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We present a general class of solutions to Einstein’s field equations with two spacelike commuting Kil-
ling vectors by assuming the separation of variables of the metric components. The solutions can be in-
terpreted as inhomogeneous cosmological models. We show that the singularity structure of the solu-
tions varies depending on the different particular choices of the parameters and metric functions. There
exist solutions with a universal big-bang singularity, solutions with timelike singularities in the Weyl ten-
sor only, solutions with singularities in both the Ricci and the Weyl tensors, and also singularity-free
solutions. We prove that the singularity-free solutions have a well-defined cylindrical symmetry and that
they are generalizations of other singularity-free solutions obtained recently.

PACS number(s): 04.20.Jb, 98.80.Dr

I. INTRODUCTION

The study of the Universe as a whole has been an out-
standing scientific subject since the appearance of general
relativity. Until very recently, the exact solutions used
for that study have been the so-called spatially homo-
geneous models (Bianchi or Friedmann-Robertson-
Walker), which admit at least a three-parameter group of
isometrics. However, in order to study inhomogeneous
epochs of the Universe, which apparently are necessary
for the formation of large-scale structures, it is necessary
to use exact inhomogeneous solutions to Einstein’s field
equations. Of course, the general inhomogeneous metric
does not have any symmetry at all, but the complexity of
Einstein’s equations is so high that some simplifications
must be assumed. The simplest inhomogeneous models
are those with two spacelike commuting Killing vectors,
known as orthogonally transitive G, cosmologies [1-3].
Very few solutions of this type for a perfect-fluid energy-
momentum tensor are known up to now. The first class
of solutions was given by Wainwright and Goode [4], and
new metrics were later found in (5] and [6] and recently
in [7].

Most of these metrics present a universal spacelike
big-bang singularity in the finite past. It was thought,
therefore, that this would be the usual singularity in gen-
eral models. However, the solution presented by one of
us in [6] had no curvature singularity at all and a well-
defined cylindrical symmetry. In fact, it has been shown
in [8] that this solution is singularity-free in the sense that
all causal curves are complete. Further investigation in
this sense was thus needed. In this paper, we present a
very general class of inhomogeneous perfect-fluid metrics
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and study the character of the possible singularities they
can have. The result we obtain is rather surprising be-
cause the solutions can have all types of singularities, and
the big-bang type is just one among them. Furthermore,
we find a very large class of singularity-free and cylindri-
cally symmetric solutions, which generalizes the metric
of [6]. The properties of this singularity-free family are
very similar to that shown in [8] for the particular metric
found in Ref. [6].

We start in Sec. II with the basic equations and formu-
las of the line element and we prove that the metrics are
generated by the solutions to a system of coupled first-
order ordinary differential equations. The general solu-
tion of this system has not been found, but many interest-
ing particular cases can be completely integrated provid-
ing solutions with all types of behaviors. The found ex-
plicit solutions are presented in Sec. III. Among these
solutions there appear the above-mentioned singularity-
free family of solutions, and we describe its properties in
detail in Sec. IV. In Sec. V we prove that this family of
solutions is the only one without singularities and, by
means of a qualitative analysis of the differential equa-
tions, we give the general behavior of the most general
metric. Finally, we devote Sec. VI to perform a brief dis-
cussion of the results.

II. THE LINE ELEMENT AND BASIC EQUATIONS

We want to study orthogonally transitive diagonal G,
cosmologies [1]. From a geometrical point of view, this
means that the spacetime admits two commuting space-
like Killing vector fields, both of which are hypersurface
orthogonal, and that the Einstein field equations are
satisfied for an energy-momentum tensor of a perfect
fluid. Under these assumptions, it can be shown [2] that
the line element takes the so-called generalized Einstein-
Rosen form [3]
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ds*=—Fydt’>+Fdx*+F,(Fdy*+F;'dz?), (1)

where the positive functions F (a,(,...=0,1,2,3) de-
pend on the coordinates ¢ and x, the Killing vectors are
0/dy and 0/0z and the unit velocity vector of the fluid is
given by

u=—F}dt . )

At this stage, the coordinates {¢,x,y,z} are generic and
nothing can be said about the range of values they take.
As we shall presently see, there are cases in which (1)
represents cylindrically symmetric spacetimes and cases
in which the coordinates can be thought as Cartesian-
like, among others.

In this paper, we only consider metrics of type (1) such
that the functions F, are separable, that is,
F,=T, ()X ,(x). When in addition to this it is assumed
that a p =yp (0 <y < 1) equation of state holds, it can be
shown [1] that there exist two different classes of solu-
tions. In the first class, F; does not depend on x (so that
the three-slices orthogonal to the fluid flow are confor-
mally flat) and the explicit general solution has been
given by Wainwright and Goode [4]. On the other hand,
it can be proven that the second class is characterized by
the fact that all the functions T ,(¢) are powers of a single
function T(t). This is the class we shall study here,
despite the fact that we shall not make any a priori as-
sumption on the form of the equation of state.

Hence, we restrict the line element (1) to the form

ds*=T*"FX —dt*>+H%dx?)
+TG(T"Pdy*+T~"P~1dz?) (3)

w=—T"Fdt, 4)

where T is a function of only ¢, F,G,P, and H are func-
tions of only x, and m and » are constants. Here, we
have used the freedom in choosing the coordinate ¢ to set
equal powers of the function 7T in the first two terms of
(3). The corresponding freedom in the coordinate x could
also be used to set H(x)=1, but we shall not do so now
because the function H (x) will enable us to integrate the
field equations in terms of elementary functions in some
occasions. Particular cases of the metric (3) have been
studied earlier [9], and some explicit solutions have been
given in [5-7].

The calculation of the Einstein tensor for the metric (3)
in the orthonormal tetrad

°=T"Fdt, 6'=T"FH dx ,

62=T”+n)/2\/51_)dy, OSZT(I_")/Z‘/E/_I;dZ , (5)
yields for the nonvanishing components
1 |F'G _G" , 1G*

H' | FG G  4¢?

Goo=T *"F?
00 FG G

GH _1pP°
GH 4 p?

4m —n’+1 T2

_+_
4 T?

) (6)
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G ZT—ZmF‘ZH*11 F  2m—1G" n P
ot T|F 2 G 2P|’
) ., @)
G, =T 2|1 (EG 16" 1P~
HY| FG 4 g 4 p?
T — 2 2
. T+4m n“+1T" ’ 8)
T 4 T2
oo 1 |F” F? FH | 1G”
=T 2mF 2|+ (£ £ 2 =
G H:|F F* FH 2 G
_1G* 1GH 1GP
4 G2 2 GH 2 GP
L LPH 1P 3pP?
2 PH 2 P 4 p2
_2m—n+1 T 4dm—n’+1T?
2 T 4 T2 |’
9)
—omm—a| 1 |G'P" P'H
Gy =Gpu+T F 2| — | —
33 22 H2 GP PH
p" p? T
+ —_— —_
P P2 "\

(10)

where dots and primes stand for derivatives with respect
to t and x, respectively. We seek solutions of the Einstein
field equations for an energy-momentum tensor of a per-
fect fluid:

T,s=(p+pluug+pg.s (11)

with u, given in (4), and where p is the energy density, p
the pressure, and g4 the metric tensor. From (11) and
(4) and due to Einstein’s equations it follows that G,
vanishes. Then, expression (7) implies (7+0)

F?_:GIAZmPn , (12)

so that there only remain two independent functions of x.
In a similar way, the field equations together with (11)
and (4) provide G,, =G3;3, so that formula (10) above
yields

pr gy ’” 2 T
Lo _pPH P P\ T (13)

H| 6P PH P p2| T

The left-hand side of this equation is a function of x,
whereas the right-hand side is a function of t. Therefore,
both of them must be equal to a separation constant.
Thus, we have

€=0,*%1 (14)

or, equivalently,
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Acosh(at)+ B sinh(at) if e=1,
At+B if €e=0, (15)
A cos(at)+ B sin(at) ife=—1,

T(t)=

where A4 and B denote arbitrary constants of integration.
In addition to this, from (13) we must have
Pu P'2 G:Pr _ PIHI

P p? GP PH

=ena’H? . (16)

Analogously, G,, has to be equal to G;. Then, from (8)
and (9) and making use of (12), (14), and (16) we obtain

(1—m) G" _G'H' +4m_3_G_,2_n§L}_)i .I_P_Z
G GH 2 G? GP 2 p?

1,2
=M602H2. (17)

2

The last information we can extract from Einstein’s equa-
tions is the expression of the density and pressure, which
can be obtained from (11), (4), (14), (6), and (8) and read

ol 1 | F'G' G" | 1 G?
=T ZmF 21 £V 2 Y
xp H' | FG G 4 g?
G'H _1P?
GH 4 p?
4m —n2+1 T?
5 1 |F'G' 1 G? 1 P?
— 2mF 22 - -
xp=T H*| FG 4 G?> 4 p?
a2 2
a4 4m —n’+1 T? ’ (19)
4 T?

where y is the gravitational constant.

We see that, in order to get a solution of the field equa-
tions, we only need to solve equations (16) and (17).
Given a pair of functions G and P solutions of these equa-
tions, we can get F via expression (12). This, together
with expressions (15) for T, allows us to obtain the full
metric and the density and pressure given in (18) and (19).
Thus, equations (16) and (17) constitute the fundamental
system of equations of the problem under consideration.

As we can see directly from (17), a very special case
arises when m =1, because the second derivative of G
does not appear in the equations. However, as is easily
checked, the general solution in this particular case pro-
vides metrics with a stiff fluid equation of state p =p
(apart from very singular metrics with negative pressure).
But the stiff fluid solutions have been previously obtained,
and it is very well known that they can be generated
starting from the vacuum general solution by means of a
very simple transformation (see Refs. [3] and [10]).

Therefore, we assume m+1 from now on. Then, by
defining

If

» B

a

I
|

Gl
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we rewrite the fundamental system (16) and (17) as a sys-
tem of two coupled nonlinear first-order differential equa-
tions, which read

’

a'+aB—aH =ena’H? , (1)
H
o 2m—1 , n 1, H
+ - + -2
Bt = m? TP = ® P
2m—1—n2 2772
_—— H y
2(1—m) ea
(22)

where H is, in principle, a disposable function. By using
expression (12) for F and Eq. (22), and introducing the
new functions (20) in (18) and (19), the density and pres-
sure become now

p—2mp—2 m+1 4m+1—n2 T2 2
= “+ - N
xp=T “"F 1M 2 p €a
(23)
" p— 4m+1—n2 T2 2
xp=T “"F ,u+————4—— —F—ea , (24)
where we have put
_11n 1 ,,3—4m ,  4m—3—n? ,
=—|-af—— H
u 72 zaB 4a+ 2 B+ 2 €a
(25)

From these expressions it follows immediately that the
fluid will satisfy a barotropic equation of state p =p(p)
(apart from the special stiff fluid case) if and only if either

4m +1=n? m=>-1, (26)
or
T(t)=e", e=1. (27)

In that case, the equation of state is necessarily linear,
that is

p=rp > (28)

where the constant y is given by

(29)

In general, a much simpler expression for the density
and pressure can be given by noting that

p__ 1

[(2m —1)B—na],
p m-—1

or, equivalently, taking into account (12) and (20),

%z_—z_r’_l__FF=“___cF2/(l——m), (30)

where c is a constant. Therefore, we can also write
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Yo=T 2"F~? m_irich/uﬂn)

+4m_f41:"_2 ;_z_eaz ’ a1
xp=T*"F~? ch/“*"‘)—l--‘!m-Zl—_nz %—eaz

(32)

In fact, the last two formulas could have also been ob-
tained directly from the conservation equation V,T7*#=0
and the fact that the metric is given in separated form.
In the particular case in which the relations (26) or (27)
are satisfied, that is to say, when the equation of state (28)
is verified, expressions (31) and (32) reduce to

xp =CT~2mF2m/(l—m)=CT~2(1+7/)/(1—7/)F~(H—7/)/7/ , (33)

with y given in (29). The previous expression for p (and
p) is very important with regard to the existence of physi-
cal singularities, because these singularities will appear
depending only on the from of the functions T and F and
the value of the parameter m. We shall make a detailed
study of these matters in Sec. V.

To end this section, we shall now give the expressions
for the kinematical quantities and the Weyl tensor. With
regard to the kinematical properties of the velocity vector
(4) in the metric (3), a straightforward calculation leads to
the following expression for the expansion, acceleration,
and shear of the fluid

o=(m +1) T}"F—;— , (34)
a,= TmlFHF?I , (35)
o= 2"'3_1 T,l,,F—i : (36)
0= 1+3n6—2m T}"F§ ’ 37
T3y= 1-3n—2m 1 T (38)

6 T"E T’

where all other components as well as the rotation tensor
vanish, and all the components have been computed in
the orthonormal tetrad (5). As for the nonvanishing
components of the Weyl tensor, we perform the computa-
tion in the null tetrad,

and we get (using standard notation, see for example Ref.

[11])

EDUARDO RUIZ AND JOSE M. M. SENOVILLA 45

ey | 1 F 1 1 H 1
Yo+, =T 2"F 2| — ——aB+— ——a
o Fa w | F 2%ty
SHE
+mn—2—56a , (40)
a1 T | 2m —1 F' n
Wo—W,=T *"F 2H ' -
0 ¥4 T|” 2 *thE LB
41)
1 ome—| 1 |F" F? FH' 1
1] ==T7 2mF 20 £ _£©4a 1,
2 6 H2| F F? FH 2’3
1 _H' 1
+_ .2
2BH 2
p2mAn’=1 T2 1-2m ca?
2 T2 2

(42)

It is clear that these expressions could be further
simplified by using (12) and the main equations (21) and
(22) so that there would not appear any derivative of the
functions a and 3. We shall not do that here for the sake
of brevity (see Sec. V). Moreover, from (40)-(42) it fol-
lows that the metric will be, in general, of Petrov type I,
at least in generic points. Very special cases could arise
in which the Weyl tensor is of Petrov types D or 0, but
these cases are those of very well-known metrics with
higher symmetry. However, we shall prove that in some
relevant cases the solutions contain regions where the
Petrov type specializes to the D type, and this will be of
some importance for the avoidance of singularities.

In the next section, we try to solve the fundamental
system of equations (21) and (22) in order to get explicit
solutions. Although the general solution has not been ob-
tained in terms of simple functions, some special cases,
each of them with different properties, are presented in
closed form.

III. EXPLICIT SOLUTIONS

Our task now is trying to solve Egs. (21) and (22) for a
and B (or P and G), bearing in mind that H is a choosable
function of x. We shall devote attention only to those
families of solutions which provide nonpreviously known
metrics. In this sense, we shall not consider the cases
yielding stiff fluid solutions (for example, when p=0)
which can be completely integrated.

Hitherto, we have been able to produce four different
classes of solutions, all of them for particular values or
special relations of the parameters m, n, and €. We
present them separately in what follows and omit the de-
tails of the calculations.

Case 1. The simplest family of solutions is character-
ized by

€e=0=T(t)= At +B . (43)

In this case, Eqgs. (20)—(22) can be integrated completely
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where N and j are arbitrary constants, C(x) is an arbi-
trary function, and

pkHi=cB—4m/i=2m) 4 N G=pkcA1=m/2m =1 L2 +(n2+3—4m)!?
(44) - 4m —3 ’

if n2+3—4m >0, and the general solution, after rescal-
ing of spurious constants, is given by
(n2+3—4m)'/?

k] =—

.C’
H=j—, )
P The pressure and energy density read as

_ _ e | (3—4m)(1—m)* N 4m +1—n? A?
=( At +B) 2mC2(1 m)P(k N(1—m) + (45)
P (2m —1)%? Cc?Pk! 4 (At +B)?
_ _ i | (3—4m)(m?*—1) N 4m +1—n? A?
=(AI+B) 2mc2(1 m)P(k N1—m) . (46)
xp (2m —17%k?  C2pF! 4 (At+BP

The limit case 4 =0 provides static solutions with p =vp, which can be identified as the cylindrically symmetric static
solutions given first by Bronnikov [12] and later by Kramer [13]. In the general case, the solutions have p and p positive
everywhere for adequate choices of the constants and they present singularities at ¢ = —B / A (big bang) and also where
P =0 or « depending on the parameters. However, this last singularity does not exist if k =/ <= 2m =1+n. In partic-
ular, for example, the p =1p solution with n =3, m =2, N =—1, and C(x)=(1+x2)*/* has been recently obtained by

Davidson [7].

The above general solution holds for general values of m and n except for the exceptional cases m =3, m =

1
5» and

4m =n2+3 (k +1=0). We now give the solutions for these exceptional cases:

k=—n—(n>+1)"2 k+1=—2n>+1)"2,

m=%: P4"=N+ax, G=P1/2ne—ax, H___evaxPI/Zn—ttn’
P . C'(x)
=1 pktl=C(x)+N, G= , H=j—/—="—,
™= ) C(x) T cx)P!

2 2 _,2 2
4m =n2+3: P__:exp(ax2n /(1+n ))’ G:Pl/n(ax)(l n°)/(1+n )’ H=P1/n .

The expressions of p and p for these special solutions can
be easily obtained from (23)-(25).

Case 2. For €70 there are several integrable cases.
The first of them is given by

5 (3m —2)?
pr=0m—2)

=1, b
€ 2m —1

m>5L, (47)
which can be fully solved in terms of hypergeometric
equations. There is, however, a particular solution in-
volving elementary functions only. This solution is

— — m — vam—1
H=1, P=exp|—F—ax ,
P 2vV2m —1 f
G =ex ———m—_——l—ax f (48)
P 20em -1 ’
_ Sm—3
f(x)=A,exp 2om -0
Sm —3
A2 | = om D |

where 4, and A, are arbitrary constants. The explicit
expressions for the density and pressure are easily ob-
tained from (23)-(24) with (47) by noting that now

m—1)4%5m —3)
22m —1)?

—1
l~¢=02A2f !

_ _5Sm—3 ax
2(2m —1)

-

Among this family of solutions, the case
A =B (T = Ae®) provides, as always, a p =yp equation
of state with y given in (29). In addition, the special solu-
tion with m2—10m +5=0=—=m =5+2V'5 has the equa-
tion of state

_ _1+V5
PTYP YT, .

In general, these solutions have singularities at x =0 if
the density and pressure are chosen positive everywhere.
These specific properties will be studied in Sec. V.

Case 3. The third case is characterized by the relations

e=+1, n2= 1 m<3, (49)

where now € can be positive or negative. A particular
solution for Egs. (20)-(22) is now

H=1, P=fY5"%m G=ff1-m/2m-1)

ea’, (50)

unless for the special value m =1 (n= 1/V73). The
above differential equation for f(x) can be straightfor-
wardly integrated in terms of hyperbolic or trigonometric
functions depending on whether [(2m —1)/(5—4m)]e is
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positive or negative, respectively. The expressions for p As always, there are two cases with a p =yp equation of

and p are now given by (23), (24) with (49), and state: when A4 =B and for the special value
m=(1+v2)/2, which produces a value
2 -
_ )2 y=(4v'2—5)/1.
u=a* 7{7 ] (3—dm)1 Zm) . The exceptional solution for m =1 can be also in-
(5—4m) tegrated similarly. The solution reads

€a?/641) A, x+ 4,

H=1, P=(Ad,x+4,)"%, G=(A,x+4,)e' , F=(A;x+ 4,7, (51)

with 4, 4, constants. The expressions for the density and pressure are then trivially obtained from (31)-(32) where
c=a*/3643.
Case 4. The last and perhaps most interesting case is defined by the relation

2m=1+n . (52)
The general solution for Egs. (20)-(22) can be found and is given by (n#1)
Cl

H=M—, G=pC''"""/" Pl=en?a’M*C*+NC?" " V/"—K >0, (53)
where C(x) is an arbitrary function and M, N, and K are constants. The calculation of the density and pressure yields
C4mel—n | (B =120 —1) K | B—n)n+1D) | T2,
xp=T nel-—n PRETYS s + 1 - €a , (54)
- - —D2n—=1)(n+3) K  B—n)n+1) | T°
=7 +mci-n (n 24 ~ —e€a? 55
xp 4n*M> c? 4 2 < 3

The important thing about this family is that the metric has a well-defined cylindrical symmetry and that it contains a
very large subfamily of singularity-free solutions. Because of its importance, we devote the next section to the study of
this subfamily.

IV. A FAMILY OF SINGULARITY-FREE SOLUTIONS

Let us consider the subfamily of the solution (53) defined by
€e=1, n=>3, T(t)=cosh(at), C(x)=cosh(nax) . (56)

This class of solutions has very interesting properties, as we shall see immediately. By relabeling the coordinates ap-
propriately, the line element can be written in the form

)

ds?=cosh' " "(at)cosh” ~(nar) —dtZ-Fﬂnhp(z——ﬂﬂidr2

p? cosh! "(at)
+cosh! "*(at) 2 dz?, (57)
n2a?L?cosh” ~""(nar) cosh' ~V""(par)
where
L=K— K2—1 , P*=cosh?(nar)+(K —1)cosh® ~V/"(nar)—K , (58)
n

and the range of coordinates is taken to be
—w<t, z<w, 0Sr<ow, 0Z¢=<2w

such that ¢ and ¢+ 27 are identified. With the above choice of constants the metric (57) has a regular axis of symmetry
r =0 at all times and the so-called elementary flatness [11] on the vicinity of the axis is satisfied. The expressions (54)
and (55) for the pressure and energy density become now

(n—1)2(2n—1)K+ (n +1)(n —3)

(59)
cosh?(nar) cosh?(ar)

2
xp= aTcosh‘( " 1)(at)cosh!  "(nar)
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(n+1)n—3)

2
xXp= —i—cosh_"+")(at)cosh'_"(nar)

From these equations we see that both density and pres-
sure are positive and such that p <p if K >0. Further-
more, p and p are regular over the whole spacetime, so
that there is no physical singularity in the solution. Let
us note that the maximum value of the density (and pres-
sure), which occurs when t =r =0, is represented by the
constants K and a, and then we can choose this max-
imum as large as we like. It is also obvious from (59) and
(60) that p and p approach zero when either t—*t o or
¥— 0.
From (34) it follows that the expansion is

n+3
2

0=a cosh™ " *12(gt)cosh'' ~®/2(nar) sinh(at) ,

(61)

from where we learn that there is a contracting phase for
t <0 and an expanding phase for ¢ >0. Moreover, 0 is
regular for all possible values of r and ¢, and it goes to
zero when r,|t]— «. The spacelike surface ¢t =0 is a
maximal hypersurface in the sense that the expansion
vanishes there. In a similar way, from (35)-(38) it is easi-
ly seen that all the kinematical quantities are well
behaved everywhere. In fact, solution (57) has no curva-
ture singularity at all, as can be directly checked by com-
puting the Weyl tensor given in (40)-(42). The Petrov
type of the Weyl tensor is I in generic points, but it spe-
cializes to type D at the axis of symmetry r =0.

The particular case n =3 of the metric (57) has a realis-
tic equation of state for radiation-dominated matter:

pP=1ip. (62)

The special subcase n =3, K =1 is the solution found
previously by one of us [6], which has been shown to be
singularity-free in the sense that all causal curves are
complete [8]. A reasoning similar to that of Ref. [8] can
be used to prove that the general solution (57) is
singularity-free too, so that all causal curves can be ex-
tended to arbitrary values of the affine parameter.

In the next section we shall prove that this family of
solutions is unique in the sense that any other solution
contained in (3) has singularities.

V. BEHAVIOR OF THE SOLUTIONS
AND THEIR SINGULARITIES

The families of solutions found in the previous two sec-
tions are representative of all the possible metrics. We
have seen that the singularity structure of the solutions is
very rich, in the sense that there are solutions with big-
bang singularity only, solutions with big-bang and time-
like singularities, solutions with timelike singularities
only, and also singularity-free solutions. We shall now
give an exhaustive study of all these different possibilities
for the general line element (3). Although the most gen-
eral solution cannot be found in closed form, the analysis

(n —1)2n —1)n +3)K "
cosh?(nar)

(60)
cosh?(at)

of the behavior of the metric and the physical quantities
can be performed by using the theory of ordinary
differential equations applied to the fundamental system
(20)-(22). This method has been used by other authors
lately (see [1] and [14] and references therein). Our aim is
to find the possible singularity-free solutions and to iden-
tify them among the whole class of solutions. It will turn
out that the singularity-free solutions are given by case 4
above and that they constitute, so to speak, the separa-
tion in the space of metrics between two families with
very different properties from the singularity point of
view.

Of course, we restrict our study to physically realistic
solutions in the sense that the energy conditions be
satisfied. Therefore, we shall consider only the cases with
both density and pressure non-negative everywhere. This
condition will permit us to dismiss a great lot of solutions
by simple inspection of the physical quantities.

To begin with, we see that, as remarked in Sec. II, the
possible physical singularities (that is, singularities in p or
p) can only come from the function 7(¢) or from the
function F(x) due to the fact that the metric is given in
separated form. With regard to the function T(t), we
can see from expressions (31) and (32) that, in general, the
solutions will contain big-bang (and/or big-crunch)
spacelike universal singularities at 7(¢)=0 or . There
are, however, four possibilities without this type of singu-
larity. To see it, let us note that by means of a shift and a
rescaling in the coordinate ¢ we can always set
T(t)=cos(at) if e=—1; T(t)=t if €=0; and
T(t)=cosh(at), e%, sinh(at) if e=1 for A42>B?
A?=B?% and A?<B? respectively. From expressions
(31) and (32) and assuming c¢70 (if ¢ =0 then p =p), we
identify the above-mentioned four cases as

T(t)=t, sinh(at), €=0,1, m =0, n’=1, (63)
T(t)=e”, €=1, m=0, (64)
T(t)=cos(at), e=—1, m=<0, 4m +1—n?=0, (65)

T(t)=cosh(at), e=1, m=0. (66)

The cases (63) and (64) have yp= —xp = —c, and then we
do not consider them here. On the other hand, case (65)
produces

m—1

=cF2m/(1—=m) 2|m| t), —
Xp =c cos“'™(at), p m+1p

where also 0>m =(n?—1)/4> —1. Therefore, in this
case the pressure and the density cannot be both positive
at the same time and the energy conditions are not
satisfied.

Thus, it only remains case (66) which is a little bit more
complex than the other cases. From now on, we assume
that relations (66) hold. Hence, the singular behavior of

the solutions can only come from the function F(x) [or
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equivalently u(x)] and the value of the parameters m and
n. In order to proceed, it is convenient to fix the variable
x by putting

H=l , (67)
a

and to define new dependent variables as
u=—1—(a—nﬁ), v=p (68)
20
where
Winl+3—4m if n’+3—4m>0,

c=11 if n?+3—4m=0, (69)
Wam —n?—3 if n?+3—4m <0.

With these definitions the density (23) and pressure (24)
become

xp=a’cosh™*"(at)F ~* ::ii n chgslhz_(:;l ] )
(70)
xp =a?cosh™*™(at)F ~? |01 %ﬁ% (71)
where
vi—u?—1 if n?+3—4m >0,
ﬁE;—Zy—Z= —u? if n?4+3—4m=0, (72)

1—v?—u? if n2+3—4m <0.

From (71) and (72) it follows that the pressure is negative
when n%+3—4m=0. Analogously, when n 243
—4m <0 we see from (71) and (72) that the second term
inside the parentheses is always negative and reaches the
value —(1+0?) at t =0. But the first term inside the
parentheses is obviously less than or equal to o®. There-
fore, it follows that in this case there will always be re-
gions (for some values of ?) with negative pressures.
Then, a necessary condition to keep p >0 is

n*+3—4m >0 (73)

which we shall assume from now on. Consequently, the
first formulas in (69) and (72) are assumed to hold in the
rest of this section. Finally, a new inspection of (70) and
(71) in the case (73) tells us that the pressure and energy
density are both non-negative everywhere if either

o>1, m>1, g=v’—u’-120, (74)
or
2 2
~ —0° m—11—0
O<o<l, m>1, fiZmax 2 o mEl o2 >0.
(75)

The first two relations in each of these cases are condi-
tions on the parameters m, n, whereas the third inequali-
ty in (74) and (75) is a condition on the functions « and v.
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Hence, we need to show that there exist solutions to the
fundamental system of equations which verify those ine-
qualities.

Thus, we cannot proceed any further without studying
the system of differential equations, which taking into ac-
count the first equality in (69) and the definitions (68)
writes now

'= mnil(vz—u2-1)—uv ) (76)
1.2
'=—————2’2”(m1_1’)’ (wi—u?—1)—u’. 77)

This system of equations (SOE’s) has a series of proper-
ties which will allow us to continue our study. Next, we
formulate and comment on these properties separately so
that our analysis goes on with clear and simple steps.

Property 1. The system (76) and (77) has the following
symmetries. First, if {u(x),v(x)} is a solution of the
SOE’s for the values (m,n) of the parameters, then
{—u(x),v(x)} is a solution for the values (m, —n). Ac-
tually, this is a simple consequence of the fact that the
change n — —n provides the same metric with the coor-
dinates y,z interchanged. From a practical point of view,
this symmetry restricts n to non-negative values: n =0.

Second, if {u (x),v(x)} is a solution of the SOE’s, then
{—u(—x),—v(—x)} is also a solution for the same
values of the parameters. This property assures us that
we can construct the solutions in the whole {# —v} plane
if we know them, say, in the half-plane v > 0.

Property 2. It is immediate from (76) and (77) that
fi=v*—u?—1=0 is a particular solution of the system
for every possible value of the parameters. This is a cru-
cial point, because this particular solution divides all the
solutions of the SOE’s into two classes depending on
whether {1 is positive or negative. But we know from (74)
and (75) that i =0 is a necessary condition to obtain posi-
tive density and pressure. In the {u-v} plane, 2=0is a
hyperbola whose asymptotes are v ==tu. Because of the
property 1 second symmetry, the region we are interested
in is that ““above” one of the branches of this hyperbola,
because it is enough to consider v > 1. We restrict our
study to this region, defined by

g=vi—u*-120, v=1. (78)

Let us remark that the limit solutions i=0 have a stiff
fluid equation of state p =p.

Property 3. The singular points [15] of the SOE’s are
u =0, v==1, and two others located in the unphysical
region 7 <0. In region (78), the only singular point is
u =0, v=1. This is a very important property, because
the solutions of the SOE’s can cross each other only at
singular points [15]. Consequently, the solutions of the
SOE’s in region (78) are either fully contained in >0 or
they reach the singular point u =0, v =1 if they treat to
escape from region (78).

Property 4. In the range of values of m,n that we are
considering, we have
,_n*+1—2m .

> =
2(m —1) 0, ¢ m—1

Il

s >0, (79)
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so that from Eq. (77) it follows that

v'=—s—u?<0. (80)

’

Therefore, v’ is negative in all the region fi>0, and it
vanishes only at the singular point ¥ =0, v=1. In other
words, all the solutions of the SOE’s within region (78)
reach the singular point and are such that the function v
is always decreasing.

This behavior proves that all solutions satisfying
0<o <1 will present negative pressures for some values
of x, for (75) does not hold in a neighborhood of the
singular point where t=0. As a consequence, hereafter
we limit our study to case (74).

Property 5. By means of a very simple reasoning, it is
easily shown that the independent variable x is bounded
below for the solutions of the SOE’s we are interested in.
In addition, these solutions go to the singular point when
x —+o. Then, we can always redefine x so that its
range of valuesis 0 =x =< + .

In order to show the last properties of the SOE’s it is
convenient to choose, as dependent variables,

u
ag=vi—ul—1, y=—=u=v¢), v=
v

172

1+p

1=y |
(81)

This change of variables is obviously well defined in the
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physical region (78). Let us also note that the new vari-
able ¢ is such that |¢| <1 in that region. With these new
variables the SOE’s take the form

a'=—2v(g*+sp, (82)
¢'=%{ﬁ[(s2—l)¢+q2]—¢} i (83)

Property 6. Starting from the singular point and going
along the solution curves of the SOE’s in inverse sense
(from greater to lower values of x), we see that the curves
try to approach =1 initially, but they never reach these
points. Instead, they turn back and end up coming to-
wards = —1, where they terminate. This behavior is
represented in Fig. 1, where we have plotted three
different families of solutions of the SOE’s by solving the
equations numerically.

In order to know the behavior of the metrics under
consideration, we learn from this property that the possi-
ble singularities may appear only at the extreme points of
the solutions, that is, x =0 and x — + . At any other
point the functions @ and ¢ (or u,v) are regular, and
therefore, so are the density, pressure and Weyl scalars.

With regard to x — + o (@=0,v=1,¥=0), from ex-
pressions (70) and (71), and taking into account (74) and
(30), it is obvious that the density and pressure are well
behaved at this point. Furthermore, from equations
(34)—(38) it follows that all the kinematical quantities are
also regular at this point. It remains to see what is the
behavior of the Weyl tensor. By using the definitions (81)
and (68), we can rewrite relations (40)—(42) as

2
wo+w4:"7cosh*2'"(at)r2{[n (n*+3—4m)yp?+20(2n>~2m +1)p+n (n>+1—2m)Jv*+2n [m tanh*ar)— 1]} ,

(84)
2
wo—\v4:“7cosh—z"’(at)tanh(at)rz[za(n2—1+2m)¢+n(n2—1)]u , (85)
2
y,= —T:l_~l—)cosh"2’"(az)F_2{[(2m —1)(n2+3—4m)¢2+0n(m —1)Y+nim —2)+m(2m —1)w?
—(m —1)(n?2—1+2m)tanh®(at)+n2—2m +1} . (86)

It is therefore a matter of checking to see that all these
Weyl scalars vanish when x — . Thus, we have proven
that the metrics are regular at this particular point.

The behavior at the other point of conflict x =0 is
given by the following property.

Property 7. If s*>q? then fi— +  when ¥— —1,
whereas if s2 < g% then 1 —0 when ¥— — 1. The limiting
case s2=g? corresponds to 2m =1-+n and I goes to a
positive finite value when ¥— — 1. This last case is that
of the singularity-free solutions of Sec. IV. All three pos-
sibilities are given in Fig. 1, where we have plotted some
appropriate representative integral curves of the SOE’s
for each case.

In the first possibility, when s?>g? or equivalently
2m > 1+n, it is enough to take a look at expressions (70),
(71), and (84)—(86) to realize that these metrics have
singularities in the Ricci and Weyl tensors at x =0.
However, in the second possibility s?<g? (or 2m <1+n)
from (70) and (71) it follows that the density and pressure
vanish at x =0. In addition, it is straightforward to show
that if s2 < g2, then

A~ (1) s~y —2e? =5 (87)

when ¥— —1. Unfortunately, by combining (87) with
(30) and (86) we see that, for example,
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— — — _ 2_ .2
\1’2~sz ZmUZﬁm 1~U2 2(m —1)(g“—s°) (88)

when x =0. But for these values of the parameters we
have

0<(m—1)g*~s?)=no+m —Ln*+1)<1, (89

so that when x =0, ¥,— + «. We conclude, therefore,
that these metrics have a Weyl curvature singularity at
x =0 but no physical (or Ricci) singularity.

Summarizing, we have proven that the only
singularity-free solutions are those presented previously
in Sec. IV. We have also shown that, so to speak, these
singularity-free solutions form the boundary in the space
of metrics between the solutions with timelike Weyl
singularities only, and those with both timelike Weyl and

(a)

(b)

FIG. 1. Three families of integral curves of the SOE’s, plot-
ted in the {y—u/(u+1)} plane. The right and left vertical
lines correspond to ¥=1 and ¥= — 1, respectively, whereas the
top and bottom horizontal lines correspond to p=+ o and
1=0, respectively. The shown curves start at the point
(=0,u=0) in all cases. (a) These are some solutions for the
values of the parameters m =6 and n =5 (s2>¢?). As we can
see, all these curves end at the top left corner, that is, at
(p=—1, u=+ ), where the metrics have Weyl and Ricci
singularities. (b) Integral curves of the SOE’s for the values
m =2 and n=13(s’<q?). Now the curves terminate at the
bottom left corner (= —1,u=0), where the Ricci tensor is
regular but the Weyl tensor has a singularity. (c) Finally, these
are solutions of the SOE’s for the values m =2 and
n =3(s>=gq?). This family ends at any point of the left vertical
line, that is to say, at = —1 with p finite and positive. The
metrics in this case are singularity-free and correspond to the
family presented in Sec. IV. Figures (a), (b), and (c) collect the
three possible different types of behavior of the solutions of the
SOE’s and therefore of the related metrics as well.
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Ricci singularities. The possible meaning of this result is,
as yet, not clear to us.

VI. DISCUSSION

The main result of this paper is that the very simple
family of inhomogeneous perfect-fluid solutions to
Einstein’s equations given by (3) displays an unusual rich-
ness with respect to the singularities that the curvature
can have. This fact poses some questions about the
current views on the subject. It is very well known that
the isotropic and homogeneous Friedmann-Robertson-
Walker models must have a universal big-bang singulari-
ty if the energy conditions are satisfied. In the same way,
homogeneous Bianchi models have to have singularities if
reasonable energy conditions hold [16,17]. Very few inho-
mogeneous models are available up to now, but the gen-
eral singularity theorems [17,18] seemed to imply that all
of them should have singularities as well. We have seen
that for the very simple line element (3), many solutions
do have singularities. However, some of them cannot be
interpreted as big-bang singularities, due to their timelike
character. Even more importantly there are singularity-
free solutions satisfying the stronger energy and causality
conditions (see the discussion of [8]). This fact proves
that these two conditions, usually thought of as crucial in
the singularity theorems, are not determinant by them-
selves for the appearance of singularities. It is interesting
to remark that the singularity-free family of solutions of
Sec. IV have a cylindrical symmetry, so that this type of
symmetry could have some relevance for the avoidance of
singularities. In any case, it is obvious that completely
general inhomogeneous models will or will not be singu-
lar, but the singularities they may have are of a very
different kind, and in many cases they will not be of big-
bang type. There were indications that this should be the
case (see, for example, [19]), but the lack of inhomogene-
ous solutions had not allowed any explicit checking. The
study we have made opens new questions too. The most
important is how many reasonable singularity-free solu-
tions are there. From the discussion of [8] it follows that
the lack of causally trapped sets [17] is enough for the
avoidance of singularities, and then the question is
whether or not these types of set are essential in real situ-
ations. In any case, we believe that further analysis of
general inhomogeneous explicit solutions is needed to get
a clear view on these matters.

Another important result is that the mere qualitative
analysis of the differential equations can lead to very
strong conclusions. For example, we have proven in Sec.
V that the singular points of the SOE’s are particular
solutions of the field equations which govern the asymp-
totic behavior of the general solutions. These ideas, al-
ready contained in [1], can be of great help in the study of
general inhomogeneous spacetimes. Finally, we want to
stress that the singularity-free solutions of Sec. IV are the
separation between families with very different proper-
ties. Thus, the study of the space of metrics could also be
useful in order to know the singularities of inhomogene-
ous models.
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