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The same theory of semiclassical gravity that predicts Starobinsky inflation (de Sitter-like solutions
driven only by higher-order curvature terms) also predicts flat space to be unstable to small perturba-
tions. %hen semiclassical gravity is modified in a way suggested by and consistent with the perturbative
nature of its derivation, flat space is predicted to be stable, in accord with observation, but Starobinsky
inflation is no longer a solution. The modified semiclassical theory, constrained to only solutions pertur-
batively expandable in fi, has the same dynamical degrees of freedom as the clasical gravitational field,

despite the presence of fourth-order derivatives in the field equations. There are no de Sitter or de
Sitter-like self-consistent solutions except in the presence of a cosmological constant, so inflation gen-

erated purely by curvature is not predicted. Furthermore, linearized gravitational perturbations in a de
Sitter background (with a cosmological constant) show no signs of instability from quantum effects.

PACS number(s): 98.80.Cq, 03.65.Sq, 04.20.Cv, 04.60.+n

I. INTRODUCTION

Quantum corrections to general relativity are expected
to be important at early times in the evolution of the
Universe. Semiclassical approxixnations to these correc-
tions can be calculated by techniques developed over the
last two decades. The form of these semiclassical correc-
tions is now well known for many spacetimes [l], e.g. , for
conformally flat spacetimes in four dimensions, for which
the corrections to Einstein's equation are proportional to
curvature-squared terms [given below by Eqs. (2)—(6)].

One of the most interesting predictions of semiclassical
gravity is Starobinsky inflation [2], a class of de Sitter and
de Sitter-like solutions to the semiclassical field equa-
tions. In Starobinsky inflation higher-order curvature
terms can remain nearly constant, thus mimicking the
effects of a nearly constant, nonzero scalar field. This
might allow an inflationary epoch without requiring addi-
tional matter fields.

Unfortunately, the same semiclassical theory that pre-
dicts Starobinsky inflation suffers from severe problems.
Perhaps the worst of these problems is the instability of
flat space. The same higher-order curvature terms that
would drive Starobinsky inflation also predict that flat
space is unstable in a number of ways, including the pro-
duction of Planck-energy y rays, Planck-scale tidal
forces, tachyonic propagation of gravitational particles,
and violation of the positive-energy theorem [3,4].

It was shown in earlier work [5] that it is possible, and
indeed desirable, to modify semiclassical gravity in a way
suggested by and consistent with the perturbative nature
of its derivation. The effective action and field equations
of semiclassical gravity are perturbative expansions (for-
mally, asymptotic expansions) in powers of fi, truncated
at first order in A. All behavior higher order and nonper-
turbative in A has already been lost in the process of
deriving the (approximate) eff'ective action and field equa-
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tions. Self-consistency then requires that only the solu-
tions that are also asymptotic expansions in powers of A,

truncated to first order, will be approximations to solu-
tions of the full, nonperturbative effective action. Solu-
tions not in this form are likely to be unphysical and
should be excluded. A simple model, presented below,
will demonstrate that retaining nonperturbative solutions
to a perturbatively derived action results in false predic-
tions. The nonperturbatively expandable solutions are
spurious artifacts arising from the higher derivatives ap-
pearing in the perturbative correction, and will be re-
ferred to as pseudosolutions. For convenience, perturba-
tively expandable solutions will sometimes be referred to
as physical, since only they correspond to predictions of
the self-consistent semiclassical theory. For semiclassical
gravity, it has been shown that the physical solutions
show no signs of any instability of flat space (to first order
in trt) [5].

In this work, the predictions of the constrained semi-
classical theory (i.e., the theory constrained to include
only physical solutions) are applied to homogeneous, iso-
tropic solutions in the presence of a cosmological con-
stant, and to small perturbations on those spacetimes.
We find de Sitter solutions only when the cosmological
constant is nonzero and positive. All other de Sitter-like
solutions that might lead to inflation are found to be
spurious, and therefore not physical predictions of the
semiclassical theory. This, unfortunately, rules out
Starobinsky inflation as a physical solution.

If the theory described by Einstein gravity plus
higher-order curvature terms is not considered as a serni-
classical theory, but as a fundamental theory (i.e., the
higher-order curvature terms are taken to be purely clas-
sical, not arising from quantum corrections), then the
theory cannot legitimately be modified in this way. By
definition, all solutions to the field equations would be
physical, including Starobinsky inflation. By the same to-
ken, however, flat space would then suffer from the same
instabilities described above, clearly conflicting with our
everyday experience [6].
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The structure of this paper is as follows. First is a
short derivation of the semiclassical field equations for
conformally flat spacetimes. Following is an example of
Starobinsky inflation, and a summary of the effects, when
all solutions to the semiclassical field equations are re-
tained, on the stability of flat space, and a discussion of
the flaws of that analysis. The next section is a brief,
pedagogical presentation on higher-derivative expan-
sions, including a simple model to demonstrate the basic
concepts. A method for finding only the physical solu-
tions is shown. Applications to semiclassical gravity are
emphasized. Finally, the physical semiclassical homo-
geneous, isotropic solutions with a cosmological constant
and no matter are derived. It is found that the semiclas-
sical corrections to the classical solutions are small, and
remain so for all times. In short, an exponential increase
in the scale factor requires a cosmological constant (or
matter), and Starobinsky inflation is not a physical solu-
tion.

II. HISTORICAL SEMICLASSICAL GRAVITY

We use the conventions c = 1, i)„„=( —+ + + ),
Rp..=a.rp. + . , and Rp~. =Rp. . The semiclassical
field equations of general relativity (including a cosmolog-
ical constant) take the form

R„, ,'Rg„,, +—Ag—„,=l~( T„„),
where (T„„)=O(iil) is the expectation value or transi-
tion amplitude of the matter stress-energy tensor. For
convenience, we consider only massless, conformally cou-
pled fields (of arbitrary spin). We may reasonably restrict
the form of (T„,) to obey Wald's physical axioms [7]:
(I) covariant conservation; (2) causality; (3) standard re-
sults for "off-diagonal" matrix elements; (4) standard re-
sults in Minkowski space. Wald showed that any ( T„,)
that obeys the first three axioms is unique up to the addi-
tion of a local, conserved tensor. Furthermore, any local,
conserved tensor can reasonably be considered part of the
geometrical dynamics and so be written on the left-hand
side of the field equations. We shall do so, rewriting (1)
as

R„„,'Rg„, +Ag„,—+—Q„,=~( T„,),
where 0,„ is conserved and purely local; i.e., it is con-
structed purely from the metric, the curvature, and (a
finite number of) its covariant derivatives.

Only terms in 0„ that are first order in A will be con-
sidered, consistent with the semiclassical approximation.
Any term with a constant coeKcient proportional to A

must have dimensions of ( length ), since the only
length scale is the Planck length lp& and A Ipl in units
where G =1. This restricts the form of 0„ for confor-

mally flat spacetirnes in four dimensions, such that there
are exactly three possible contributing terms [8]:

A„,=a'"H„,+P' 'H„+y' 'H„, +O(fi ) . (6)

Values of a, P, and y are predicted by specific matter
couplings and regularization schemes, but we wi11 treat
them as free parameters. They are all proportional to A.

We are particularly interested in self-consistent solu-
tions of isotropic, homogeneous spacetimes. In these
spacetirnes, we can find a state for which there are initial-
ly no particles, and which has no particle creation or
nonlocal vacuum polarization. For this state,

R„, ,~Rg„„+Ag—„„+Q„,, =0+0(A'') . (7)

Because of the higher-order derivatives in "'H„and
' 'H„, and because ' 'H„ is quadratic in second-order
derivatives, there appear to be more solutions to (7) than
to the classical Einstein equation. Some of these extra
solutions lead to de Sitter-like behavior, even in the ab-
sence of A. This makes them interesting as possible can-
didates in inflationary scenarios and is known as Staro-
binsky inflation [2].

Examples of Starobinsky inflation are straightforward
to find. We look for isotropic, homogeneous spacetimes
in the coordinate system given by

ds2= dt +a (t) — dr +r ditz
1

1—kr

where d 02 is the line element of a two-sphere. The semi-
classical Einstein equations (7) give

'"H,„= J d'xvg R'
P~ Qg g pv

=
—,'R g„„—2RR„—2 Rg„+2V„VQ, (3)

(2)H 1 6
d x&gR ~R

P~ Qg g pv a/3

af3—
—,'R R pg

— R ——' Rg

+V„VQ —R ~R „ti„, (4)

(3) l 2 agH„=——„R g„+R
The first two expressions are conserved automatically
from their variational definition. The last expression is
conserved, but not as a result of a variational derivation,
nor as the limit of a conserved quantity in nonconformal-
ly flat space times [9]. Also it is second order in deriva-
tives of the metric, whereas the first two are fourth order.
Nevertheless, it is allowed by %aid's axioms, and, in gen-
eral, contributes to the conformal anomaly. The most
general expression for 0„,, under these conditions can be
written

a k A a a+ ———6(a+P) 2
Q Q Q

~ ~ ~ ~ 0 2
Q 2QQ
0 Q

a ka k
a4 a4 a4

a ka k
a4 a4 a4

=O(A ) .
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This is a fourth-order system and has more solutions than
Einstein's equation. One solution, for k =1, A=O, and

p(0, is

a =&)y)cosh
lyI

(10)

This is exact de Sitter space, with an effective cosrnologi-
cal constant of 3/~y~ and constant scalar curvature
8 =12/~y~. Solutions for which inflation halts after a
finite number of e-foldings can also be found [2].

We can see from (10) that for smaller y (i.e., smaller fi,
in regimes where quantum effects should be less impor-
tant), the rate of expansion is larger. In fact, when the
field equations (9) are evaluated at this solution, the semi-

classical terms are of the same order as the classical
terms. Strictly speaking this means that the semiclassical
approximation has broken down and that solutions such
as (10) should not be taken too seriously. Historically it
was hoped, despite this admitted breakdown, that these
solutions might still be qualitatively indicative of the be-
havior of quantum gravity. This approach can be made
more rigorous by considering models with large numbers
of conformally coupled matter fields, making the semi-

classical breakdown less extreme.
Nevertheless, there is nothing in that approach which

addresses the issue of the semiclassical field equations be-

ing higher-order equations than the classical field equa-
tions. Furthermore, on dimensional grounds, each term
of increasing order in A may generically contain even
higher-order time derivatives, since R= l p& in units where
G=1. If all solutions to these higher and higher order
differential equations are considered, the dimension of the
solution space appears to grow at every higher order of
the expansion in A, qualitatively changing the nature of
the theory according to order.

The semiclassical theory described by all the solutions
to (7) has other problems as well. Perhaps its worst
feature is that it predicts that flat space is plagued by
unavoidable instabilities, independent of the specific
values of a, P, and y [3]. This theory cannot describe the
spacetime in which we live, since small perturbations to
nearly flat space do remain small. It appears necessary to
modify the semiclassical theory to avoid these unphysical
predictions.

As demonstrated in a previous paper, however, there is
an important reason why the theory described by all solu-
tions to (7) should fail. For an action or field equations
derived as a perturbative expansion in powers of A, all
nonperturbative (not Taylor expandable in A' as fi —+0) be-
havior of the theory has already been discarded by the
perturbative approximation of the action. Nonperturba-
tive solutions to the perturbative field equations are not
expected to be related to nonperturbative solutions to the
nonperturbative field equations. In general, they are not.
These pseudosolutions must be discarded for the sake of
self-consistency. Only solutions that are also perturba-
tive expansions in powers of A can be expected to approx-
imate the full theory.

Once the spurious pseudosolutions are excised, the size
of the solution space remains constant, order by order.
Furthermore, the pseudosolutions are often associated

with predictions of unnatural behavior, such as kinetic

energy unbounded from below. This behavior itself is not
reason enough to justify excising them as solutions, but it
can drastically change the quality of the solutions of the
theory. One example of this behavior is the loss of stabil-

ity of flat space. Flat space is known to be stable in the
classical theory of general relativity, as demonstrated in

the positive-energy theorem [10], but not in the case of
unconstrained semiclassical gravity [3].

III. HIGHER-DERIVATIUE EXPANSIONS

f(c)—a, —ca, —c'a, — c~a„=o(—c"+') . (12)

In general f and the a„are functions of more variables

than just c..
Asymptotic power series may be added, subtracted,

and multiplied freely. Division is only permitted when
the a0 of the denominator is nonzero. In algebraic
language, the system is a commutative ring with zero
divisors (expressions with a0=0), where the role of the
zero element is played by 0(c +') [12]. Note that this
implies that if f (x)+cg(x)=0+0(c ), and f and g are
both zeroth order in c, then both f and g must vanish in-

dependently. Note also that the vanishing of the product
of two terms does not guarantee that either must vanish

[e.g., cXc=0+0(c )]. In semiclassical gravity, the role
of c. is played by A.

It is because of restrictions such as these that a fourth-
or higher-order field equation may only have a two-
parameter family of perturbative solutions. This occurs
when not all solutions to the perturbative field equation
are themselves perturbatively expandable (expressible in
an asymptotic series in the expansion parameter). Jaen,
Llosa, and Molina [12]have shown that, to any order, the
same amount of initial data suffices for all solutions ana-
lytic in the perturbative expansion parameter, for any

system of the form

dq d'qL=—gm q +gcV& q,

+0( n 1)+ (13)

The formalism of asymptotic expansions is mathemati-
cally well established [11]. We will present a brief over-
view of some of the more important concepts.

The "is of order" symbol, "=0( )," is defined as fol-

lows: if P, ( A P, for some constant A, independent of c,
for all c in a given region, then we say $,=0 (g, ). Tech-
nically the "=" is only part of the whole symbol and
does not represent a true equahty, but in practice this is
not usually a problem, and some typographic abuse is al-

lowable. In this paper, the region of interest will always
be the neighborhood around c, =0.

An Xth-order asymptotic power series is an asymptotic
expansion of the form

f(c)=a0+ca, +c a2+ . +c a~+0(c +'),

which, technically, is an abuse of the notation, and
should be written
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Ef (q, . . . , q' " ";E)=O(E"+') (15)

and there are no others (from the invertibility of
() Vt/Bq'"()qII) ). Secondary constraints are given by
time differentiating (15). There are 2n —2 sets of N con-
straints in all, and these may be rearranged to take the
form

where c is the perturbative expansion parameter, m is
the mass of particles a=1, . . . , X, and the matrices
8 V&/Bq'"Bq&" are regular. Their proof demonstrates
that all but N of the functions that determine the canoni-
cal momenta in terms of the generalized velocities cannot
be inverted within the formalism of perturbative expan-
sions. This noninvertibility corresponds to the presence
of constraints, which are then shown to be second class
(in Dirac's terminology). The constrained system has the
same number of degrees of freedom, N, for any order of
expansion n. This result can be generalized to more com-
plicated systems, such as minisuperspace cosmological
models of gravity and linearized gravity. The proof (to
first order) for linearized gravity in fiat space has been
done [5], and the proof for homogeneous isotropic solu-
tions to semiclassical gravity is described below. For the
case of semiclassical gravity, n =2, c =A, Q„ in the field

equations is generated by V2, and V, =0 (but only rough-

ly speaking, since there are also first-order constraints,
e.g. , from the lapse and shift).

A sketch of the proof of Jaen, Llosa, and Molina runs
as follows. The Euler equation derived by varying the
Lagrangian of (13) takes the form

8 Vg

(n)g (n)
@=i qp q&

+f (q, q
"—.E) O(En+)) (14)

Since we may not divide by c., the Hessian matrix
8"3 V&/3q'"3q& ' cannot be inverted within the perturba-
tive formalism. The noninvertibility of the Hessian ma-
trix signifies a primary constraint, given by the inner
product of the null vectors of the Hessian with (14). In
this case, any vector proportional to c. is a null vector, so
the primary constraints are

monic oscillator (for a fuller treatment, including quanti-
zation, see Simon [13]). This model simply displays the
appearance of higher derivatives in a perturbative expan-
sion, and it has the important advantage of being exactly
soluble. The model's equation of motion is

x(t) =
co()f ds e '

—,'[x (t +Es )+x (t —Es)], (18)

where choo& 1. This is a harmonic oscillator with a non-
local potential, in the sense that the force is linear in dis-
placement, but it depends not only on the position of the
spring at a specific instant, but also on the position in the
past and future (with heavier weighting of times near the
present). In the limit E~0, we regain the simple
harmonic-oscillator equation x = —~ox.

The two-parameter family of exact solutions is given by

x = A cos(cot+(t ),
where A and P depend on the initial conditions and

co =co()( —'+ —'+l+4E a)())2

(19)

(1—E +2E a)o+ ) (20)

is the new effective frequency due to nonlocal effects.
One may also solve the system perturbatively and com-

pare the result with the exact solution. Since both the
equation of motion and the general solution are perturba-
tively expandable in c, there should be no obstacles. The
equation of motion becomes

x= —co()(x+E x+E x' '+E x' '+ ) . (21)

There appears to be an arbitrarily high number of degrees
of freedom due to the infinite sum of higher derivatives.
In fact, we know that the exact solution has only two ar-
bitrary parameters, so all other degrees of freedom not
corresponding to A and P must be excluded implicitly by
demanding that the sum converge. If we truncate at any
finite order, though, we lose the implicit constraints, and
we must then explicitly exclude nonperturbative solu-
tions. Truncating (21) at E or E and solving gives no
trouble because the equation of motion remains second
order and gives the correct answers

q'"' —m ' g E'B „,(q, )q= 0(
"E+'),

s=0

r=2, . . . , 2n —1.

E: x = A cos(~at +(t ),
x = A cos(co2t+(t))

(16)
to the appropriate order in c, where

(22)

'a ='a;((a, a )+))fa'((a, a ),

ii=ii, ((a, a }+A'a) (a, a ) .
(17)

Since proof of Jaen, Llosa, and Molina is somewhat
technical, an easily followed example which demonstrates
its usefulness is in order. The model is a nonlocal har-

The proof then shows that the 2n —2 constraints are
second class, leaving only one pair of canonical variables
per particle freely specifiable as initial conditions. The
analogous theorem for the slightly more general system
where m =m (q) can be proven in a identical matter,
whenever m WO. For the semiclassical gravitational
case (9), the constraints will take the form

co&=coo(1 —E coo+ . )=co +O(E )

is an easily calculable function of c. and coo. Truncating
(21) at higher orders, however, gives an extra pseudosolu-
tions that are not perturbatively expandable in c,,

1 1
x = A cos(ro4t+P)+B cos(yt+f), y ——

ECOO

(23)
x = A cos(co6t +(())+B+cos(y+ t +g+ )

1 1+B cos(y t+g ), y+-—
Q+i ECOO

and so on, where a)z„ is a (calculable) function of E and coo
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E'x+ e'co~2 =O (e'), (25)

take two time derivatives,

e4x'4'+E4co~P =O(E'),

and substitute back into (24) to get

x( 1+e coo —e coo)+coox =0 (c. ) .

(26)

We are still forbidden to divide by any expression con-
taining E, but we may multiply by the reciprocal if it ex-
ists. Since

(1+E coo
—E coo)(1 —

E, coo+2e coo) =1+0(e ),
the final form of the equation of motion is

x+coo(1 —e~too+2e coo)x =O(s ) .

(28)

(29)

Compare this with {20) to see that this gives the correct
answer to the full equation of motion (to order e ), and
compare with the first line of (23) to see that this also
agrees with the method of first solving for all solutions
and afterwards excising all nonperturbative pseudosolu-
tions. From the latter comparison we see that all pertur-
bative solutions were found [this was guaranteed by there
being a Lagrangian in the form of (13)].

in each case and co&„=co +O(e "+
), where co is defined

in (20). The extra pseudosolutions found here, being
nonanalytic in c., are quite similar to the Starobinsky
inflationary solution found already in (10), which is non-
analytic in A.

Thus, the simple model is an explicit example of how
abandoning the perturbative formalism for the solution
simply gives the wrong answer. Retaining the perturba-
tive formalism (that is, excluding, by the appropriate con-
straints, all nonperturbative results) gives the correct
answer, to any order. We see that when the order of
derivatives grows with the order of expansion, it alerts us
that the higher derivatives do not represent dynamical
degrees of freedom but are artifacts of the expansion.
Keeping only perturbative solutions is the only self-
consistent path available [14].

Solving for all exact solutions of the truncated expan-
sion and then discarding all solutions not perturbatively
expandable, while a valid procedure, is computationally
wasteful and may not always be possible. A more feasible
prescription is to solve the equations of motion while
remaining, at every step, strictly within the perturbative
formalism. This guarantees that only perturbatively ex-
pandable solutions are found. For systems which are de-
rived from a Lagrangian in the form of (13), it is
guaranteed that all such solutions can be found.

As an example, we solve the model oscillator system
introduced above, truncated to powers of c. , remaining at
all times strictly within the perturbative formalism. The
equation of motion is

x+~2~ +E'~~2" +E'~2~ "'=O (e') .

Dividing by c. is forbidden if the equation is to remain a
perturbative expansion to 0 (c, ). Instead we multiply by
~4

IV. SEMICLASSICAL GRAVITY
AND DE SITTER SPACE

First we review the classical de Sitter solution. For a
metric given by (8), the classical field equation is

a k A0= +
Q Q

(30)

and for k =1, A must be positive. The most general spa-
tially closed solution is

' 1/2 1/2
3 A

a = — cos — (t t )—
A 0 (31)

Matterless classical general relativity cannot undergo ex-
ponential expansion without a cosmological constant.

When semiclassical corrections are added, we might
expect the behavior of solutions to not alter drastically,
assuming we examine only physical solutions to the semi-
classical field equations. This turns out to be the case (it
may happen that for some solutions the semiclassical ap-
proximation breaks down [15]). We begin by solving (9)
for all solutions that are perturbatively expandable in A.
The method used is essentially the same as used in the
higher-derivative harmonic-oscillator system above. The
first step is to multiply (9) by A (recall that a, f3, and y are
all proportional to A'):

2

+ ——=O(A' ).
a a

(32)

In a similar way, it is straightforward to analyze the
case of linearized semiclassical gravity near flat space.
This was done explicitly in a previous paper [5]. Since
semiclassical gravity is a perturbative approximation to
the full eft'ective theory of quantum gravity, there is no
reason to believe that nonperturbative solutions to the
semiclassical field equations are any more valid than the
nonperturbative pseudosolutions found in the above ex-
ample. For self-consistency, only perturbatively expand-
able solutions should be considered physical. It was
found that, to first order in A', the physical solutions of
linearized semiclassical gravity near flat space are identi-
cal to the solutions of linearized gravity near flat space
(i.e., the semiclassical corrections to the classical solu-
tions all vanish on the flat background). Since we know
classical gravity is stable near flat space (from the
positive-energy theorem [10]), then semiclassical gravity
is also stable, to first order in A. Its stability is not proven
to all orders, but neither are there any indications to the
contrary. If the pseudosolutions were also to be inter-
preted as physical, then the many indications of its stabil-
ity [3] would all be valid, resulting in a theory that cannot
describe the physics of our Universe.

So, for two reasons, self-consistency and experiment,
we should consider perturbative semiclassical theory as
the "correct" semiclassical gravity, or at least as a poten-
tially correct theory. Semiclassical gravity that does not
exclude pseudosolutions cannot be considered even a po-
tentially correct theory. Next follow some of the cosmo-
logical consequences.
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We also need the first and second time derivatives of this
equation:

AA=A 1 —y—
3

(37)

4 ~ ~ ~ 3

fi 2 —2 —2 =O(i)i ),
a a a
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ k2 +2 —10 +6 —2 +6
a a a a a a

=O(fi') .

Using (32)—(34) to simplify (9) gives
T

a k A A+ ———6(a+P)(0)+y =0 (A' )
a a 9

or

a k A+ ——=O(fi ),
a a

where

(33)

(34}

(35)

(36)

The corrections proportional to a and j3 both vanish [16].
The remaining equation of motion for the scale factor is
of the same form as the classical case (30), with a (small)
quantum correction to the cosmological constant propor-
tional to A . Thus a11 physical semiclassical solutions are
the same as the classical solutions with A~A:

' 1/2
3

cosh
A

' 1/2
A (t t )—
3 0 (38)

In particular, there are no de Sitter (or de Sitter-like)
solutions for zero cosmological constant. Starobinsky
inflation is not a physical solution.

The careful reader might be suspicious that other phys-
ical solutions might have been lost in the derivation of
(36). That this is not so can be proven from the fact that
(9) is derived from the action

S o- f dt — +Nka N a ——6(a—+P)a a A N2a 2a

N 3 N'
2Naaa a a a 2ka Nk

Na a

~ 4

+p
3N a

2ka 2 Nk2

Na a
+O(i)i ), (39)

where N is the lapse function and the gauge N =1 is
chosen to recover the metric of (8). This is almost in the
form of (13), on which the proof of Jaen, Llosa, and Moli-
na [12] is based, with the diff'erences that the mass term is
not constant and that there is a nondynamical variable N,
giving a first-order (gauge) constraint. A slightly general-
ized theorem that does apply to (39) is straightforwardly
proven by the same method (for all times such that a,
which acts as a nonconstant mass term, does not vanish
[17]). This guarantees that all perturbatively expandable
solutions to (9) are solutions to (36).

Next we examine the case of linearized gravity.
Linearized gravitational fluctuations h„=g„—g„,(0)

where g„'
' is the de Sitter background metric, obey the

classical field equations

0+0 (h„)=5(R„,——,'g„R +Ag„, )

= —
—,'Clh„„—) V„VP +V V(„h )

+ —,'g„( h VV ph ~+ Ah )
——Ah „„(40)

(with no gauge fixing), where all derivative operators are
covariant with respect to the background metric [18]. At
present, there exists no definitive proof of whether solu-
tions of general relativity with a positive cosmological
constant approach the de Sitter solution at late times (the
"cosmic no-hair conjecture"). This, in some sense, would
be a de Sitter analogue to the positive-energy theorem, by
showing the stability of de Sitter space to (not necessarily
small) perturbations. The behavior of linearized gravita-
tional perturbations in background de Sitter space is
known, however [19]. The helicity two perturbations

I

freeze in (become constant) at late times. Locally, the
freezing in occurs exponentially fast, and is pure gauge
(though only locally). In this sense, at least for small am-
plitude perturbations, de Sitter space can be considered
classically stable.

Before beginning the analysis of semiclassical correc-
tions to gravitational waves on a de Sitter background, it
is important to determine their regime of reliability.
Semiclassical corrections (first order in A') to perturbative
gravity (first order in h„,) are actually second order in
perturbative parameters. We are only concerned with re-
gimes where corrections second order in A are too small
to be considered, but we do wish to examine terms that
are first order in both h„and A'. If A' is sufficiently small
that terms second order in A can be neglected, but h„ is
sufficiently large that terms first order in both h„and A

are measurable, then effects second order in h„, (which
we will not calculate} will dominate those effects that are
about to calculate. Any predictions of the terms we will
calculate must be taken in this context. There is one use-
ful prediction we might extract. If the terms second or-
der in h„do not predict any instability of de Sitter space
(in the sense defined above by the cosmological no-hair
theorem), but the terms first order in both h„and fi do,
then the semiclassical instabilities might eventually dom-
inate. What we will find, however, is that the semiclassi-
cal corrections to gravitational perturbations do not pre-
dict any instability, and therefore no predictions will be
made at all ~

The semiclassical field equation for linearized, gravita-
tional perturbations on the semiclassical de Sitter back-
ground given by (38) is
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O(fi )=5(R„—,'R—g„+Ag„+a'"H„+P''H„, +y' 'H„)

h„——,'V„V h +V V~„h„~+—,'g„„( h —V V&h ~+Ah) —Ah„„—(a+ ,'P—)g„Oh —
—,'PO h„„

+(a+ —,'P)V„V h —(a+ —,'P+ —,'y)Ag„Oh —(4a+ —,'P —
—,'y)A h„„+(2a+P)AV~VP

—
( —', a+ —,'P+ —,'y}A g„h+(—,'a+ 4P+ —,'y}A h„„+(2a+—,'P)g„,OV H —(2a+P)V&V„V

+POV(„H„)—(2a+ —,'P —
—,'y)Ag„„V H +(8a+—', P——', y)AV(„H, ), (41}

where H, =V„(h"—
—,'5"„) vanishes identically in harmon-

ic gauge, and all sums over Greek indices are performed
with respect to the background metric given by (8) and
(38} [not (31)]. A and A may be freely interchanged
whenever preceded by a coefficient of order A.

To find perturbatively expandable solutions to (41), the
same strictly perturbative procedure as used above is ap-
plied. Multiply (41) by A, take time derivatives as neces-
sary, and substitute back. The resulting equation is con-
siderably simpler:

0(A' )= —
—,
' h„„,'V„—V J—t+V V(„h„)

+ ,'gp, (Oh —VV'—~+Ah) —Ah„„

(42}

Contributions proportional to a and P vanish. All
higher-derivative corrections vanish. The only nonvan-
ishing semiclassical correction is the last term. This is
only a small correction of the same form as the preceding
term, and it does not change the results of the stability of
de Sitter space (from localized gravity modes).

V. CONCLUSION

The effective action of semiclassical gravity is derived
as a perturbative approximation to the full (nonperturba-
tive) efFective action. It takes the form of a polynomial in
A', where terms higher order than A are ignored. All in-
formation of nonperturbative and higher-order behavior
has been discarded in this approximation, and this is ines-
capable in any derivation of the semiclassical field equa-
tions. Because of higher-derivative terms in the first-
order corrections, however, there appear nonperturbative
solutions to the semiclassical field equations. Since all
nonperturbative information has already been lost, these
nonperturbative solutions must be artifacts of the expan-
sion, not indicative of new dynamics. By remaining
within the perturbative formalism at every step of solving
the field equations, all physical solutions are found and
all nonperturbative pseudosolutions are avoided. This is
achieved with mathematical rigor by treating the pertur-

bative expansion formally as an algebraic ring with zero
divisors, and by remaining within this formalism until all
(physical) solutions have been found.

A simple model demonstrated the appearance of non-
perturbative pseudosolutions unrelated to the nonpertur-
bative behavior of the full field equations. For consisten-
cy the pseudosolutions must be excluded. This excising
of the pseudosolutions is especially significant for semi-
classical gravity, where if the pseudosolutions were inter-
preted as physical, they would predict the instability of
flat space.

At its weakest, the strictly perturbative method of solv-
ing higher-derivative expansions is a self-consistent
method for removing ill-behaved (e.g. , negative kinetic
energy) solutions. At its most powerful, the method cuts
through to the heart of the problem, bypassing the
mathematical artifacts created by perturbatively expand-
ing a higher-order action.

Starobinsky inflation, a class of de Sitter solutions to
the semiclassical field equations driven solely by higher-
order curvature effects, might potentially be useful in
driving an inflationary epoch without requiring addition-
al matter fields. Unfortunately, Starobinsky inflation was
shown above to not be a physical prediction of self-
consistent semiclassical gravity. Even if one were to as-
sume that the nonperturbative solutions to semiclassical
gravity, by chance or accident, were approximations to
solutions of the full nonperturbative effective action, thus
allowing Starobinsky inflation, then the prediction of in-
stability of flat space would also follow. This is clearly in
conflict with experiment.

Semiclassical corrections to linearized gravitational
fluctuations on a de Sitter background were also exam-
ined, but no signs of instability were found.
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