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Gravitational collapse of rotating spheroids and the formation of naked singularities
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We explore numerically the effect of rotation on the collapse of collisionless gas spheroids in full gen-
eral relativity. The spheroids are initially prolate and consist of equal numbers of corotating and coun-
terrotating particles. We have previously shown that in the absence of rotation the spheroids all collapse
to spindle singularities. When the spheroids are sufficiently compact, the singularities are hidden inside
black holes. However, when the spheroids are large enough, there are no apparent horizons. These non-
rotating spheroids are strong candidates for naked singularities. Here our simulations suggest that rota-
tion significantly modifies the evolution when it is sufficiently large. Imploding configurations with ap-
preciable rotation ultimately collapse to black holes. However, for small enough angular momentum,
our simulations cannot at present distinguish rotating from nonrotating collapse: spindle singularities
appear to arise without apparent horizons. Hence it is possible that even spheroids with some angular

momentum may form naked singularities.

PACS number(s): 04.20.Jb, 95.30.5f, 97.60.Lf

I. INTRODUCTION

We recently reported [1,2] results of numerical calcula-
tions that identified strong candidates for the formation
of naked singularities in general relativity. We followed
the gravitational collapse of oblate and prolate collision-
less gas spheroids from rest. The spheroids satisfied the
relativistic Vlasov equation for the matter coupled to
Einstein’s equations for the gravitational field. These
simulations were the relativistic generalizations of Lin-
Mestel-Shu [3] homogeneous spheroid collapse in
Newtonian theory. Our numerical code was designed to
treat highly aspherical gravitational collapse in axisym-
metry. We found that prolate spheroids collapse to spin-
dle singularities. When the spheroids are sufficiently
compact, the singularities are hidden inside black holes.
However, when the spheroids are sufficiently large, there
are no apparent horizons. These results lend support to
the hoop conjecture [4] and provide evidence that naked
singularities can form in asymptotically flat spacetimes.

In all the examples described above, the particles were
initially at rest and hence they had no angular momen-
tum. It is known that in Newtonian gravitation the pres-
ence of angular momentum, however small, prevents an
infinitesimally thin spindle singularity from forming on
the symmetry axis. It is also known [5] that in Newtoni-
an theory the singularity that forms during homogeneous
Lin-Mestel-Shu collapse can be prevented by any slight
initial inhomogeneity or velocity dispersion. It is not at
all obvious that the same results hold in general relativi-
ty, where the gravitational field is nonlinear. For exam-
ple, in spherical relativistic collapse we know from count-
less numerical simulations that small perturbations are
not sufficient to prevent singularity formation [6]. More-
over, a small amount of angular momentum does not
prevent the occurrence of a singularity when a Kerr
black hole forms.

In this paper we consider spheroids in which the parti-
cles have angular momentum about the symmetry axis.
We choose equal numbers of corotating and counterrotat-
ing particles, so that the configuration has no net angular
momentum. This choice simplifies the gravitational field
equations, while retaining the centrifugal barrier for par-
ticles approaching the axis. The resulting set of field
equations is identical to the ones solved previously [1,2],
except for the presence of simple modifications in the
matter source terms arising from the angular motion of
the particles.

In the nonrotating cases described previously, the spin-
dle singularities were similar to the naked singularity
formed by the collapse of a nonrotating infinite cylinder
of particles [4,7]. The fate of an infinite cylinder with
equal numbers of corotating and counterrotating parti-
cles is therefore interesting. Recently, Apostolatos and
Thorne [8] have shown analytically that in the case of a
single cylindrical shell of such oppositely directed parti-
cles, the collapse must be halted at a finite radius and
hence a spindle singularity cannot form. Thus the rela-
tivistic behavior is qualitatively the same as the Newtoni-
an for this idealized example. Does this result also hold
for relativistic systems of finite length? Our simulations
address the effect of angular momentum on a collection
of particles that is bounded in an asymptotically flat
spacetime.

II. NEWTONIAN ANALOGUE

In the Newtonian limit, the configurations that we
evolve are homogeneous spheroids of collisionless coro-
tating and counterrotating particles. The dynamical be-
havior of such systems is well understood when the angu-
lar velocity has a constant magnitude throughout the
configuration. In this case, the spheroid remains homo-
geneous and spheroidal in shape. Hence the equations of
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motion [9] reduce to those of particles on the surface at
the equator and on the pole. To see why angular momen-
tum inevitably halts the collapse, one merely invokes en-
ergy and angular momentum conservation.

Let a denote the equatorial radius of the spheroid and ¢
the polar radius. If a <c, the spheroid is prolate and we
define the eccentricity by

e=(1—a?/cH1? . 2.1

If a > ¢ then the spheroid is oblate and we interchange a
and c in the definition of e. If all the particles in the
spheroid are rotating in the same direction about the
symmetry axis with angular velocity (2, then the total an-
gular momentum of the spheroid is

J,.=I1Q, (2.2)
where the moment of inertia is
I=2Ma* (2.3)

and M is the mass. If y is the fraction of particles that
orbit in the +¢ direction, with the remainder orbiting in
the opposite direction, then the spheroid has a net angu-
lar momentum

J=Qx—1J, . (2.4)

Both J and J, are conserved during the evolution.
Moreover, in Newtonian theory the evolution is indepen-
dent of the value of ), whereas in general relativity the
solution depends on the net angular momentum (e.g.,
dragging of inertial frames).

The rotational kinetic energy is

J%
T = 71— ’ (2.5)
while the total kinetic energy is
T=LM(2a*+¢3)+T,, . (2.6)
The potential energy is
2 .
— 3 M arcsine (oblate) ,
W= 5 a e
_3M n 1t+e (prolate) =7
10 ce "1—¢ P '

(Here and throughout we set Newton’s gravitational con-
stant and the speed of light equal to one.) The total ener-
gy is conserved:

E=T+ W=const . (2.8)

From the above equations, it is clear that a
configuration with a nonzero T,, cannot collapse to a
prolate spindle singularity with @ —0, ¢—const, and
e—1: T, ,— +  like 1/a? while W — — « like Ina.

One characteristic of a spindle singularity is that the
equations of motion [9] cannot be integrated through it
because they have divergent terms. A second feature of
such a singularity is that the gravitational tidal field
blows up in its vicinity. As a measure of the gravitational
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tidal field, consider the tidal tensor in Cartesian coordi-
nates:
_ 9
YT ax0x;

(2.9)

From this quantity, construct the simple scalar function
IN=8®,0, , (2.10)
where summation over repeated indices is implied. With
the factor of 8, this quantity is the Newtonian limit of the
Riemann invariant

I=R_g R, 2.11)

evaluated in vacuum. In the highly eccentric limit e —1,
the tidal invariant for a homogeneous prolate spindle has
the following singular limiting behavior just above the
pole in the vacuum exterior:

108 M?

c6 m . (2.12)

N
1 pole >
The corresponding behavior in the vacuum just outside
the equator, and everywhere in the interior, is
N N N
Iinterior _’qu _"’;_Ipole . 2.13)
This singularity for a prolate spindle is in contrast with

the tidal field for a homogeneous sphere of radius R, for
which

2
48124 (exterior) ,
’
V=
s (2.14)
RS (interior) ,

which is bounded everywhere.

III. GENERAL-RELATIVISTIC CASE

We have followed the collapse of collisionless spheroids
of rotating particles in full general relativity. The field
equations are expressed in 3+ 1 form following Arnowitt,
Deser, and Misner [10]. We use maximal time slicing and
isotropic spatial coordinates. The metric is

dst= —a2dt®+ AXdr+Bdt)

+ A% dO+B%r )2+ B2r’sin’0d ¢* . (3.1)
The basic code is identical to the one described in Refs.
(1] and {2].

The matter consists of equal numbers of corotating and
counterrotating particles. Each particle is assigned initial
four-velocity components

u,=0, ug=0, u,==%&r’in’0Q . (3.2)
Here the angular velocity is
34, 172
= 3 , (3.3)
2a“c

where
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) (3.4)

and £ is a constant. When £=1, the velocity u, is the
value at which centrifugal force balances gravity in the
Newtonian limit. When £=0 all the particles are initially
at rest, and since u, is conserved, there is never any an-
gular motion. This is the case studied in Refs. [1] and [2].
In this paper we consider cases in which 0=£ 5 1.5.

Because there is no net angular momentum, the
initial-value equations in general relativity are essentially
identical to the nonrotating case solved in Ref. [11]. The
only difference is the presence of a y factor in the density
source term for the Hamiltonian constraint because of
the rotational velocity. Accordingly, the momentarily
static solution given in Sec. IIT of Ref. [11] is unchanged
provided we restore p* in place of p in Egs. (3.5) and
(3.7) of that paper. Also, Eq. (3.10) for the rest mass now
becomes

*
M= | Py—zpﬁd%c, (3.5)
where
ui 1/2
= |1l+—— (3.6)
4 BZr%in?0

The metric is determined analytically following the
prescription in Ref. [11]. The rest-mass density is now
given by

p=p*/y*. (3.7)
Having specified the particle velocity and density profiles,
we can now distribute particles that sample the initial
phase-space distribution. In the Newtonian limit, the
configurations are homogeneous spheroids, but relativis-
tic configurations are inhomogeneous spheroids with den-
sity typically increasing outwards.

As in Refs. [1] and [2], typical simulations were per-
formed with a spatial grid of 100 radial and 32 angular
zones, and with 6000 test particles. Again, a key feature
enabling us to snuggle close to singularities was that the
angular grid could fan and the radial grid could contract
to follow the matter.

In Refs. [1] and [2] we followed the evolution of a pro-
late spheroid with initial semimajor axis ¢ =10M, eccen-
tricity e =0.9, and £=0 (no rotation). This configuration
collapses to a spindle singularity near the pole without
the appearance of an apparent horizon. The spindle con-
sists of a concentration of matter near the axis at r =5M.
The value of the Riemann invariant I rises without
bound in a broad region near the pole and extending out
into the vacuum. The maximum value of I determined
by our code is limited only by the resolution of the angu-
lar grid: The better we resolve the spindle, the larger the
value of I we can attain before the singularity causes the
code (and spacetime) to break down. The absence of an
apparent horizon makes this example a strong candidate
for a naked singularity. Moreover, the evolution of this
configuration is typical of the evolution found for all non-
rotating prolate spheroids with large semimajor axes.
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Only for highly relativistic spheroids with moderately
small initial semimajor axes (¢ $3M) did the collapse
produce a black hole.

To assess the role of rotation, we here consider prolate
spheroids with the same initial values of ¢ and e as the ex-
ample described above, but with various nonzero values
of the rotation parameter §. We are only interested in
small enough values of & that the spheroid still implodes
in the equatorial plane (§<1.2). For sufficiently large
values of £ in this range, we find that the evolution is
significantly modified by rotation. For £X0.4, the
spheroid unambiguously collapses to a black hole. For
the case £=0.9, Fig. 1 shows the mean equatorial and po-
lar radii, defined by summing over particle positions:

172
5

S r’sin’6;

Qrms =

_|s
Crms = lj\,‘ 3 rjcos’d;
»

where N, is the total number of particles. The numerical
factors in Eq. (3.8) have been chosen so that these quanti-
ties will be exactly equal to the semiaxes for a uniform
density spheroid. Also shown in Fig. 1 are the corre-
sponding values of these radii obtained by integration of
the Newtonian spheroidal equations of motion [9]. By
contrast with the nonrotating relativistic spheroid, we see
that centrifugal forces here are sufficient to hold back the
formation of a spindle. While the equatorial axis is held
back, the polar axis collapses unimpeded, until the
configuration becomes almost spherical and implodes to a
black hole. The Newtonian configuration, on the other
hand, oscillates homologously forever, also without form-
ing a spindle singularity.

An alternative way to characterize the amount of rota-
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FIG. 1. Mean equatorial and polar radii as functions of time
for a rotating spheroid with £=0.9. The quantity a is the mean
equatorial radius and c is the polar radius, both in units of M.
The initial configuration is prolate with ¢ =10 and eccentricity
0.9. Solid lines show the relativistic evolution, dotted lines the
Newtonian evolution. The relativistic spheroid collapses to a
black hole, while the Newtonian spheroid oscillates indefinitely.



45 GRAVITATIONAL COLLAPSE OF ROTATING SPHEROIDS AND . ..

tion in the cluster is to define the relativistic analogue of
the Newtonian J ;. of Eq. (2.2):

J+=2mj|u¢lj. (3.9
J

The significance of this parameter is that, if all the parti-

cles were rotating with the same sense, they could all col-

lapse to form a Kerr black hole only if a , /M =J, /M?

is less than 1. No such restriction applies for the cases

explored here, since the net angular momentum is zero.
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FIG. 2. Snapshots of the particle positions at selected times
for the case shown in Fig. 1. The coordinate positions (in units
of M) are projected onto a meriodional plane. The collapse
proceeds nonhomologously and results in the formation of a
black hole. The apparent horizon that forms at late times is
shown by the dashed line. We have expanded the scale in the
final frame to zoom in on the black hole. Note the growth of
axisymmetric perturbations (sheets perpendicular to the symme-
try axis) arising from discreteness in the particle distribution.
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For the configuration in Fig. 1, a , /M =0.62.

Snapshots of the particle positions at selected times are
shown in Fig. 2. By the time we terminate the calcula-
tion, virtually all of the mass is inside the black hole. The
apparent horizon is nearly spherical and has an area
A /16mM? close to the asymptotic theoretical limit of 1.
Gravitational waves carry away a negligible fraction
( <<1%) of the total mass-energy.

For larger initial semimajor axis, the final fate is the
same but the evolutionary track is different. Figure 3
shows the evolution of the mean axes for collapse from
20M with the same initial eccentricity and £=1.2. Here
a,/M=1.1. In this case the configuration pancakes
during the implosion, overshoots, becomes prolate again,
and then collapses to a spherical black hole. Snapshots of
the particle positions for this case are shown in Fig. 4.

The contrast between collapse with £=0 and & appre-
ciable is quite stark: with no rotation, a spindle singulari-
ty forms, while with large rotation, collapse leads to the
formation of a black hole. However, the key question is,
does any angular momentum, however small, prevent the
formation of a spindle singularity outside an apparent
horizon? Figures 5-8 show the collapse of the same
configuration shown in Fig. 1, but with £=0.1,
a, /M =0.069. For comparison we also show the results
for no rotation [12], £=0. Even with rotation, it appears
that the spheroid is collapsing to a spindle singularity
near the pole, without the appearance of an apparent hor-
izon. In fact, to the accuracy of our code, we cannot dis-
tinguish the behavior of the cases with £=0 and £=0.1.
Even when we increase our computational resources, e.g.,
doubling the angular grid to snuggle closer to the spindle,
the dynamical behaviors are still essentially indistinguish-
able.

With a finite number of particles and finite grid resolu-
tion, small fluctuations in the numerical results do not
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FIG. 3. Mean equatorial and polar radii as functions of time
for a rotating spheroid with £=1.2. The initial configuration is
prolate with ¢ =20 and eccentricity 0.9. Labels are the same as
in Fig. 1. The relativistic spheroid collapses to a pancake,
overshoots, becomes prolate, and then implodes to a black hole.
By contrast, the Newtonian spheroid oscillates indefinitely.
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necessarily constitute physical effects. By experimenting
with changes in computational resources, we can distin-
guish which features are significant. In particular, the
appearance of a spike in I at the pole with a height much
bigger than the exterior Schwarzschild value 48M?/r¢

signifies a spindle singularity. (Here rg 1is the
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FIG. 4. Snapshots of the particle positions at selected times
for the case shown in Fig. 3. Labels are the same as in Fig. 2.
Again we expand the scale in the final frame to zoom in on the
black hole.
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Schwarzschild radial coordinate.) The precise peak value
of I attained before the code loses accuracy is not a mean-
ingful quantity. For these reasons we believe that Figs. 7
and 8 are exhibiting the same singular behavior. More-
over, with increased resolution, we do not see the peak
value of I asymptoting to a finite value, but rather in-
creasing without bound for both £=0 and £=0.1. In the
case of a rotating spheroid in Newtonian physics, in
which the particles avoid the axis, I would reach a finite
maximum value when the eccentricity reaches its max-
imum [cf. Egs. (2.12) and (2.13)], but would not blow up
to infinity.

We have also run cases with £ <0.05, and these are to-
tally indistinguishable from the nonrotating case. It ap-
pears that £=~0.1 is the critical value below which col-
lapse leads to a spindle singularity without the appear-
ance of an apparent horizon.
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FIG. 5. Mean equatorial and polar radii as functions of time
for a prolate spheroid with rotation parameter (a) £=0.1 and (b)
£=0. Both configurations have the same initial size and shape
as the case shown in Fig. 1. The relativistic curves in (a) and (b)
are almost indistinguishable, and the spheroids evolve to spindle
singularities with no apparent horizons. By contrast, rotation
prevents a spindle singularity in the Newtonian case.
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1IV. DISCUSSION

Our numerical simulations demonstrate that, as ex-
pected, for appreciable angular momentum the formation
of a spindle singularity during gravitational collapse is
prevented. However, for small angular momentum our
numerical simulations cannot distinguish rotating from
nonrotating collapse, where a spindle singularity appears
without an apparent horizon. This behavior is in con-
trast with the Newtonian result, and also with the case of
relativistic infinite cylinders [8], where no spindle singu-
larity can occur when there is rotation. Accordingly, our
simulations are unable to rule out the possibility that
asymptotically flat configurations with small, but
nonzero, angular momentum can collapse to form spindle
singularities. If this possibility occurs, then even prolate
spheroids with angular momentum are good candidates
for naked singularities.
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FIG. 7. Growth of the Riemann invariant [ (in units of M ~*)
vs time for the cases shown in Figs. 5(a) and 5(b). The invariant
I is measured in the vacuum exterior just above the pole. We
use dots to show where the singularities have caused the code to
become inaccurate. Increasing the number of angular grid
points causes the peak values to grow, apparently without
bound.

Of course, it is possible that the situation might be
different for configurations with a small net angular
momentum, which would be the case in our simulations if
all the particles rotated in the same direction. Unlike in
Newtonian theory, the gravitational field is different
when there is a net angular momentum, and so it is
difficult to guess the outcome. We do know that a small
net angular momentum does not prevent the formation of
a singularity in gravitational collapse to a Kerr black
hole. On the other hand, the character of the singularity
in a Kerr black hole does differ from that in a
Schwarzschild black hole. We hope to study
configurations with net angular momentum in the future.

One potential improvement to our numerical treatment
will be to switch from spherical polar to cylindrical coor-
dinates. In cylindrical coordinates we will be able to
probe the singular region near the axis with far better
resolution for the same computational resources. We
originally adopted spherical polar coordinates to treat the
outgoing radiation at large distances accurately. Because
this radiation has turned out to be small, we do not fore-
see any difficulties when we implement cylindrical coordi-
nates.

We decide whether or not a given singularity is naked
by whether there is an apparent horizon. As pointed out
in Refs. [1] and [2], the absence of an apparent horizon

FIG. 8. Profile of I in a meridional plane for the cases shown
in Figs. 5(a) and 5(b). For the case of 32 angular zones shown
here, the peak value of I is 31/M* for case (a) and 54/M* for
case (b). It occurs on the axis just outside the matter.
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does not necessarily imply the absence of a global event
horizon, although the converse is true. Because singular-
ities cause our numerical integrations to terminate, we
cannot map out a spacetime arbitrarily far into the fu-
ture, which would be necessary to completely rule out the
formation of an event horizon. A second potential im-
provement to the present investigation thus would be to
find a time slicing that allows the time integrations to
continue further into the future in the region away from
the axis, while avoiding the singularity on the axis. Con-
tinued failure to find an apparent horizon, or outgoing
light rays that turn around, would strengthen the argu-
ment that the singularity is naked.

The cosmic-censorship hypothesis [13] states that
singularities formed during collapse will always be
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clothed by event horizons, and hence can never be visible
from the outside. If in fact collapsing spheroids can form
naked singularities even with small angular momentum,
which is consistent with the simulations reported here,
this would place severe restrictions on the validity of the
unqualified cosmic-censorship hypothesis.
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