graphs of type (iii), whose primi-
tive divergences is obtained from the one-loop diagram il-
lustrated in Fig. 6. This gives an additional contribution
to the A, renormalization. Collecting all terms from
graphs of types (ii) and (iii) that make such contributions
yields the following P function for the A, coupling:

1 ()
2 + T(cr )=0,

2Q Ocr
(3.14)

which is satisfied by T=e with a given by (3.12)
above. Actually, this one-loop result is exact, as we ar-
gued above from the highly convergent Feynman dia-

FIG. 4. Generic multiloop graphs of type (ii), with two y ver-
tices and l+1 internal loops. The integers nl and n —nl
denote the possible number of external legs emerging from each
vertex to be summed over.
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of the free quartic action should be used. The anomalous
scaling relation (3.12) may be obtained by requiring that
the operator v' —gR = —6e [(Ocr) + o ] have con-
formal weight equal to 4. Indeed, using Eq. (3.18) and
the fact that Bo. has only a classical weight equal to 1, one
finds

2a6(&—g R ) =2a — +2=4 . (3.21)

n-n1 n-nl n-n1

tively. Since a has already been determined by (3.12), set-
ting P&=0 gives a nontrivial relation for the cosmological
constant in Planck units:

9 A
2~' 1+4a'+6a

y2 g2 g2 g4
(3.17)

which is a function of the only parameter remaining, viz. ,
2

There is an equivalent way of deriving the scaling rela-
tions in four dimensions, which is closer in spirit to the
methods of conformal field theory in two dimensions,
once g has been set to zero. This is based on the observa-
tion that the operator e~, which has conformal weight p
classically, acquires a quantum contribution from the
graph of Fig. 6:

(a) (b) (c)
FIG. 5. One-, two-, and three-loop graphs of type (ii), respec-

tively, with V~ =2. These graphs are responsible for the only
primitive divergences in graphs of this type. The arrows denote
derivatives on the external lines as before.

This is the necessary condition for the Einstein term to be
invariant under conformal diffeomorphism symmetry
[Eq. (2.20)]. Once this condition has been imposed, note
that one can no longer insist that the cosmological term
e have the same conformal weight:

b, (e ) =4a — =4(2—a)%4 .
Sa

(3.22)

Instead, as Eq. (3.16) shows, there is a nontrivial mixing
between the A, and y couplings, so that invariance can be
enforced only by the relation (3.17).

Since renormalizability and anomalous scaling are
properties of the short-distance behavior of the Lagrang-
ian, we expect that the results of this section are valid in
a general background, although they have been derived
with Feynman rules in flat space. Actually, flat space is
not a solution of the classical equations of motion follow-
ing from the Lagrangian (3.2). Hence, in our flat-space
calculations, we implicitly assumed the presence of a
linear term in o. to cancel tadpole contributions at both
the classical and quantum levels. The one calculation we
have performed which does not make this assumption is
based on the background field method and leads to Eq.
(3.14), which is fully consistent with the flat-space result.

2

b(e~ )=p—
2

2' (3.18)
IV. de SITTER SPACE

AND THE COSMOLOGICAL CONSTANT

Gs„(x,x')= — ln[p (x —x') ]
1

(3.20)

FIG. 6. One-loop diagram of type (iii), which contributes the
only primitive divergence of the k renorrnalization.

which may be computed also by its operator-product ex-
pansion with the energy-momentum tensor derived from
the quartic Lagrangian (2.12):

T' = g
[
—4gag'(j" —'(P() (g )(4n).
+2o(a aa'a) —;a'a' a

+g' [
—

—,
' (Bo) +( o) + —,

' 0]], (3.19)

in the flat-space limit. In Wick contracting the o fields,
the propagator

The formal development of the previous sections shows
that the effective theory of the conformal factor in four-
dirnensional gravity has some very remarkable properties.
It is renormalizable and has a nontrivial, infrared stable
fixed point and anomalous scaling dimensions. Once the
fiducial metric g,b has been frozen, the analogies with
two-dimensional gravity are manifest. However, in four
dim. ensions, this truncation of the full theory is serious.
Under what circumstances can we expect the o. theory to
give a reliable approximation to nature?

Certainly, a necessary condition for neglecting the
transverse graviton modes of the metric is that we are
discussing phenomena at energies far below the Planck
scale: %'e can apply the o. theory only to the infrared as-
pects of metric fluctuations. However, quantum fluctua-
tions of the metric seem to be negligible at all accessible
energy scales below the Planck scale. At such scales
would expect the classical Einstein theory to provide an
excellent phenomenologica1 description.

The only situation where this might not be the case is
when the classical background spacetime described by
g,b has associated infrared divergences. Such is known to
be the case in de Sitter spacetirne, which is of particular
interest both because it is the maximally symmetric
spacetime which solves Einstein s equations with a posi-
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tive cosmological term and because of its role in

inflationary cosmological models. Massive matter is red-
shifted away exponentially rapidly in a background with
a cosmological term, becoming essentially noninteracting,
cold, and decoupled in a few expansion times. Hence
de Sitter space is approached rapidly in the classical pic-
ture, and treating the remaining massless fields as confor-
mally invariant would seem to be valid. Then the condi-
tions needed for the applicability of the effective theory of
the conformal factor have been satisfied. Let us attempt
to apply the o. theory to this case.

The first observation we can make is that if the expec-
tation value of the Ricci scalar is different from zero,
then the global conformal symmetry discussed in the pre-
vious sections must be spontaneously broken. This will
be clear from the expression for the conformal weight for
the operator R, using (3.18):

2(xA(R)= —2a — +2=4(1—a) . (4.1)

In the semiclassical limit, when the anomaly-induced
fiuctuations are suppressed by 1/Q for large Q, a~1,
and the weight of R is zero; i.e., it transforms like a scalar
under global conformal transformations. If a differs
from unity, then this is no longer the case. This should
not be viewed with alarm if we recall that in two dimen-
sions physical matter-field operators become "dressed"
by their interactions with the Liouville mode and acquire
modified scaling dimensions [9]. In four dimensions the
Ricci scalar acquires an anomalous scaling from the self-

interactions of the conformal part of gravity itself. This
implies that (R ) becomes an order parameter for the
spontaneous breaking of global conformal symmetry, in
sharp contrast with the classical situation in which (R )
can take on any value consistent with the symmetry.
Therefore, the cosmological-"constant" problem reduces
to the question of whether this symmetry remains spon-
taneously broken or is restored in the quantum theory.

To address this question, let us consider the cr theory
at the /=0 fixed point, in a maximally symmetric space.
The effective Lagrangian becomes

Q —— R RL~= — uU 0——o + cr
(4~/ 6 12

world-sheet topology of the sphere. Hence, for calculat-
ing correlation functions, we may replace the effective
Lagrangian (4.2) by the free quartic one, with y =A, =O.

The propagator corresponding to the quartic term
G(CI —R/6) is dominated by the 0 term at short dis-
tances and by the ( —R/6)CI term at large distances.
However, in de Sitter space [4],

1 2 z Hs(x, x')—0 ln
8& s (x,x') 4

lnp s as s~0,
2Qi lnH s, as s~~, (4.5)

with the ultraviolet scale p replaced by the inferred hor-
izon scale H. This means that the fixed-point calculations
we performed in the preceding section, using the short-
distance behavior of the theory in dimensional regulariza-
tion or the operator-product expansion, in Hat space, can
be carried out in the infrared with the same results, in
de Sitter space. This is not surprising, as it is known
from critical phenomena that there is a close interplay
between ultraviolet and infrared behavior in systems with
conformal symmetry. Note that unlike a purely local R
action whose effects are unimportant in the infrared, the
effects of the cr propagator arising from the anomaly-
induced effective action (4.2) grow logarithmically at
large distances and dominate the physics.

Consider now the correlation function of Ricci scalars
(R(x)R(x')) at two different points. Using the expres-
sion (2.13) with o replaced by acr and the free action
which describes the theory at its critical point, we find

(R(x)R(x') ) ~R (e '"'e

—
2 4a G (xx')—+R e

4~2 /Q 2

Hs(x, x')
2

R = 12H, (4.4)

where s(x, x') is the geodesic distance between the two
points. Hence the quartic propagator has the same loga-
rithmic behavior in both limits:

( cr(x)o (x') ) =G (x,x')
r

+ye (Vo ) +——Ae
6

(4.2) ~s(x, x')
~
~~, (4.6)

At the fixed point, the theory behaves like a "free" theory
with an anomalous dimension. This can be seen by shift-
ing o. by a constant cro, under which the partition func-
tion scales according to

2

Z(y)=Z(ye ')e (4.3)

where y is the Euler number (y=2 for the sphere) and we
have used the translational invariance of the measure.
The partition function depends only on y, because of the
relation (3.16). From (4.3) we see that even this depen-
dence is trivial at the fixed point, and we can scale it
away by taking an appropriate limit (oo~ —oo ). This is
completely analogous to string theory, restricted to the

where only the dominant infrared behavior has been re-
tained.

The result (4.6) states that the effective cosmological
"constant" goes to zero with a definite power-law behav-
ior for large distances. In other words, there is screening
in the infrared of the effective value of vacuum energy at
larger and larger scales. The value of the power is univer-
sal, depending only on Q, which counts the effective
number of massless degrees of freedom. In particular, it
depends neither on the classical value of the background
curvature R nor on the Planck scale. This is essential for
a scale-invariant, phenomenologically acceptable solution
of the cosmological-constant problem.

We may compare this case to that of spontaneous
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(4.7)

~p exp(8(x)8(x'))
=p'~ p(x —x')

~

(4.g)

In this case the power law is nonuniversal, as it depends
on the classical value of the background field p.

One might ask if there is an analogue of the massless
Goldstont. 'pole of this two-dimensional model in the
four-dimensional o. theory. The answer is yes, but its role
is quite subtle. In the case of conformally Oat fiducial
metrics g,b, there are conserved Noether currents corre-
sponding to global scale invariance:

J"'=g"T' i =1, . . . , d+1 .b (4.9)

The covariant conservation of J"' follows from the co-
variant conservation and tracelessness of T' with the use
of (2.17). The Ward identities corresponding to these
conserved currents may be derived by the usual methods.
In fact, using the transformation (2.20) modified by the
anomalous scaling (3.12), we find that the self-energy
function I ' ' satisfies

breaking of a continuous symmetry in 1+1 dimensions
[11]. Consider a complex scalar field with a tree-level
potential-energy function of ~P~ corresponding to sym-
metry breaking. When the field is quantized, the corre-
sponding massless Goldstone boson has a propagator
which grows logarithmically at large distances. This in-
frared divergence implies instability of the spontaneously
broken vacuum to quantum fluctuations. Because of this
instability of the ordered state, the system becomes disor-
dered, the U(1) symmetry is restored at the quantum lev-
el, and the Mermin-Wagner-Coleman theorem is satisfied.
Locally, there are regions of broken symmetry in which
the classical description remains valid. However, as we
consider regions of larger and larger size, the local classi-
cal vacuum executes a random walk in the phase angle
and averages to zero. The quantitative description of this

phenomenon is given by the power-law falloff of the
correlation function ()I}(x)(t) (x') ). Introducing the non-
linear polar field decomposition P =p exp(i8) and
neglecting the fluctuations of the massive p field in the in-
frared, one finds that the angular field 0 may be treated as
a free field with the propagator

(8(x)8(x')) = — In[)M (x —x') ],1

4'
so that the model is now equivalent to the x-y model in
two dimensions. In this infrared scaling limit, the corre-
lation function for P has a power-law behavior analogous
to (4.6):

)yf'( I
) ) 2( eii)(x)e( —ii)(x') )

in maximally symmetric backgrounds, I' ' contains at
least one factor of +R/3. The corresponding "Gold-
stone" pole describes a tachyonic mode in de Sitter space,
with an infrared behavior even more divergent than the
logarithmic growth of (4.5) [4].

This pole exists even in Einstein theory, localized about
the de Sitter background. However, in that case we know
that it does not propagate because of the constraints:
The equation of motion tells us that R =4A and the sca-
lar modes are frozen. In the covariant path integral, this
comes about by means of the nontrivial Jacobian (2.24)
discussed in Sec. II. When the effective action induced by
the trace anomaly is included, the scalar curvature is no
longer constrained to be a constant by the equations of
motion, and propagating modes survive. However, it
seems from (4.5) that the tachyonic divergence does not
survive, but a subleading logarithmic divergence is physi-
cally relevant. This is precisely the behavior found previ-
ously for the physical transverse gravitons of de Sitter
space.

To summarize, we believe that the effective theory of
the conformal factor presented here provides a useful
framework for studying the infrared behavior of gravity
in four dimensions and addressing the cosmological-
constant problem. The anomalous scaling of the confor-
mal factor may be the key to understanding why (R ) =0
in the observed Universe. However, many unanswered
questions remain.

First, we relied heavily on conformal flatness of the
metric and resulting conformal symmetry [Eq. (2.20)].
Because the analysis of Sec. III was purely local, it is not
clear that this is a necessary restriction, but neither is it
immediately obvious how to derive the results in a more
general context. What is lacking in the approach
presented here is a controlled approximation scheme in
which the conformal symmetry is not exact and the fixed
point is approached in a well-defined manner. This is
essential for demonstrating that the scaling behavior
found in this paper survives in a more complete theory.
It is important for the application to the cosmological
constant as well, since with the present methods we can-
not analyze the transition from the regime in which the
classical Einstein equations are valid to that where the
conforrnal fluctuations predominate, and asymptotic
power-law behavior [Eq. (4.6)] applies. If the theoretical
framework proposed in this paper withstands a more
thorough analysis, then it should have dramatic effects on
the dynamics of the Universe in its early inflationary
epoch(s) and consequences for observational cosmology,
large-scale structure, and the missing-matter puzzles.

f d'xV' gV'g."—( x)r"'( xx )=0 (4.10) ACKNOWLEDGMENTS

G+ —V 'g"(x) =0, (4.11)

at the extrernurn of the effective action, I'"=0. It fol-
lows that the self-energy function of cr has a zero when
evaluated at the conformal Killing field )I)' 'g,"(x).
Equivalently, since
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APPENDIX

2023

Here we give the Feynman rules of the Lagrangian (3.2), as well as the divergent contributions of all relevant graphs
used in Sec. III. We use dimensional regularization in d =4—2c. dimensions of the Euclidean continuation of the ac-
tion: SE= —S.

f1~
2 P —yP +8K,

16m.

(A 1)

Pi

i(

4ag[P—, (Pq P3)+Pq(Pi P3)+P3(Pi.Pq)], (A2)

P3

P4

= —8a g[(P& Pz)(P3 P~)+(P, P3)(Pz P4)+(P, P4)(Pz P3)], (A3)

P3

P,

+symmetrizations = 160m —[P, (Pz P3 ) +P z (P, P3 ) +P 3 (P, .Pz )],2 . 2
4

(A4)

=2y(2a )"P (A5)

2a 1
2

(A6)

(A7)
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r

y (2a) +
Bio g +(1 Bio)

I l

=—y (4a )"(2a )z' — (2a )
~ A g

2 n 21 I

(l()z
7' a o io .

(AS)

Equation (AS) follows from the observation that in the
one-loop case (l =0) the number of external lines n, (or
n n, )

—cannot vanish, since in that case there is no ver-
tex. AI counts for the result of the internal loop integra-
tion, together with the combinatoric factor associated to
the I +2 internal lines.

Since the y-vertex contain only two derivatives and the
o propagator (Al) is quartic, is simple power argument
shows that no new divergences arise beyond three loops.
The primitive divergences of the remaining graphs are
listed below:

(A9)

4~ 1
A, =,—p'. (Al 1)

The arrows in the above graphs (A9) —(Al 1) denote the

action of the derivatives from the y vertex. A compar-
ison of Eqs. (A7) —(A9) shows that the terms multiplying
(2a)", which corresponds to a new Lagrangian term e
are canceled.

(4a)",
Q2

(A12)

4n 1 4,A)= p (A10)
4A, „1

2
(A13)
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