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Branching ratios and CP asymmetries in the decay B:VV
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We carry out a systematic study of branching ratios, angular correlations, and CP asymmetries
in the decay of neutral and charged B mesons to final states consisting of two vector mesons. The
renormaiization-group-improved effective Hamiltonian is evaluated in the vacuum insertion (factor-
ization) approximation. Okubo-Zweig-Iizuka suppressed aud annihilation terms are neglected. Cur-
rent matrix elements are evaluated using the wave functions of Bauer, Stech, and Wirbel. Branching
ratios and angular correlations among subsequent decays of the vector mesons are calculated for 34
channels and a comparison is made with the data. As a first approximation, the calculational scheme
provides a useful framework with which to organize the data. Interesting direct CP asymmetries are
particularly evident in A'u and E'p final states, where branching ratios are moderate. They are
excellent probes of penguin term influence on decay amplitudes. Even larger direct asymmetries are
present in up and pp final states where, however, branching ratios are low and results are very model
dependent. We show how B -B mixing phases are influenced by phases in the direct amplitudes.
The effect is particularly strong for A" D' final states.

PACS number(s): 13.25.+m, 11.30.Er, 14.40.Jz

I. INTRGDUCTIGN

The nonleptonic weak decays of 8 mesons are very
interesting for several reasons. First, CP violation in
the B-meson system will eventually give us information
about the CP violating phase in the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix [I]. Second, nonleptonic
weak decays will give additional clues for determining the
absolute values of the quark mixing parameters, in par-
ticular, the fundamental ratio ~V„t,/V, s~, although it is
expected that more solid information on this ratio will
come from semileptonic B decays. Last, the dynam-
ics of the nonleptonic weak decays in the framework of
the standard model is not yet well understood. One of
the problems in calculating the transition amplitudes for
nonleptonic weak decays is that one needs to evaluate the
hadronic matrix elements of certain four-quark operators
which can be done in QCD only with nonperturbative
methods. With luck it is possible that weak phases and
CKM matrix elements can be extracted from the data
in a way that is independent of the hadronic dynamics.
Otherwise it is clear that in order to gain information
on the ~V„g/V, s~ ratio or on the CP violating phase from
nonleptonic B decays further progress is needed in com-
puting the relevant hadronic matrix elements for these
decays.

The usual route to calculating these hadronic matrix
elements for B decays is to start from the effective, QCD
corrected, Hamiltonian for the Ab = 1 nonleptonic de-
cays in the six-quark model (i.e. , including the t quark)
[2],[3]. This gives the weak Hamiltonian in terms of four—
quark operators. For computing the hadronic matrix el-
ements of these four —quark operators the factorization

approximation is used [4]. Then the hadronic matrix
elements are given in terms of current matrix elements
(matrix elements of two —quark operators) as they ap-
pear also in semileptonic decays. These current matrix
elements are much easier to calculate and many models
have been proposed for them.

In this paper we intend to apply this framework for
calculating nonleptonic Bo and B decays into two vec-
tor mesons. Actually this has been done in the past by
various authors [5], in particular, by Bauer, Stech, and
Wirbel (BSW) [6]. Concerning current matrix elements
we shall use their results, which they obtained from rel-
ativistic oscillator wave functions at infinite momentum.
It is the purpose of this paper to calculate systematically
all nonleptonic decays of Bo and B mesons into two
vector particles Vj and Vp independent of whether they
have large or small branching ratios. However, we ex-
clude from our consideration channels which arise purely
from penguin diagrams. Since in the near future due
to the efforts of the ARGUS and CLEO Collaborations,
measurements of B decays with branching ratios as small
as 10 4 seem experimentally feasible we find it timely to
get an overview about all two-body vector decays of B's
which are possible on the basis of the complete eA'ective
weak Hamiltonian for Lb = 1 nonleptonic decays in the
context of the CKM mixing matrix.

In addition to rates we shall calculate the full angu-
lar distribution which can be obtained by measuring the
combined angular correlations of the decay products of
V~ and V2. These coeKcients of the angular correla-
tions serve as further tests of the combined short-distance
weak eR'ective Hamiltonian factorization approach to-
gether with the BSW current matrix elements. In ad-
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dition we intend to look at asymmetries which occur in
the decay of the B into two vector mesons which in the
absence of unitary phases are signals of CP violation in
the b sector. These CP-odd asymmetries can originate
only through interference of at least two amplitudes con-
tributing to the same process with different phases com-
ing either from genuine CP violating efFects in the CKM
matrix or from unitary phases from hadron dynamics. To
generate the CP violating effects, in the absence of uni-
tarity phases, we need the full effective weak Hamiltonian
including QCD renormalization effects when ffavor sym-
metry breaking (FSB) is considered. For the b sector the
FSB effects enter via the penguin diagrams as proposed
by Shifrnan, Vainshtein, and Zakharov [7] for the s sector,
and via box diagrams. This full Ab = 1 effective weak
Hamiltonian has been calculated by Ponce [3] following
the work of Gilman and Wise [2] for the strange sector,
where FSB eff'ects enter only via the penguin diagrams.

Concerning final-state interactions and strong phases,
our philosophy in this work is to present our results for
the most part as if they ivere not there. If they can
be calculated, their effects can be included as sketched
in Sec. III. Attempts at this difficult calculation have
been made along two approaches: (1) absorptive parts
of penguin diagrams at the quark level [8), [9] and (2)
I&-matrix formalism [10], [11] at the hadron level. We
intend to return to this matter in a future publication.

VVe shall try several approximate versions of the Ponce
Hamiltonian in order to get an overview on the depen-
dence of QCD corrections and/or penguin terms. In ad-
dition we shall invoke also the N, —+ oo limit when eval-
uating the hadronic matrix element to have a realistic
model for some of the suppressed B decays [6].

In Sec. II we briefly recapitulate the weak efFective
Ab = 1 Hamiltonian and discuss the influence of the
penguins and/or QCD corrections in the different sec-
tors. The resulting effective Hamiltonian is then applied
to the calculation of two-vector-meson decays of Bo and
B mesons. Here we use the factorization or vacuum
saturation approximation (VSA). (In the text the final
formulas are given only for one decay channel of B and
8 . The results of all the many other channels are put
into Appendix B.) Section III contains an outline of the
calculation of helicity amplitudes in terms of the invari-
ant amplitudes of current matrix elements as used in the
BSW model. The angular correlations are also written
down in this section. Their derivation is relegated to
Appendix A. The matrix elements in the VSA are writ-
ten down in Sec. IV. We report our results in Sec. V
and discuss their relevance for future experiments and
refinement of the theory beyond the approximations for
the calculation of weak hadronic matrix elements of B
mesons used in this effort. Section VI is a brief summary
and overview with some concluding remarks.

m~ ~ oo the nonleptonic Hamiltonian has the usual
current x current form

(J„J~++H. )2

where in the CKM model the current J„ is

J„=uy„(1 —p5) d + cy„(1—ys) s + ty„(1 —ys) b

As = 0, Ab = —Ac = 1

G
U„'qv, b (du) (cb); (2.2a)

Ac = 0, Ab = As = 1:

Hq —— [ V„',V„i (su) (ub) + V,', V, i, (sc) (cb)
2

+V,;Vgi, (st) (tb)]; (2.2b)

Ac = As = 0, 4b =

H3 — [ V„'dv„it(du) (ub) + V;qv, b (dc) (cb)
G

2

+v, '„v„(dt) (tb)]; (2.2c)

Ab= As= —Ae= 1

G
H4 —— V„', V, i, (su) (cb)

2
(2.2d)

Ab = Ac = As = 1

Hs —— V„"i, V„(sc) (ub);2" (2.2e)

As = O, Ab = Ac = 1

G
Hs —— V,~ V„i, (dc) (iib),

2
(2.2f)

with color indices summed over. Here d, s, b, are the
transformed eigenstates of the weak interactions which
are related to the strong interaction eigenstates d, s, and
b by the unitary CKM matrix V [1]. G is the Fermi cou-
pling constant. The part of (2.1) responsible for b,b = 1
transitions has six different pieces which, following Ponce
[3], are

II. THE Ab = 1 EFFECTIVE HAMILTONIAN

In this section we begin with a short description of
the different pieces of the Ab = 1 weak Hamiltonian. In
the absence of strong interaction effects and in the limit

where U~ is the ij element of the matrix U.
(ab) (cd) refers to the color-singlet structure
a, p& (1 —y5) b;c&y" (1 —y&) dz (sum over i and j under-
stood).

When strong interactions are present the H~,
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H2, . . . , H6 are modified. At very high energies, i.e.,
for energies above m~, the strong-interaction eA'ects are
negligible and the eA'ective weak Hamiltonian for the
b, b = 1 sector is described by (2.2a) —(2.2f). For en-
ergies below m~ the strong-interaction renormalization
effects will change the weak Hamiltonian. The opera-
tors in (2.2) get diferent coefficients and in addition new
operators are produced with coefricients which are ob-
tained from solutions of the renormalization-group equa-
tions (RGE's), i.e. ,

H„'„=) ao, , (2.3)

Oiy = (du)(cb) + (db)(cu) . (2.4)

where at short distances only a finite number of new op-
erators, i.e. , only the lowest-dimension operators 0, , are
relevant. The coefficients a; are functions of mdiv, of the
subtraction point p and for the cases of FSB they are
functions of the heavy-quark masses m&, mb, and m, . In
this respect the various pieces of H k look quite different
after renormalization. Only for H2 and Ha do the FSB
effects enter via the box and penguin diagrams and new

operators 0; appear. For all the other cases, Hi, H4,
H5, and H6, there are no penguin contributions. Then
the eff'ect of the QCD corrections is as follows. (We con-
sider Hq as an example. The pieces H4, H5, and H6 are
treated in an analogous manner. ) In the RGE procedure
the operators that renormalize multiplicatively are

Taking the subtraction point p = m, the weak interac-
tion Hamiltonian Hi in (2.2a) is changed through QCD
corrections into the form

Hi = V'gVg(c Oi + c+Oi+),
2 2

(2.5)

where, for 0,, = 1, m~ ——100 GeV, m~ —30 GeV, my ——

5 GeV, m, = p = 2 Ge V the coe%cients cy take the
following values: c+ ——0.??4, c = 1.669 [3]. For
c~ ——c = 1 we recover the uncorrected Hi in (2.2a).
For H4, H5, and H6 the analysis is exactly the same and
follows by changing Oiy ~ 04', Osy, 06y with the
same coefficients cy as given above. Since Ponce's calcu-
lation the limits on the top mass have steadily increased.
Thus the coefficients would change especially since now
it is believed that mq ) m~. We have examined the
changes which would occur if Ponce's calculation were
to be repeated with much larger mq. It was found that
the changes are not significant in particular in view of
uncertainties due to the scale of p in connection with

AgcD, i.e., e, . Therefore we decided in this survey that
we would continue to use Ponce's coefIicients which in
any case will be modified for phenomenological reasons
in various models given below.

In the case (2.2b) and (2.2c) penguin diagrams enter
and the analysis becomes rather complicated. Let us con-
sider (Hz), for example. For energies above miv the ef-
fective weak Hamiltonian is given by (2.2b) which, using
the relation V„; V„y + V,,V,t, + V,;V~b

——0 following from
unitarity of the CI&M matrix U, is written as

TABLE I. Comparison of various models for the amplitude coefticients. The eight independent
combinations in the erst column take the indicated values in various models.

Amplitude
Coefficient
N, =3

No /CD Value

N, =3 N, =oo

BSW Model 0(a, ) Model
Fit to B Decays

/CD Value
is ~or

N, =3 N, =oo

s~c+ + ac 1 a1 ——1.1 1.07 1.22

1 1-C+ —-C3 3 3
1
3 -0.041 -0.45

sci + pcs
1 1

sCR + 2C1
1 1

ai ——1.1

as ———0.24

1.09

0.17 -0.22

sC3 + sC4
1 1

sC4+ &Ca
1 1

-0.10 -0.036 -0.042

0.005 0.019

scs+ scs 0 -0.20 -0.10 -0.005

-0.005 -0.005
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TABLE II. Given for the channels in the first column are branching ratios (column 2),
B B-mixing parameter (column 3), transverse to total decay rate ratio (column 4), and
coefficients of the indicated azimuthal terms in the angula. r distribution, where P is the
angle between the Uz and Uz decay planes (columns 5 and 6). The input CKM parameters
are those of Ref. [24] (p positive solution. ) The model for the effective Hamiltonian
coefficients is O(o, ) QCD with Fierz terms. These channels have no penguin diagrams.

Channel B (%) CXy CXg

[cos4] [cos2$]
Channels without penguins: Es = 0, b.b = —b.c = 1 (Hz)

B' -+ co + D' 0.0362 -0.657 0.284 -0.511 0.0402
B —+ p + D' 0.0371 -0.659 0.280 -0.509 0.0395
B -+ p + D'+ 1.03 -0.787 0.126 -0.426 0.0402
B -+ p + D" 1.65 — 0.153 -0.448 0.0417

Channels without penguins: b,b = b.s = —b, c = 1 (H4)
B ~ K' + D'+ 0.0549 -0.778 0.161 -0.471 0.0519
B' -+ K"+ D" 0.00448 -0.665 0.304 -0.537 0.0549
B ~ K' + D" 0.0903 — 0.189 -0.490 0.0538

Channels without penguins: Eb = Ec = Es = 1 (IIs)
B ~ K"+ D' W 0.00104 0.428 0.304 -0.537 0.0549
B ~ K' + D" 0.00104 — 0.304 -0.537 0.0549

Channels without penguins: b.s = 0, b.b = Ec = 1 (JIs)
B -+ p+ + D' 0.000401 -0.432 0.281 -0.509 0.0396
B' -+ p' + D' 0.0000222 -0.432 0.280 -0.509 0.0395
B -+ cu + D" 0.0000217 -0.431 0.284 -0.511 0.0402
B ~ p + D' 0.0000445 — 0.280 -0.509 0.0395
B ~ p + D' 0.000401 — 0.281 -0.509 0.0396

where

[ V:.Vt [( )( b)-( c)( b)]
2

+V,*, Vrt, [(su)(6b) —(st)(tb)] }

2 2
[ v,*,v, b (o;, + o; )

+vr;V(y (0,'++ 02 )], (2 6)

= ( b)r, ( )r, o = ( *b)L, ).(5&)
q

02 — (s;b;)~(u;u;)~, Os — (sA'b)~ ) (qA'q)R,

Os = (sb)i ) .(~~)i os = (sb)i ) .(~~)~

(2.9)

O2+ = [(su) (ub) + (sb) (uu)] —[(s~) (~b) +(sb) (~~)]

(2.7)

For B decays we are interested in H2 down to energies
tc = m, . In this case the penguin contributions introduce
new operators so that H2 takes the form [3]

The coeFicients cy, c1, c2, c3, c4, c5, and c6 have been
calculated by Ponce [3]:

0.774, c = 1.669, c1 ———0.443,

cg —2.316, c3 ——0.037, c4 —— —0.084,

H2 = —
~ V,*, v, g (c+O~+ + c 02 )2 2

6

+V,;V& ) c;0;)
i=1

with

(2.8)

c5 ——0.052, c6 ———0.010 .

We notice that c~ are unchanged as compared to cy in
H1. Down to K = m, the operators 0+ still renormalize
multiplicatively as in H1. The subscripts I and R refer to
the Dirac operators I = p„(1—ys) and R = 7„(1+7s),
respectively.

The Ac = As = 0, Ab = 1 sector is treated analo-
gously. The Hamiltonian Hs in (2.2c) is written as
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H3 ——

2 2
[ V,'q V,g (03+ + 03 )

system (pq + p2 ——0) we have Aq
——A2 = A. We use the

notation

+V,zVqq (Os++ Os )], (2.11) H„=& V, (A) V, (A) iH'kiBo & (3.1)
where

03 = [(«)(ub) + (db)(uu)] —[(dg)(gb) + (db)(gg)]

(2.12)

Penguin diagrams are present again. For H3 we have
the analogous formula as (2.8) with the replacement of
the s quark, in all places where it occurs in the operators
and the CKM matrix elements, by the d quark.

In thefollowing weshall consider all B and B decays
into two vector mesons which can proceed through H~,
H~, . . . , H6. We shall limit ourselves to those channels
which have contributions from W emission, i.e. , Oy, and
possibly penguin contributions, i.e. , through operators
03 04 05 OQ . We shall not consider channels that can
occur via penguins only, since they have extremely small
branching ratios. As we shall see, some of the decays
which are calculated also have rather small branching
ratios too. We include them in order to find out the origin
of the reduction of these branching ratios. Of course in
some of the cases, as for example, the decays induced by
H&, this is obvious because of very small CKM mixing
elements. We group the various decays into those without
penguin contributions, i.e., those induced by H&, H4, H5,
and H6 and the decays with penguin terms which are
calculated from Hg and H3. The list of transitions with
mixed contributions internal, W emission and penguins is
given in Table I ordered according whether they proceed
through H2 or H3, respectively. The transitions without
penguins ordered with respect to Hq, H4, H5, and H6
can be read off from Table V.

A large fraction of these decays have been considered
in the past [5, 6] mostly to estimate decay rates. Re-
cently Chau et al. have completed a calculation of B
decay branching ratio from a similar calculational point
of view for charmless B decays [12]. The interference
of internal W emission and penguins was calculated also
in some detail by Valencia [13] for the special channel
B ~ uI~* using the Ponce Hamiltonian H2 with the
aim to obtain predictions for angular correlations and CP
violation signals. As it will be apparent later, this work
is an extension of Valencia's work in several respects.

In the next two sections we calculate the matrix ele-
ments for the decays listed in Tables II and V.

III. MATRIX ELEMENTS AND DECAY
CORRELATIONS

To calculate decay rates and angular correlations we
need the matrix element

for the helicity matrix element, A = 0, +1. The rate I' of
the decay Bo ~ Vj V2 is given in terms of the Hp by

..(IH. I'+ IH+ I'+ IH- I'), (3.2)

where p = ~pq~ is the momentum of Vq in the BP rest
system. We have three independent helicity amplitudes
HO, H+~, and H ~. They can be expressed by three in-
variant amplitudes a, b, c, which are easier to calculate.
They are defined by the decomposition

Hg = ~g„(A)' c2„(A)'
~

ag"" + b p"p"
m$ mQ

CC+ ~""'pi.pp I,
myms j

where p = pq+p2 is the BP four-momentum. The masses
of Vj and V2 are mq and m~, respectively. rn is the mass
of the decaying BP a, b., c are defined as in Ref. [8). The
relations among Hyq, Hp, and a, b, c are

H„= a+ gz2 —1c,
Hp = —az —b (z —1)

where

p1p2
2 2 2

g
mg my 2m' m2

so that
rnlrn21 2( 2

m2

We also use the reduced width

(3 4)

(3.5)

(3.6)

f' = IH+ I'+IH- I'+ IHoI'. (3.7)

The helicity amplitudes Hp for the decay of B ~ V~ V2,
where Vj and Vg are the antiparticles of Vq and Vq, re-
spectively, have the same decomposition as (3.3) with
a~a, b~b, andc~ —c.

The coef6cients a, b, and c describe the s-, d-, and p-
wave contribution of the two final vector particles. They
have phases b from strong interactions, for example, com-
ing from final-state interaction of the two vector particles
Vj and V2 and weak phases P originating from the CP
violating phase in the CKM matrix. a, b, and c may con-
sist of several interfering amplitudes of different isospin
i. Then the phase structure of a, b, and c is

a = ) (a;[e"'+'~'

& Vj (Ay) V2(A2) iH k.niB

and similarly for the B decay. A~ and Ap are the he-
licities of the final-state vector particles Vj and Vg, with
four-momenta pq and p2, respectively. In the B rest

b = ) (b;)e' ~ +'~'

c = ) (c;)e"'+'~' .

(3.8)
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The superscripts in bo and Po, etc. , denote the angular
momenta in a, 6, and c. For the particle decay B
U1U2, the amplitudes a, 6, and c we have the same phase
structure as in (3.8) with the weak phases changing sign

This means the a;, b;, and c, have
0, 1,2 0, 1,2

the same strong-interaction phase and the opposite weak
phase as a;, 6;, and c;, For the case that there are no
strong-interaction phases, which we shall assume in the
models considered later, we have

a = a', b = b', andc = c'.
Since there is a sign change in front of c in Hg we have,
for the case of vanishing strong phases 6, ' '

doscalar mesons. These four specific cases, which cover
also all other cases in Tables II and V are

(i) B ~ I~"g, Ii' ~ I~7r, g ~ e+e

(ii) B ~ I~'p, I~' ~ I~z. , p ~ s7r,

(iii) B ~ D*D;, D" ~ Dn. , D,' ~ Dp,
(3 1o)

(iv) B ~ I&'u, I&' ~ Ixm, u -+ s'+s' m

H+1 = H~1 HP ——Hp . (3.9) (v) B ~~/, ~~z+z z, g~e+e
Next we present the formulas for the angular decay dis-

tributions. The exact form of these angular distributions
depends on the spins of the decay products of the decay-
ing vector mesons Vi and Vq. We considered five different
cases, depending whether one of the vector mesons de-
cays into two pseudoscalar mesons, into e+e, into one
pseudoscalar meson plus a photon, or into three pseu-

(vi) B ~ uu), u ~ s'+7r

The derivation of the angular distributions is straight-
forward and is sketched in Appendix A for case (i). Here
we give only the results. For B ~ IC'@ ~ (I&n) (e+e )
the differential decay distribution looks as follows:

d3I'
4 sin Oi (1 + cos Or) (IH+i I' + IH-i I') + c»' Oi sin' Oz IHo I'dcosOi dcos82 d 16'E m 8

—
2 sin Oi sin 82 cos 2P Re (H+iH' i) —sin2$Im (H+iH' i)

—
& sin28isin282[cosPRe(H+iHo + H iHo) —sinPIm(H~iHo —H Hi)oj} .

In (3.11) Oi is the polar angle of the Ia momentum
in the rest system of the K' meson with respect to the
helicity axis, i.e. , the momentum pq. Similarly Oq and
P are the polar and azimuthal angle of the positron e+
in the ib rest system with respect to the helicity axis of
the g; i.e. , P is the angle between the planes of the two
decays I&* ~ I&7r, and g ~ e+e (or p+p ). The in-
tegration over angles Oi, Oz, and P yields the integrated
width (3.2). The ratios

(3.11)
l

give numerical results for I'7/F and similarly for the co-
efficients of the cos 2g, sin 2P, cos P, and sin P terms in
(3.11), which are defined as

Re(H+ i H', )
IHol'+ IH+il'+ IH-il' '

Im(H+i H' i)
IHoI'+ IH+il'+ IH-il' '

and

IH+i I' + IH- i I'

IHoI'+ IH+ I'+ IH- I' (3.12)
Re(H+iHp + H iHp)

IHpl + IH+il + IH il' '

(3.14)

IHol'+ IH+il'+ IH il' (3.13) Im(H+iHo H-iHo)
IHol + IH+il + IH-il

measure the amount of transversely (longitudinally) po-
larized Ix ' (oi @). We have I' = I'L, + I'T. Later we shall

I

For case (ii) B ~ Ii'p ~ (Ii s') (ss) the decay angular
distribution has the form

d3I' p 9
dcosOi dcos82dg 16m m 4

x (-,' »n'Oi sin' 82 (IH+i I'+ IH-il') + cos Oi cos 82IHol'

+ z sin 8i sin Oq [cos 2g Re (H~i H' i) —sin 2P Im (H+i H' i)]
+—sin 28i sin 28' [cos P Re (H+, H p + H i Ho ) —sin P Im (H+ i Ho —H H i)]}o.4 (3.15)
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Clearly (3.15) can be used also for all other decays
where Vj and V~ decay into two pseudoscalar mesons.
The decay distribution of B ~ D'D; (iii) with D' ~
Dx (gr) and D; ~ D, y (Oz, P) is the same as (3.11), i.e. ,

the distribution for B ~ I~'Q with I4' ~ I&n (Or) and

g ~ e+e (ez, P). It is clear that the formula (3.11) can
also be used for B ~ D'D' where one of the D' decays
into Dx, and the other D' decays into Dy. The angular
distribution of B ~ I& ~ (ii) is the same as the distribu-
tion for case (iv), independent of whether one defines the
direction (Hz, P) by the momentum of one of the outgo-
ing pions, for example, the momentum of the x+, or by
the normal of the decay plane formed by the momenta
of x+,x, and x in the u rest system. The distribution
for case (v) is identical to the distribution of case (i) and
that of (vi) is the same as the angular distribution for
case ii .

In general the dominant terms in the angular correla-
tions are F~/F, Fr, /F, nr, and u2. The terms Pr and

P2 are small since they are nonvanishing only if the he-

licity amplitudes H+r, H r, and Hs or the invariant am-
plitudes a, b, and c, respectively, have different phases.
These phases can originate from strong or weak interac-
tions [see (3.8)]. In the models considered later we shall
have no strong-interaction phases. In this case the co-
efficients Pr and Pq are nonvanishing only through the
CP-violating phase of the CKM matrix under the con-
dition that they contribute differently to a, b, and e or
H+q, H ~, and Ho, respectively. As we shall see later
this will happen only for a very small list of B and B

(t) & = g+ (t) lB & + —g (t) lB
p

IB' (t) & = -g- (t) IB' & + g+ (t) IB' &
(3.16)

where lB & (lB &) are the Bs (Bs) states at t = 0,
q/p = (1 —~)/(I+~), and

(t) r Ff/-2 irn (iI ~ -Er't/2 iamt)
2 (3.17)

with I';, m;, i = 1,2 the width and mass of two neu-
tral mass eigenstates B; and b,F = Fz —Fr, and b, m =
rn2 —mq. For the B -B system we can neglect b I' and
obtain for the time dependence of the decay rate of B
and B (I' = Fr 1z) into a final state f and its CP
conjugate f:

decays. Under the simplifying assumption of no strong-
interaction phases, the asyrrrrnetry coefficients Pr and Pz
will give us the amount of CP violation to be expected
due to our present knowledge of CKM coefficients and
current matrix elements.

A different signature for CP violation is obtained when

one considers neutral B mesons only. Then it is possible
to generate interference via mixing by looking at final
states that can occur from B and B decays. For this
we consider the time evolution of 8 and B mesons.
This is generally written in the form [14]

2 2

I'(B (t) f) ~ —e "' lA(f) l + -A(f) +
l lA(f) l

—-A(f) cosEmt

+2Im
l

-A (f) A" (f) l
sin 6mt

/'q-

rkp
(3.18)

W 2 2

F( '(t)-f) ~ —.-"' lA(f) l+ "-A(fg + lA(f) l' —-" A(fg
)

+2Im
l

—A (fg A' (fg l
sin b,mt

/'p

cos 4mt

(3.19)

with A (f) = A (Bs ~ f) and A (f) = A (B ~ f). For
EF 0 the factor q/p is just a phase: p/q = (q/p)' and
we have

the difference of I'(B (t) ~ f) —F(Bo(t) ~ f) normal-
ized to the total rate (I' = Fr Fz ):

R

Im -A (fg A' (fg = —Im -A (f) A' (f)
q .J'

Iml —(Ho + 2H+rH-r)
I

/'q

&p

IHol'+ IH+r I'+ IH-r lz
(3.20)

According to (3.9) the helicity amplitudes Hg for the
decay B ~ VqV2 are connected to H~, the decay ampli-
tudes of B ~ V~ V2, so that in the case of common final
states for B and B decays we get for the quantity AI',

This quantity depends on the mixing phase q/p and the
weak phase of Ho2+2H+~H y. In some of the considered
decays Ho, H+&, and H ~ have equal weak phases. Then
EF/F is maximal if H+r ——H r [15, 16].

In the next section we shall calculate the helicity am-
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plitudes Hp with the help of the vacuum-saturation ap-
proximation, which we referred to as factorization in the
Introduction.

Pi = «~I~~IB & «2lj" Io &

+2= & ~2ilulB & & vilj"I0 &,

F3 —& V]Vglj„l0 & & Olj" IB
F4= «iv2lsl0 && 0IPI»

(4.1)

IV. MATRIX ELEMENTS IN THE
VACUUM-SATURATION AP PROXIMATION

To calculate the helicity amplitudes H~ we use the
vacuum-saturation approximation (VSA). It is clear that
we cannot expect this approximation to give accurate
predictions for the helicity amplitudes in all cases which
we consider. According to more recent investigation the
factorization approximation seems most accurate for de-
cays in which at least one vector meson contains a heavy
quark, as for example, in the final states D'p etc. [17].
In all other cases we must expect important corrections.
For these cases we shall regard the VSA as giving us or-
der of magnitude estimates for the Hp and also for the
resulting decay rates and angular correlation coeKcients.
Because the weak interaction Hamiltonian has in general
the form (2.8), within the VSA the decay amplitudes will
be linear combinations of the factors

The amplitude F4 with scalar and pseudoscalar am-
plitudes occurs when one Fierz arranges 05 or 06 in
(2.9). In our final evaluation we shall neglect the con-
tributions of F3 and F4 since the momentum dependence
of the form factors suppresses these terms with the typ-
ical factor mp / (m& —m&) where m) « mg is the
form factor mass in F3 and F4. It is clear that this ar-
gument becomes invalid for such cases where F1 and F2
are suppressed for other reasons. Nevertheless to get an
overview about the various decays we shall concentrate
on the contributions of F1 and F2 and neglect the weak
annihilation terms F3 and F4. The currents j& in F1 and
F2 are always left-handed currents.

In the following we shall write the matrix elements
for two specific channels which are induced by H2 as
given in (2.8) and by HP which follows from (2.11) and
(2.12), respectively. The first example is Bo ~ Ii*0/.
The matrix element for this decay in VSA is

& I~*'g IH'~I B' & =— ( & I~*a
I (sb)„ I

Bs && g I
(cc)"

I
0 & [—a A, + (as + cs) 2,]

+ & @ l(db)„I B' && I~"
I
(sd)" I0 & a&A,

+ & I~'og
I (sd)„ IO && Ol(db)" IB & a~A&

+ & I~.
'

vP I (sd) IO && Ol (dpsb) IB & asAi} . (4.2)

In (4.1) we have introduced the following combinations
of the @CD coefficients c+,c,ci, . . . , cs ..

2 1
Qy = 3c++ 3c

1 1
Q1 = 6C1+ 2C2 )

1 1a2 —— 2c1+ 6c2,

a3 — 2c3 + 6 c4
1 1

(4.3)

1 1a4 —6C3+ 2c4,

a5 — 9C5+ 3 6 )
16 1

Some of these definitions do not occur in (4.1) but are
needed for the other channels which are collected in Ap-
pendix B.A, and Aq stand for the following combination
of CKM elements:

A, = V,*,Vy, Ag ——V,', Vgg . (4.4)

In (4.2) the first term on the right —hand side is the
term with the structure of F1 . The second term has the

structure F2 and the third and the fourth terms have the
structure of F3 and F4, respectively. The current matrix
element of the second term is Okubo-Zweig-Iizuka (OZI)
forbidden and will be neglected. Since in the numeri-
cal evaluation we shall neglect also the terms with the
structure F3 and F4, i.e., the annihilation terms, we are
left here only with the first term with the structure Fi.
Therefore all helicity matrix elements will have the same
phase for this case so that the CP asymrnetries Pi and P2
vanish. Of course, if we would include the OZI-forbidden
matrix element and/or the annihilation terms, such CP
asymmetries, although very small, could be generated.
In this work we shall concentrate on the dominant terms
and will leave further improvements to later work.

Concerning @CD coefficients we observe that the pen-
guin efFects are small in this case since (as + cs) is small
compared to a [see (2.10)]. Thus the branching ratio is
determined essentially by the factor a A, . The @CD co-
efficient a is nondominant, i.e. , for the coefficients (2.10)
we have la I

« a+. How the rates predicted with the
coefficients (2.10) compare to experimental data will be
considered in the next section.

Next we give the analogous formula for the decay B
D +D', which is generated by the effective interaction
H3 . The result is
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& D'+D' [Hs [Bo & = —
~

& D'+((cb)„~B && D' ((dc)")0 & (—a+A, + a4Ag)

+ & D'+D'
) (uu —cc)„(0&& 0[(db)" [Bo & a A,

+ & D'+D' J(uu)„[0 && 0[(db)"JB' & a&A,

+ D+D' qq & 0 &0 db" B &03Ag

D'+ D'
q q „(0 db "B & c6Ag

with

Ac =
Vcg Vcb) Ag = V]d, Vgy

+ & D'+D'
) (dd) [0 && 0~ (dpsb) )B' & asA~

i
(4.5)

(4.6)

Compared to A, and A& in (4.4) the coefficients A, and A& are Cabibbo suppressed. Except for the first term ov
the right —hand side of (4.5) all other contributions are annihilation terms which will be neglected in the numerical
evaluation. The @CD coefficient a+ is large. The penguin terms proportional to a4 are small compared to the
dominant a+ term. With annihilation terms neglected the CP asymmetries Pi and P2 [see Eq. (3.14)] vanish.

The matrix elements of all other decays generated by Hz+ and Hz+, which also have penguin contributions and
which are listed in Table V are written down in Appendix B.

The structure of the decay matrix elements generated by H&+, HP, Hse+, and Hse+ is much simpler since penguin
contributions are absent. As an example we write here the matrix element for the decay 8 ~ p D' which occurs
via H&+. It has the form

& S' D"'(Hi"IB &= V'~vi[& p l(db)~IB && D'l(cu)" I0 & a-+ & D'l(cb)„ IB && p I(du)" I0 & a+].
2

"" '

(4.7)

and (4.7) (and all the others listed in Appendix B) we
need the current matrix elements between a vector par-
ticle and the vacuum [see also (4.1)] which has the form

& V2 (A) )j„(0& = e2 (A)'„»~f„, (4.8)

and the current matrix element between the initial
B and a vector particle Vi (A) in the final state
This is parametrized by three invariant form factors
Ai (q ),Az (q ), and V (q ) following the work of BSW

The branching ratio of this decay is large since the ma-
trix element is proportional to V„'&V,~ V,~ and to a+.
In this matrix element only one combination of CI&M ele-
ments is present so that no interference of different CKM
elements can occur. Therefore Pi and Ps vanish iden-
tically because the different helicity matrix elements are
all real in our approach. The matrix elements of all other
decay channels listed in Table II are given in Appendix
B.

2iv (q')
IJ V ptTP]. P )Pl + 77lg

& Vi(&) l~plB' & = ~ (&)"
l

(m+»i)Ai(q')&~ (4 9)

In order to calculate the matrix elements (4.2), (4.5), [6]:
I

r 2A, (q')
ppp& +

PE+ mg

where q = p —pi —ps. Thus the form factors Ai, A2, and V are needed for qs = m22. The first two terms in (4.9)
describe the contribution of the axial-vector current and the last term proportional to V (q2) is the contribution of
the vector part of j„.To obtain the structure Fi in (4.1) we must multiply (4.8) and (4.9) with the result

2A, (»2) 2i V (m', )Fi ——f, &~m(&i)'" ~2 (&) I (»+»i) Ai(rn, )ap„— pup„— ~p„p p, pl m+m, " " (m+m, )
""' ' ) (4.10)

b = —2»irnzf„, A2 (mq) /(m+ mi)

c = —2rnim2f„, V (m~) /(m+ mi),

(4.11)

The contribution to F2 in (4.1) is calculated analo-
gously. From ( 4.10) we read off the invariant amplitudes
a, b, and c defined in (3.3):

a = m2f„, (m+ mi) Ai (m2)

For a, b, and c coming from I"2 we must replace my ~
m2 and f„, ~ f„,. For the evaluation of a, b, and c and
from them Hyi and Ho according to (3.4) and (3.5) we
need f„, and Ai (»2~), A2 (m22), and V (m~2) . These four
constants for various choices of vector mesons Vj and
V2 have been calculated by BSW [6]. They calculated
A~, A2, and V at zero momentum transfer q = 0 using
relativistic oscillator wave functions. The q dependence
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TABLE III. Given for the channels in the first column are branching ratios
(column 2), B B-mixing parameter (column 3), transverse to total decay rate
ratio (column 4), and coefEcients of the indicated azimuthal terms in the angular
distribution, where P is the angle between the V& and V2 decay planes (columns 6
and 6). The input CKM parameters are those of Ref. [24] (p positive solution. ) The
model for the effective Hamiltonian coeScients is renormalization-group-improved
/CD with Fierz terms. These channels have no penguin diagrams.

B (%)Channel Ay

[cosP] [cos2$]
Channels without penguins: As = 0, Ab = —Ac = 1 (Hi)B' ~ ~ + D" 0.000531 -0.65? 0.284 -0.511 0.0402

B' ~ p' + D' 0.000543 -0.659 0.280 -0.509 0.0395
B —+ p + D'+ 1.19 -0.787 0.126 -0.425 0.0402
B -+ p + D" 1.12 — 0.122 -0.421 0.0398

Channels without penguins: Ab = As = —Ac = 1 (H4)B' -+ K' + D'+ 0.0631 -0.778 0.161 -0.471 0.0519
B' -+ K' + D' 0.0000657 -0.665 0.304 -0.537 0.0549
B ~ K' + D" 0.0592 — 0.157 -0.468 0.0514

Channels without penguins: Ab = Ac = As = 1 (Hs)
B ~ K"+ D" 0.0000152 0.428 0.304 -0.537 0.0549
B ~ K' + D" 0.0000152 — 0.304 -0.537 0.0549

Channels without penguins: As = 0, Ab = Ac = 1 (Hs)B' ~ p+ + D' 0.000461 -0.432 0.281 -0.509 0.0396
B —+ p' + D" 0.000000326 -0.432 0.280 -0.509 0.0395
B -+ u + D' 0.000000318 -0.431 0.284 -0.511 0.0402
B -+ p + D' 0.000000651 — 0.280 -0.509 0.0395
B ~ p + D' 0.000461 — 0.281 -0.509 0.0396

is approximated with a single-pole ansatz according to

rn2
A;(q ) = A, (0)

mp —q

(4.12)

V(~') = V (0)
mp q

We take the same pole masses mp as BSW [6]. They
tabulated Ai (0), Az (0), V (0) for B -+ D', l4', p, ur and

f„, for p, It', ~, P, g, D', and D;+ which we use in our
calculations. We shall neglect strong final-state interac-
tion and annihilation terms as already remarked earlier.
Concerning final-state interactions we shall add some re-
marks when we compare our results to experimental data
in the next section.

V. RESULTS

In this section we present results for the following
quantities of interest for existing and future experiments:
(i) the branching fractions of all decay channels, (ii) the
quantity AI'/I' which characterizes Cp violation via mix-
ing of B and Bo, (iii) the ratio I'I/I' which determines
the polar angular distribution, and (iv) the coefficients
of the azimuthal angular distribution.

A. Models for +CD coefficient

Actually we present results for three distinct models,
not all of which turn out to be realistic if we confront
them with existing data for branching fractions. These
three models involve diA'erent assumptions concerning
the short-distance coefficients cy, cq, cq, c3, c4, c5, and c6
as defined in Sec. II. The first model has the coefficients
cy, ci, .. . , cs given by first-order @CD [0(cr,)]. In this
case c+ ——c = 1, cg ——0) cg ——2 and c3 . c4 . c5 . c6 ——

—2: 6:3:0 with c5 given by

rr, (pz) mrs

We choose p = m, = 1 5Gev, rn~ ——150GeV with A =
0.3GeV and e, given by the lowest-order formula. It is
unclear what is the best choice for p. We have taken
the mass of the c quark as scale in o., and note that the
coefficients do not depend very much on the scale which
enters only logarithmically. With these numbers we get
(Ny ——4) n, = 0.47, cs ———0.114, cs ——0.076, and
cq ———0.228.

The second model incorporates the @CD coefficients as
given by Ponce [3] which contain all higher-order @CD
corrections in leading-logarithm approximation. It is well

known that this model has problems accounting for the
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decays with branching ratios which are proportional to
a2 [see the definition of a in (4.3)] [18, 19]. a has

a rather small value (a )
= 0.04 for the QCD-corrected

short-distance coefficients. This strongly suppresses such

decays as B —+ cuD*, 8 ~ p D', B ~ K' D', and

similar decays induced by H5 and H6 . We see from

Table III that B(B ~ poD'o) = 5.43 x 10 in this

case, whereas with O(a, ) coefficients where a = 1/3 we

get B(B ~ p D' ) = 3.71 x 10 (see Table II). This

branching fraction is still too small to be measured in

existing experiments and we have no data for comparison.

Such a comparison is possible if we consider the decay
Bo ~ I~" g which has a measured branching ratio equal

to (0.11+0.05+0.03)% [19]and (0.11+0.05+0.02)%%uo [18],
respectively. In the second model the branching ratio is

6.35 x 10 which is about a factor 20 too small.
There is a well-known analogous effect in nonleptonic

D decays [6]. Therefore several authors advocated the

following modification of the short-distance QCD coeffi-

cients [6, 20]: only terms which are dominant in the 1/N,
expansion are taken into account. For example, in the
coefficient a+ [see (4.3)] which is a+ —sc+ + sc2 1

z (c+ + c ) + (1/2N, )(c+ —c ) the term proportional to
the color factor 1/N, arises from the color mismatch in

color singlets after Fierz transformation [6,20, 21]. These

terms, however, appear together with color-octet contri-

butions resulting from the Fierz transformation which
do not contribute in the VSA. This procedure, which is
consistent in the vacuum-saturation approximation, may
give different results for the octet contribution in a more
complete evaluation [22]. Empirically it has been found
in connection with nonleptonic D decays that the ap-
proximation where the 1/N, terms are neglected gives a
satisfactory description of all measured branching ratios
[6, 20]. Therefore we consider this leading 1/N, approx-
imation as the third possibility to evaluate nonleptonic
B decays. These three versions are labeled in the tables
as O(a, ) QCD coefficients with Fierz terms (Tables II
and V), QCD coefficients with Fierz terms (Tables III
and VI ) and QCD coefficients without Fierz terms (Ta-
bles IV, VII, and VIII). The QCD coefficients for these
three models and their relation to the coefficients used in
the BSW model are exhibited in Table I. The branching
ratio of B ~ I&*op in the QCD model without Fierz
terms comes out as 0.716%%uo (see Table VII), now larger
than the experimental value but in much better agree-
ment than the QCD model without Fierz terms.

Before we discuss the results we must specify fur-
ther input. The CKM elements are calculated with the
Wolfenstein representation [23] using the form in which
the imaginary part of the unitarity relation is satisfied to
order As and the real part to order As. (In order to sat-

TABLE IV. Given for the channels in the first column are branching ratios (col-
um»), B' B' mixing p-arameter (column 3), transverse to total decay rate ratio
(«Iumu 4), and coefficients of the indicated azimuthal terms in the angular distri-
bution, where p is the angle between the Vi aud Vz decay planes (columns 5

6). The input CI&M parameters are those of Ref. [24] (p positive solutiou. ) The
model for the eft'ective Hamiltonian coeScients is renormalization-group-improved
/CD without Fierz terms. These channels have uo penguin diagrams.

B (Fo)Channel CXy Ckg

cos cos
Channels without penguins: b, s = 0, &$ = —Dc = 1 (Hi)

B' ~ co + D" 0.0653 -0.657 0.284 -0.511 0.0402
B' ~ p + D" 0.0669 -0.659 0.280 -0.509 0.0395
B' -+ p + D'+ 1.54 -0.787 0.126 -0.425 0.0402
B i p + D" 0.788 — 0.0818 -0.372 0.0344

Channels without penguins: Eb = Es = —Ec = 1 (H4)B' -+ K' + D'+ 0.0820 -0.778 0.161 -0.471 0.0519
B —+ K' + D' 0.00808 -0.665 0.304 -0.537 0.0549
B -+ K' + D' 0.0395 — 0.112 -0.425 0.0455

Channels without penguins: b,b = Ec = As = 1 (Hs)
B ~ K' + D' 0.00188 0.428 0.304 -0.537 0.0549
B ~ K' + D" 0.00187 — 0.304 -0.537 0.0549

Channels without penguins: Ks = 0, b,b = Ec = 1 (Hs)
B —+ p+ + D' 0.000598 -0.432 0.281 -0.509 0.0396
B -+ p + D' 0.0000401 -0.432 0.280 -0.509 0.0395
B -+ ai + D' 0.0000392 -0.431 0.284 -0.511 0.0402
B ~ p + D' 0.0000801 — 0.280 -0.509 0.0395
B -+ p + D' 0.0000273 — 0.281 -0.509 0.0396
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isfy the unitarity relationship in the real part to order A

we augmented Vq, with an additional real term propor-
tional to A .) In this representation V„z, V„„U,d, V&, , and
Vqy are real. The CKM matrix elements are calculated
from the following input: (i) p ) 0 with A = 0.220, A =
0.971,p = 0.350, and g = 0.357 and in a second run with
(ii) p ( 0 with A = 0.220, A = 0.971,p = —0.460, and

g = 0.196. These values are taken from a recent analysis
of Lusignoli ef al. [24]. For choices (i) and (ii) V,t,

——0.047
and V„g ——0.0051 which can be compared to the values
obtained from semileptonic B decays [25, 26]. The cur-
rent matrix elements are calculated from the BSW model

[6] as a starting point of phenomenology. These consist
of matrix elements of currents between the vacuum and
one of the vector mesons and of matrix elements of the
weak currents between the initial B meson and the other
vector meson. We consider the HSW input as a useful
first approximation to get an overview of the strength of
t;he various decays.

In the following ve shall comment on the results for
the three models. We start with the decays with no pen-
guin contributions which are induced by Hy H4 H5
and He+. The results are presented in Table II [O(n, )
with Fierz terms], Table III (QCD coeKcients with Fierz

terms) and Table IV (QCD coefficients without Fierz
terms). These transitions also have no annihilation terms
and their matrix elements are very simple in the VSA.
Let us look erst at the decays induced by H& which are
the most, promising ones in the no-penguin group.

In Secs. V B—V F we discuss the results for case (i) with
positive p. In Sec. V G we discuss the changes that result
when the negative p solution is used.

B. Sector As = 0, Ab = —Ac = 1 (IIi)

The branching ratios dier model to model, in par-
ticular for 8 ~ ~D' and B ~ p D' since they
are proportional to ia i~ which is much smaller in the
model of QCD coeKcients with Fierz terms Th. e branch-
ing ratios of the other two decays B —+ p D'+ and
B ~ p D' are in reasonable agreement with each
other and with experimental data: B(B ~ p D'+) =
(0.7 6 0.3 6 0.3)% [18], (1.9 6 0.9 6 1.3)% [19], B(B
p D* ) = (1.0 + 0.6 + 0.4)% [18]. These two branch-
ing ratios depend mostly on ia+i and therefore are less
dependent, on the choice of the QCD coeFicients. We
remark that the decay rate for B ~ p D' depends

TABLE V. Given for the channels in the first column are branching ratios (column 2), B Bmix-ing
parameter (column 3), transverse to total decay rate ratio (column 4), and coeflicients of the indicated azimuthal

terms in the angular distribution, where P is the angle between the V& and V2 decay planes (columns 5, 6, 7,
and 8). The input CKM parameters are those of Ref. [24] (p positive solution. ) The model for the effective

Hamiltonian coefficients is O(o, ) /CD with Fierz terms. These channels can have penguin diagrams.

Channel

B' -+ K"+ ta
Bo ~ KoO+ po

B -+ K' + p+
Bo ~ Keo + Q
Bo ~ D++D
B -+ K' +to
B -+K' +p
B -oK' +Q
B ~D-+ D;-

B -+ur+p
B ~~+@

p +p
p+0

B —+u+u
B ~p'+p
BO~DI++D~-

B —+ ~+p
p +p

~p +0
B ~D' +D'

Channels with penguins: bc =
0.00339 -0.717 0.109
0.00212 -0.823 0.106
0.00271 -0.506 0.106
0.423 -0.674 0.429
1.38 -0.732 0.477
0.00120 — 0.108
0.00152 — 0.105
0.424 — 0.42S
1.39 — 0.477

Channels with penguins: b,s =
0.0000244 -0.0427 0.0874
0.00918 -0.663 0.394
0.000224 -0.522 0.0837
0.00943 -0.664 0.388
0.000328 -0.902 0.0867
0.00449 -0.714 0.0837
0.0744 -0.769 0.456
0.0326 — 0.0857
0.00387 — 0.0838
0.0188 — 0.389
0.0745 — 0.456

0!y

[cosP]
0, bb=
-0.336
-0.333
-0.333
-0.621
-0.665
-0.335
-0.332
-0.621
-0.664
Ac=0,
-0.304
-0.599
-0.298
-0.597
-0.303
-0.298
-0.660
-0.302
-0.299
-0.597
-0.660,

0!g

[cos2$]
As= 1
0.00900
0.00911
0.00892
0.123
0.184
0.00895
0.00903
0.123
0.183
Eb = 1
0.00706
0.0987
0.00674
0.0969
0.00707
0.00674
0.172
0.00695
0.00676
0.0970
0.172

P, (10-4
[sing]

(IIz)
-18.8
23.0

-36.3
31.2

(a.)
-64.0

3.61
-0.0317

1.79
-2.01

3.49
-2.74

0.462

-0.0268
0.00142
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on a+ and a and allows a determination of the ratio
a /a+. If we average the CLEO and ARGUS results we

get a /a+ ——[—0.2+ 1.3(—0.5)]. Using the experimental
information on the ratio of the branching ratios for the
decays Bo ~ I~" @ and Bo —+ p D'+ we find

o 0» & la2/ail & o 275.

The angular correlations are rather insensitive to the
choice of the /CD coefFicients. In all these models 12 /I',
the cos P and the cos 2g coefFicients, cri and nq, are very
similar. We have I'7 /I' & 0.3 which means that the longi-
tudinal transition matrix element Ho dominates. There-
fore the cosP coefficient (ni) is much larger than the
cos2$ correlation term (nq). The ni coefficient is nega-
tive and large. The dominance of the longitudinal tran-
sition matrix elements originates from the BSW current
matrix elements and is independent of the short-distance
coefficients. b, I'/I' is also large negative. The helicity
matrix elements Hp, H+q, and K q are dominantly real,
so that Ll is essentially given by the imaginary part
of q/p = V2&/]Vq~]~. For p and il as obtained in solu-
tion (i) (p positive) we have Im V,&/~Vqg~ = —0.844. We
see that AI'/I' is somewhat reduced compared to this

value. This has its origin in the fact that in these tran-
sitions H+i g H i, in fact H+i/H i 0.1 [29]. For
H+i ——H i the CP asymmetry would be maximal. We
see, however, that the dilution through terms propor-
tional to (H+i —H i) [16] is moderate [see Eq (.3.20)].

Since the amplitudes for B ~ ~D' and B
p D* involve only one +KM combination, namely,
V„d V;&, b, l'/I' is independent of final-state strong-
interaction phases. This is also true for the transition
Bo ~ poD o which has different isospin amplitudes (I =
1/2 and I = 3/2). The CP-conjugated mode has the
same final-state phase, but has the complex-conjugate
factor V„dV,b, which in Wolfenstein's choice of phases is
real. Therefore in AI' the strong-interaction phase drops
out [27] and the direct b.b = 1 weak phase is real so that
AI'/I' is determined by the phase of V,&/~Vip~2

There is an additional contribution to the CP eigen-
state of p + D' and ~+ D'p coming from transitions
by K6 . These transitions B ~ ~D* and B ~ p D'
may have diA'erent strong-interaction phases. They in-
terfere with the transitions induced by H& and would
invalidate the statement about AI'/I' being independent
of final-state phases. However, the transitions induced
by HP are highly suppressed by the CKM combination

TABLE VI. Given for the channels in the first column are branching ratios (column 2), B Bm-ixing
parameter (column 3), transverse to total decay rate ratio (column 4), and coefficients of the indicated azimuthal
terms in the angular distribution, where P is the angle between the Vi and V2 decay planes (columns 5, 6, 7,
and 8). The input CKM parameters are those of Ref. [24] (p positive solution. ) The model for the effective
Hamiltonian coefficients is renormalization-group-improved +CD with Fierz terms. These channels can have
penguin diagrams.

Channel

Bo o Koo+ ~
Bo ~ Koo+Po
Bo~Ko—+p
Bo ~ Koo
Bo ~ Do++ D
B —+K' +~
B ~K' +p
B ~ K'-+g
B—~ DOo

B —+ co+ p'
B' ~ ai+@

~p +P
p +@

B' —+ co+id
B ~ p'+p
B —+D++D
B —+ar+p

~p +P
+0

B —+ Dao+ D

B (%)

Channels with p
0.00527
0.0120
0.000145
0.00635
1.85
0.00847
0.00946
0.00636
1.85

Channels with
0.00000274
0.000137
0.000214
0.000140
0.000145
0.00473
0.0938
0.0155
0.00196
0.000280
0.0939

enguins: Ac = 0
-0.786 0.0854
-0.782 0.0902
0.911 0.106
-0.674 0.429
-0.733 0.477

0.0899
0.0881
0.428
0.477

penguins: b, s =
0.0155 0.0749
-0.659 0.394
-0.219 0.0837
-0.660 0.388
-0.262 0.0867
-0.570 0.0837
-0.745 0.456

0.0855
0.0837
0.389
0.456

Ay

[cosP]
, bb=
-0.314
-0.318
-0.333
-0.621
-0.665
-0.319
-0.315
-0.621
-0.664
Bc=0
-0.284
-0.599
-0.298
-0.597
-0.303
-0.298
-0.660
-0.301
-0.298
-0.597
-0.660

Ag

cos2$]
—b,s = 1
0.0113
0.0104
0.00892
0.123
0.184
0.0108
0.0104
0.123
0.183

, mb=1
0.00619
0.0987
0.00674
0.0969
0.00707
0.00674
0.172
0.00693
0.00676
0.0970
0.172

-33.1
32.5

3.18
-2.86

(IIs)
25.0 -0.181

5.42
-0.406

-0.0402
0.0183

/3. (10-') ~. (10-')
[sin&(] [sin2$]

(HR)
0.518
-0.174
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V,&V„y, which leads to a reduction of the branching ra-
tios by the factor 5 x 10 ~, so that their contribution is

negligible compared to the unsuppressed modes induced
by B&+. The discussion of the results for the second and
third groups, induced by B4+ and 05+, respectively, is
very similar.

C. Sector Ab = As = —Ac = 1 (M4)

The transitions BP ~ I~' D'+ etc. are CKM sup-
pressed as compared to the transitions Bo ~ p D'+
etc. by the factor V„,/V„s A which explains the reduc-
tion of the branching ratios. The rate for Bo ~ I&' D'
is reduced further since the matrix element is propor-
tional to a [see (B23)], whereas the other two decay
channels in this group depend on a+. In the more re-
alistic model with no Fierz terms the decay rate for
8 ~ K' D' is reduced compared to the rate of
B ~ I~' D'+ since the former involves destructive in-
terference of terms proportional to a+ and a [see (B24)).
Except for B ~ I&' D' the decays of this group should
be observable in the near future.

Concerning angular correlations the decays induced by
04+ show the same pattern as the decays induced by
Hr . I'z /I' is small, i.e. , Hp dominates over Hyr. There-
fore the coefficient, o.q also negative, is large compared
to n2. Since the longitudinal transition matrix element
dominates over the transverse ones the CP asyrnrnetry
b, I'/I' is reduced very little as compared to the maximally
possible value given by the imaginary part of V,&/~Vqs~,
similar to the transitions induced by H& . Finally we
remark that in all four groups the asymmetries propor-
tional to sing [Pr] and sin 2$ [Pq] vanish. This is ob-
vious since all three helicity amplitudes have the same
phase so that no imaginary parts are generated in our
models. This could be different in models with explicit
strong-interaction phases, as for example, generated by
rescattering into different channels.

D. Sectors Ab = Ac = As = 1 (Hs)
and As = 0, Ab = Ac = 1(JIs)

The transitions induced by H5+ are reduced further
since their matrix elements are proportional to V„'&V„.

TABLE VII. Given for the channels in the first column are branching ratios (column 2), B Bmixi-ng
parameter (column 3), transverse to total decay rate ratio (column 4), and coefficients of the indicated azimuthal
terms in the angular distribution, where P is the angle between the Vq and Vq decay planes (columns 5, 6, 7,
and S). The input CKM parameters are those of Ref. [24] (p positive solution. ) The model for the effective
Hamiltonian coefficients is renormalization-group-improved /CD without Fierz terms. These channels can have

penguin diagrams.

Charrnel

8 ~E +car
Bo ~ goo+ pO

8' ~ K' + p+
8'~K' +Q
8 -+ D'++ D;
8 -o K' +ar
8 ~K' +p'
8- ~ K'-+Q
8 ~ D"+D'

8 -+ar+ p'
8 ~co+Q
8 ~p+p
8 ~p+0
8 ~ Up+ car

p +p
8 -+ D'++ D'
8 ~ld+p

~p +p
+4

8 ~D"+D'-

8 (%)

Channels with
0.00783
0.0141
0.00279
0.716
2.40
0.00608
0.0190
0.717
2.4Q

Channels with
0.000000326
0.0165
0.000824
0.0163
0.000663
0.00658
0.127
0.00108
0.00111
0.0326
0.122

pengnins: dEc =
-0.746 0.0855
-0.753 0.0905
-0.439 0.106
-0.673 0.429
-0.733 0.477

0.0832
0.0924
0.428
0.477

pengnins: Es =
0.482 0.0636
-0.663 0.394
-0.925 0.0837
-0.674 0.389
-0.923 0.0867
-0.690 0.0837
-0.733 0.456

0.0831
0.0837
0.389
0.456

Cy

[cosP]
0, Eb=
-0.315
-Q.318
-0.333
-0.621
-0.665
-0.312
-0.320
-0.621
-0.665

Bc=0,
-0.240
-0.599
-0.298
-0.597
-0.303
-0.298
-0.660
-0.298
-0.298
-0.597
-0.660

Pi (1o
[cos24] [sing]
as =1(a,)
0.0113 4.53
0.0104 -1.93
0.00892
0.123
0.184
0.0115 -55.5
0.0101 16.9
0.123
0.183
aI =1(a.)
0.00525 957
0.0987
0.00674
0.0969
0.0070?
0.00674
0.172
0.00677 -18.2
0.00676 -0.753
0.0970
0.172

-0.431
0.168

5.33
-1.49

-7.09

Oo135

0.0339
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Compared to the transitions from H&+ this amounts to a
reduction of the rate by the factor p + g 0.25. Both
transitions in this group are proportional to a which
leads to further reduction.

Concerning I'z/I', and the cosif'i and cos2$ corre-
lation terms, the results are equal to the results for
Bo ~ K'oD'o in the HP group. However b,I'/I' is fairly
large and has a different sign than in the H&, H4, and
H6+ groups. This comes from the fact that V„'&V„
AA (p —rI); i.e., the CKM matrix element has now an
imaginary part of comparable magnitude to the real part.
Therefore we have an interesting interference of the phase
of q/p = Vizd/)Vcg(z with the phase of the transition ma-
trix elements generated by the t KM angles. This phe-
nomenon is independent of the @CD coefficients since
only a enters in the transition matrix element.

Actually the analysis of this interference pattern is
more complicated since both transitions, the transition
induced by H&+ and the transition induced by H5+ con-
tribute to the transition going to the CP-eigenstate com-
bination contained in I~' + D' and I&' + D' . The
analysis is completely equivalent to the analysis of the
final state IKo + Do, I~ + D as discussed in detail by

Gronau and London [28]. We shall not repeat it here.
The decays in the sector Hs are very strongly Cabibbo

suppressed. Their influence on B -B mixing was dis-
cussed already in Sec. V B.

Now we come to the discussion of the results for tran-
sitions induced by H& and H3, which are influenced by
penguin effects.

E. Sector Lh, c = 0, Ab = As = 1 (Hz)

The results for the three models, again for p positive,
are found in Tables V—VII. Let us first look at the tran-
sitions in the group HP In .this group interesting az-

imuthal asymmetries proportional to sin P and sin 2ct are
generated. In our three models these asymmetries are
totally due to the CP-violating phase in the CKM ele-

ments. Four of the transitions, namely, those with the
final states I&'Q and D'D,", have vanishing sin it and
sin 2$ terms. This is due to our approximation of ne-
glecting OZI-forbidden and annihilation matrix elements,
so that no interfering contributions with different CKM
phases and different helicity structure are present [see

TABLE VIII. Given for the channels in the first column are branching ratios (column 2), B Bmix-ing
parameter (column 3), transverse to total decay rate ratio (column 4), and coefficients of the indicated azimuthal
terms in the angular distribution, where P is the angle between the Vi and Vz decay planes (columns 5, 6, 7,
and 8). The input CKM parameters are those of Ref. [24] (p negative solution. ) The model for the effective
Hamiltonian coefFicients is renormalization-group-improved /CD without Fierz terms. These channels can have

penguin diagrams.

Channel

B ~K +cia
Bo ~ goo+ p4

Bo ~ K+—+p+
Bo ~ Keo
Bo~D++D
B ~K +ccrc

B -+K' +p'
B -+K' +Q

D00 + DO—

B'-+ co+ p
B' -+ co+Q
B ~p+p
B ~p+@
B' ~ ~+co
B ~p++p
B ~ D'++D'
B ~ccl+p

~p +p
+4B- ~D o+D

B (%%uo)

Channels with penguins: Ac =
0.00864 -0.208 0.0859
0.0149 -0.216 0.0903
0.00611 -0.0748 0.106
0.718 -0.200 0.429
2.40 -0.217 0.47T
0.00394 — 0.0769
0.0256 — 0.0938
0.719 — 0.428
2.40 — 0.477

Channels with penguins: b.s =
0.00000182 0.0560 0.0759
0.0165 -0.197 0.394
0.000144 -0.716 0.0837
0.0155 -0.207 0.388
0.0000351 -0.825 0.0867
0.00355 0.580 0.0837
0.127 -0.218 0.456
0.00240 — 0.0846
0.00263 — 0.0838
0.0310 — 0.389
0.115 — 0.456

CXy

[cos4]
0, Eb=
-0.315
-0.318
-0.333
-0.621
-0.665
-0.305
-0.321
-0.621
-0.664

Bc=0,
-0.286
-0.599
-0.298
-0.597
-0.303
-0.298
-0.660
-0.300
-0.299
-0.597
-0.660

P (10
[sing]

z)
2.16
-0.962

-45.2
6.60

Hs)
90.3

-4.30
-0.166

aq
[cos24]
a. =1(a
0.0113
0.0104
0.00892
0.123
0.184
0.0119
0.0100
0.123
0.183
Kb=1(
0.00627
0.0987
0.00674
0.0969
0.00707
0.00674
0.172
0.00687
0.00676
0.0970
0.172

') /3. (1o-')
[sin24i]

-0.206
0.0839

4.34
-0.580

-0.669

0.0319
0.00749
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(4.2), (B5), (B6), (B7), and (B8)]. Concerning improv-
ing this approximation the most promising cases are the
transitions 8 ~ Ii' @ and 8 ~ D' D; where the
neglected terms have at least large QCD coefficients [see
(B6) and (B8)].

As can be seen from the tables the transitions to these
final states, Ix*g and D'D;, have the largest branch-
ing ratios in the 0& group. The transitions to D*D,
are proportional to a+ and have the largest branch-
ing ratio and are the same for B and B decay. Be-
cause this rate is proportional to a+ it is approximately
equal in all the QCD models. It is largest in the QCD
model without Fierz terms where B(BO ~ D'+D; ) =
B(B ~ D'OD; ) = 2.40% in agreement with the ex-
perimental branching ratios of the ARGUS Collabora-
tion: 8(8 ~ D" D;+) = (2.6 6 1.3)% and 8(8+ ~
D' D;+) = (3.1+1.6)% [30]. However, the branching ra-
tios obtained for the other two models are also consistent
with the data.

The transitions to the final state I~"Q are proportional
to a . As it was already mentioned this QCD coefficient
is very small in the QCD model with Fierz terms. There-
fore in this model the branching fraction for 8 ~ I~"g is

too small at least by a factor of 10. In the other t;wo mod-
els it is approximately consistent with the experimental
data as was already mentioned above. In the more de-
tailed results not presented here we observe that one of
the transverse helicity matrix elements, namely, 0+~ is
small, whereas the other one is comparable to the lon-
gitudinal matrix element. Therefore in both transitions
8 ~ D*D; and 8 ~ Ii*Q we obtain Fz/I' 0 5. The
cos P term is larger than the cos 2P term only by a factor
of 3 for 8 ~ D'D; and a factor of 5 for 8 ~ Ii'Q,
so that the cos 2P term has some effect on the azimuthal
distribution. These results are independent of the QCD
model. EI'/I' for 80 ~ K' Q is large, comparable to
the numbers we encountered in the nonpenguin group.
Therefore the dilution factor, approximately 0.8, is again
unimportant for detecting CP violation via B -B mix-

ing, so that the decay channel 8 ~ I~"g is as useful for
CP studies as the decay 8 ~ Ii g. Actually this dilution
factor may be even larger than 0.8 as we shall see below.

Preliminary data from ARGUS [31] on the exclusive
decay 8 ~ Ii. ' + g indicate that the best fit to angular
distributions is I'T/I' = 0 with high confidence that this
ratio is less than 0.2, wheras our models predict a ratio of
0.43. Our prediction depends heavily on the BSW wave
current matrix elements and not on the QCD coefficients.
If this experimental result persists it will show that the
BSW wave functions are not valid here and different ma-
trix elements are needed, perhaps similar to those found

by Anjos ef al. [32] for & D~j "~IC' ) matrix elements.
The decays B ~ I~*a and B ~ I~*p are most in-

teresting from the point of view of detecting direct CP
violation through azimuthal asymmetries. We see from
Table VII that the sin g term may be as large as 5.5x 10
(for 8 ~ Ii ' u). The branching ratios come out also
reasonably large, of the order of 10 . Unfortunately
the asymmetry is largest when the branching ratio is the
smallest. The reduction of branching ratios of the four
decays B, B ~ K*p, Ii'u as compared to the other

decays in the H2+ group has its origin, as was remarked
already in Appendix B [after (B2)], in a cancellation of
two contributions with difFerent QCD factors. I et us
take, for example, the transition Bo ~ I&'Ou where the
matrix element is written down in (Bl). When penguin
and box-diagram effects are neglected we have a = a2,
as for example, in the BSW model [6], so that in (Bl)
the dominant term is proportional to a (A, + Ai)
—a A„= —a V„';V„b A4 due to the unitarity of the
CKM matrix. The penguin and box-diagram contribu-
tions have the effect that a and aq difFer. In the QCD
model without Fierz terms (N, = co) we have accord-
ing to Table I, a —ap ———0.23. This way the V„;V„b
suppression is partly lifted. In addition there are other
small terms proportional to (as + cs) Aq which bring in
unsuppressed CKM matrix elements.

In the three other cases the situation is completely
analogous. The amount of suppression can easily be seen
by comparing the branching ratios of the four decays in
Table V [0(er, ) QCD] with those in Table VII (QCD
without Fierz terms). The difference is up to one order of
magnitude. Therefore these four decays are ideal cases to
study the interference of penguin effects with the usually
stronger direct decay contributions. In all four decays
the longitudinal matrix element is dominant. Therefore
I'T/I' and the cos 2P terms are small. The cos P terms are
appreciable and independent of the QCD models. b, I'/I'
is also large and the dilution factor is approximately 1,
so that these decays are also well suited to study CP
violation with 8 —B mixing.

There exist interesting experimental limits for the
branching ratios: B(80 ~ I~" p ) & 4.6 x 10 [33],
6.7 x 10 4 [34] compared to our value 1.4 x 10 in
Table VII. This value is higher than that obtained by
ot, her authors [12]. The reason is that we have a g a2
as discussed above. There is also an upper limit for
B(B+~ I&"+u) & 1.3 x 10 4 [33] to be compared with

B(B ~ Ii" w) = 6.1 x 10 in Table VII.

F. Sector b,s = b, c = 0, Ab = 1 (Hs)

As the last point we discuss the results for the transi-
tions induced by H3 . These transitions are also influ-
enced by penguin effects. As one can see in Table VII, for
instance, the branching ratios vary tremendously in this
group, by almost seven orders of magnitude. The domi-
nant decays are 8 ~ D'D'. Compared to B ~ D'D,
the branching ratio is reduced by the Cabibbo suppres-
sion factor A . Since we neglect annihilation terms this
decay depends only on one amplitude so that no sin P and
sin 2$ terms can occur. The angular correlation terms:
I T/I, cubi, Q'2 and also AI /I' are very similar to those in
the B ~ D'D, transitions. The next important group
concerning branching ratios are the transitions 8 ~ cup
and 8 ~ pQ. The branching ratios are up to 0.03% (see
Table VII). Because of the neglect of OZI-forbidden ma-
trix elements there is only one amplitude left [see (B13),
(B14), and (B17) in Appendix B], so that no sing and
sin 2$ terms can be generated. The other angular cor-
relation coe%cients look similar to those for the decay
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The decays 8 ~ ~p, pp, and uu have very small
branching ratios, in particular the decay 8 ~ up . The
matrix elements of all these decays are proportional to
A, + Ag ———A„= —V„'~V„g A when penguin effects
are neglected. This leads already to strong suppression of
these decays. Now let us look at each of these six channels
separately. The rate for the decay B —+ ~p is further
reduced since the dominant contribution proportional to
(a A, + azAq) [see (B9)] cancels out for m = m~ due
to an opposite sign of the first two terms and to the fact
that in the BSW model f„and the current matrix ele-

ments are almost equal. Therefore in the limit m = mz
this transition is almost dominated by penguin terms.
This makes it understandable that the predictions for all

quantities of this decay, in particular the branching ratio,
depend very strongly on the QCD model (compare Tables
V—VII). The sing term also varies quite strongly with the
QCD model. In the QCD model without Fierz terms it
is almost as large as 0.1. Unfortunately the rate is ex-
tremely small in this case due to additional cancellations.
It is clear that the exact numbers cannot be trusted in
this channel since neglected annihilation terms and in-

accuracies in the VSA will have large effects on these
results.

The decays B ~ pp and B —+ uu have their natural
rate and are not reduced by additional cancellations. The
reduction due to the factor V„'&V„y is partially lifted by
the penguin contributions. That the branching ratio of
these decays in Tables V and VI for two of the three QCD
models come out almost the same is accidental. In Table
V the coefficient a = a2 (see Table I) but a = 1/3.
In Table V (a —az) is almost equal to (a —az) for
Table VII, but in the QCD model with Fierz terms the
contribution of the terms proportional to a V„'&V„t, are
very small.

The decays B —+ p+p, 8 —+ ~p, and 8 —+ p p
have larger branching ratios since their matrix elements
have contributions proportional to a+. Otherwise no ad-
ditional reduction occurs except for a+ —aq when the
matrix elements are proportional to a+V„"&V„q. There
is no sing and sin2$ term for the decay 8 -+ p+p
because we neglect annihilation terms. For the decays
8 ~ ~p and 8 ~ pop there would be no CP odd-
terms Pq and Pz either, if m = mz. For 8 ~ p p
the mass splitting is even smaller and and therefore Pq

and Pz are reduced even further. Of course for these very
rare decays further improvements of the decay model are
needed before the results can be trusted.

For some of the decays in this sector we found upper
limits measured by the ARGUS Gollaboration . They are

8(8 ~ p p ) & 2.8x 10 [35] to be compared with the
value 8.2 x 10 s in Table VII, B(B+ ~ p+po) & 1.0 x
10 which is to be compared with the value 1.1 x 10
The limits are still more than two orders of magnitude
above the theoretical predictions.

G. Results for negative p

We have also calculated results for the other choice of
the CI&M matrix elements as reported by Lusignoli e$ sl.

[24] and given earlier in this section (p negative. ) In most
cases the results change only with respect to 6 I'/I', with
all other quantities remaining unchanged. The change in
b, l'/I' is caused by the change in

which equals —0.264 as compared to —0.844 for the pos-
itive p solution considered above. This automatically
changes KI'/I' by a factor of 0.31 when there are no im-

portant phases in the helicity matrix elements. This is
not the case for Bo -+ I4' O' . Here b.I'/I' changes
from 0.428 (p ) 0) (see Tables II—IV) to —0.701. Simi-
larly EI'/I' changes for the transitions in the HP group.
There b, I'/I' = —0.432 (p ) 0) (see Tables II—IV) is
changed to 0.398 (p ) 0) but otherwise the angular corre-
lations remain completely unchanged and the branching
ratios are quite similar. Thus in the transitions induced
by the H5 and the H6 there are significant phases in
the helicity matrix elements which influence b, I'/I'.

For the transitions influenced by penguins the situation
is quite similar except that now also the sing [P~] and
sin2$ [Pz] terms are present and are quite different, as
expected We .show the complete results for QCD without
Fierz terms in Table VIII (p & 0) from which the changes
can be seen by comparison with Table VII (p ) 0).

VI. SUMMARY AND CONCLUDING REMARKS

In this study of all two-body vector-vector decay chan-

nels of charged and neutral 8 mesons we have found a
remarkable span of branching ratios (from 10 to 10 )
even though we have not calculated rates solely domi-

nated by penguins (e.g. , 8 ~ I~"P). We have found

direct CP asymmetries arising from interference of pen-

guins with S' emission diagrams with different weak

phases in several channels, notably in 8 —+ I&*~,K'p
where branching ratios are moderate and angular distri-
bution measurements may soon be feasible. All angular
distributions are dominated by cos P over cos 2P and sin P
over sin 2P because of the helicity structure of the BSW
form factors. For this reason also, the polarization is

dominantly longitudinal with many rates exclusively lon-

gitudinal. In comparing these results with the data on

branching ratios, limits and polarization we found that
they could for the most part be accommodated within the
models but that the model of QCD coefficients without
Fierz terms clearly was preferred to the QCD coefficients
with Fierz terms model. However, the lack of transverse
polarization found by ARGUS in 8 ~ I~'@ cannot be
accommodated within any of these models.

The next steps in this program are clear and fall into
two classes. First, the RGB should be run for a large
top mass. The coefFicients will not grossly change from
Ponce's calculation but there may be interesting differ-
ences. A related issue concerns the absorptive parts of
penguin diagrams. The second class of improvement is
connected with the hadronization procedure by which the
weak effective Hamiltonian is evaluated in hadron states.
We have (1) used factorization (2) discarded annihila-
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tion terms, and (3) used the BSW current form factors
and decay matrix elements. Factorization has survived
some experimental test [36] but further theoretical analy-
sis is needed to de6ne its domain of validity and calculate
higher-order corrections. Heavy-quark theory can help in
this regard in certain channels [37],[38]. We are currently
applying these methods. Annihilation terms are some-
times accompained by large @CD coefficients and have
no further OZI suppression. Methods must be found to
estimate these amplitudes. Finally, BSW wave functions
and decay constants must be validated by other theo-
retical methods, or checked experimentally, where it is
known already that some are not correct. In this initial
study we have not put in these refinements for the sake
of simplicity. A more careful phenomenological analysis
of key rates will appear in a future publication.
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APPENDIX A: ANGULAR DISTRIBUTIONS

In this appendix we give a short derivation of the an-
gular distribution (3.11) for the decay 8 ~ Ii "g
(I1 vr) (e+e ). For its derivation we use the usual density-
matrix formalism [39].

We denote the momentum of the I~* meson by pi,
its helicity by A~ and the momentum and helicity of the

Q particle by p2 and A2, respectively. In the 8 rest
system p~ + pp ——0 and since B has spin zero we have

A~ ——A2. Thus the decay matrix element for the decay
8 ~ I~"g depends only on A2 and the c.m. momentum

Ipl = Ipil = Ip21 let h~, ~, , be the density matrix
elements for the decay 8 ~ Ii*g:

In (A2) the matrix Ag, ~,, (01) stands for the density ma-

trix for the decay K' ~ Kx,

(A3)

and R (02) is the angular distribution for the decay IC' ~
Kx which is

R(0~)&,&„= —IT(pt) I'D~, o (0 01 o) D~, o(o 01 o)

(A4)

where D~~, (n, P, p) = e '~ +~'rid~~~, (P) are the
usual rotation matrices and T (p~) is the reduced matrix
element for the decay Ix' ~ Kx which depends only on
the c.m. momentum pre- ——IpKI = Ip~l. Similarly the
matrix A~, i„,(0~, P) is the decay distribution for g ~
e+e which is given by

) R(0g, 4; A„A1,)„„,
A, , Ag

) iT (p„A„A1,) (

A, , Ab

(A5)

A„p (A1„pb) denote the helicity and momentum of
e+(e ) and p, = )p~( = (pb) is the c.m. momentum
of the leptons The m. atrix R(02, p; A„A1,)~,&,, is

R(Oz, g;A„Ab)q q, ——T(p, ;A„A1,)
3

"Dx, x.-x, (~ 0& ~)

"&x,
, x.-x, (& Oz &) . (A6)

T(pn', Aa, A&) (A&, At = +z) is the reduced matrix ele-
ment for the decay g ~ e+e . Only two of the four
helicity matrix elements are independent since the decay
g ~ e+e conserves parity. We have

mentum p in the g rest system with respect to the he-

licity axis of the e+. Then this angular distribution is

calculated from

I4'(01, 0z, 4) = ).~~,i, ~i,~, (Oi)B~,i, (02, 4~)

A&, A&i

(A2)

~A„A, I = HA, HA, i (A1) T (p„—A„—Ag) = T (p, ; A„A1,) . (Aj)
where HA, is the decay matrix element as introduced in

Sec. III. The angular distribution is called W (01, 02, $),
where oq is the polar angle of the Ix momentum in the
rest system of the K' with respect to the helicity axis,
which is the direction of the momentum pq and 02 and
P are the polar and azimuthal angles of the positron mo-

In addition in the limit of vanishing electron mass we

have T(p„.A„A ) = 0 so that Bi„p,, (Oq, g) becomes in-
dependent of the g decay matrix element.

The evaluation of the angular functions A~, q, , (01)
and Bi„q,, (02, P) yields

=3 2
&1,1(01) = A 1, 1(01)= —&1,—1(01)— +—1,1(01) sin 018'

Ao o (01) = —cos 01,=3 2

8~
(AS)
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A1,Q (81) —AQ, —1 (81) — A-1,Q (81) — Ap, -l (81) = — »n Hi cos 81
4 2x

Bi 1(82,4) = 8 1, 1(82,$) = (1+cos 82)
3 2

3 . 2 3 -2
Bpp(82, $) = sin 82, 81 1(82,$) = 8'11(82,$) = sin 82e '

8x ' ' ' ' '
16m

(A9)

81,0 (8214) —80, 1 (8210) = 8—i,p (82) 4') — 80,-1 (82~ 4')—

Substituting (A8) and (A9) into (A2) gives

1 2W(81', 82, $) =
2 ~

—sin 81 (1+cos 82) (hi 1+6 1 1)
8(2s) & 4

3
slil 82 cos 82e 2ig

2

+cos 81 sin 82hp p
——sin 81 sin 82(cos2$ Rehi 1 —sin2$1mhi 1)

2
1——sin 81 cos 81 sin 82 cos 82 cos p Re (hi p + h i,p) —»n p im (hi, p —h- i,o) (A10)

Renormalizing (A10) so that the integration of W(81, 82, p) over 81, 82, and p gives back the total width I' in (3.2)
brings us to the result (3.11). The derivation of (3.15) is performed analogously.

In the derivation given above all two —particle states are defined as in the Jacob —Wick convention [39] where the
two-particle c.m. state at momentum direction p is obtained from the state where p is along the z direction by the
rotation R = ($, 8, —P). In addition we defined the phase of the two-particle state as in Jacob and Wick [39]. This
has consequences for the definition of the polarization vector of particle 2 in (3.3).

APPENDIX B: DECAY AMPLITUDES

In this appendix we collect the formulas for the matrix elements of all the other decays of 80 and 8 induced

by Hi, H2, . . . , Hs which are listed in Tables I and IV and which have not been given in Sec. IV. Although we shall
neglect in this work all OZI-forbidden terms and all annihilation contributions we shall give the complete formulas so
that the reader can see in which cases there are additional contributions which can modify our predictions and which
case this does not occur. Of course the former will happen mostly for H2 and Hs where penguin terms are present.

We start with the transitions induced by H&+ which are Bp ~ I&'Q~, I&'Qpp, D'+D;, and 8 ~ K'
IC'' p, I&' g, and D' D; . The matrix element for Bp -+ I4'Qu is

& E' ~iH2 [8 [ & I&' [(sb)„[B && v[(6u)" (0 & (a A, + a2Ai)

+ & ~&"I(sb)„ IBQ && ~l (uu+ dd)" I0 & (as+ cs) A

+ & ~
I (db) IB' && ~&'1(sd)" I0 & «Ai+ & I1'~[ (sb) [0 && 0[ (db)" [8 & a4Ai

+ & I1"~f(sd) (0 && 0( (dysb) )8 & asA, ] (B1)

and that for B ~ I&' p, which looks similar, is

& I4' p (H2 (Bp &= — [ & I1' ((sb)„(80 && p [(uu)" [0 & (a A, + a2Ai)
2

+ & p [(db) )8 && K' [(sd)" [0 & a A+ & I4' p [(d ))s0 && 0) (db) [Bp & a A,

+ & I~"'p'[ (ds) )0 && 0[ (dy, b) [8' & a, A, ) . (B2)

Vfe remark that in both cases we have two interfering contributions even when annihilation terms are ne-
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glected. These terms, first and second terms in (Bl) and (82), can lead to helicity amplitudes with different weak
phases which can produce nonvanishing Pi and P2 terms. Without higher-order QCD corrections we have a
a2 (c+ ——c = I, ci ——0, c~ —2) so that the first term in (81) and (82) is proportional to A, + A, = —A„= —V„;V„b
due to the unitarity of the CKM matrix. This means that in zeroth order of QCD these two transitions are strongly
suppressed since V„,V„b —A (see Sec. VA). With penguins included this suppression is lifted and larger branching
fractions are possible. The main point is that there is no OZI suppression in the second term in (Bl) and (82),
respectively.

For comparison we write now the matrix elements for the corresponding B decays B ~ A'' ~, B ~ E' p,
and Bo ~ I~* p+:

& Ii" uIH& IB &= — ( & It" 1(sb)„ IB )& ul(uu) 10 & (a A, + azAi)
2

+ & Ii* 1(sb)„18 )&~l(uu+dd) 10) (as+ cs)Ai

+ ( ul(ub)„B && Ii." 1(su)" 10 ) [a+A, + (ai+ a4) Aq]

+ & Ii.* col (su)„10 && 01(ub) 18 & [a+A, + (ai + a4) Ai]

+ & It" ~l (su) Io && oI (uvsb) IB

( I~" p IHz 18 )= — f & I~" 1(sb)„18 && p'1(uu)" 10 ) (a A, + azAi)
2

+ & p'1(ub)„ IB && I" 1(su)" Io & [a+A. + (ai + «) Ai]

+ & I~" p 1(su)„10 && 01(ub)" 18 & [a+A, + (ai+ a4) Ag]

+ & Ic' p'1(su) 10 && 0I (up, b) 18 ) asAi},

& I~" p+IH zlB )= —
g & p+1(ub)„ IB )& Ii* 1(su)" 10 ) [a+A, + (ai+ a~)Aq]

+ & I" p+
I (ds) lo && ol (db)" IB' & a4Ai

+ & I~" p+I (ds) 10 && 01(dpsb) 18 & aqA, } .

Next we write the matrix element for 8 ~ I~"

& Ii." @IH& 18 &= — ( & I~" 1(sb)„ IB && gl(cc)" 10 & [—a A, + (a4+ cs) Aq]
G

2

+ & @I (ub)„ IB &( I~" 1(su) 10 & [a+A, + (ai + aq) Aq]

+ & I~" @1(s )„u10)(01(ub) 18 & [a+A, +(ai+a4)A, ]

+ & E* @I(s") 10 && 01 ("Yqb) IB & a5A~} .

(85)

(86)
The second term is OZI forbidden and in addition suppressed in zeroth-order QCD because of A, + Aq ———A„.
The latter also applies to the third term, an annihilation contribution. The most dominant decays in this group are
B ~ D* D, and B ~ D* D,* which are calculated from the formulas

& D*+D,* IH2 IB &= — [ & D*+1(cb)„18 && D,* 1(sc)" 10 ) (—a+A, + aqAq)

+ & D*+D; 1(ds) 10 && 01(bd)" IB ) a4Ai

+ & D'+D; 1(sd) 10 )& OI (dp5b) 18 & a A,],
& D*'D,' IHPIB &= — ( & D*'1(cb)„18 && D,* 1(sc)" 10 & [—a+A, + a4A, ]

G

+ & D'D.* 1(su)„Io && oI (ub)" IB & [a+A + (ai + a4) A~]

+ & D*'D; 1(su) 10 )( 01(uysb) 18 & asAi} .

(87)

(88)

These two decays are influenced very little by penguin contributions. In (88) the annihilation term is additionally
suppressed in zeroth-order QCD since it is proportional to A, + A&

———A„. Pi and P2 vanish when annihilation terms
are neglected.

Next we write the matrix element for the decays induced by II3 . Instead of A, and Aq the CKM elements are A,
and A& defined in (4.6). Compared to A, and Ai they are Cabibbo suppressed by the factor V,g/V„A. We group—
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together Bo ~ upo, popo, uu, p+p, ug, pop. The matrix element for these six decays are

& ~p'ies" iBO &=— ( & ~i(db)„iB && p i
(uu)" i0 & (a A, + a2A, )

x & p i(db)„iB && uzi (uu)" i0 & [a A, + (a2+ a3+ cs) Aq]

+ & p i(db)„iB0 && oui(dd)" i0 & (a3+ a4+ cs)Ag

+ & ~p'l (uu) „10&& 01(db)" IB' & (a-A + a2A~) & ~p l(dd) 10 && 0l(dVsb) IB' & asA1),
(»)

& Plp21&3 IB' &= — & P11 (db) IB' && P21(uu)" I0 & (a-A. + a2Ai)

+ & P2i (db) iBO && p',
i (uu)" i0 & (a A. + a2Ag)

+ & p1PQ (uu)„ i0 && Oi (db)" iBO & (a A, + a2Aq)

+ P1P2 ):qq o & 0I (db)" IB' & a3At
E4 )„

R

+ pp2 ) qq 0 & Oi (db)" iB & csA,
&4 )„

+ & P,P2i (dd) i0 && Oi (dysb) iBD & asAq

& u14/2iH3 [Bo &= — & u1i (db) iBD && ur2i (uu)" [0 & (a A, + a2Aq)
2 P

+ & ~21 (db) IB' && ~11(uu)" 10 & [a A, + (a2+ a3+ cs) Ag]

+ & ~2i (db) iB' && u)1i (dd)" i0 & (as+ a4+ cs) Ag

+ & cu1~2i (uu)„ i0 && 0) (db)" iB & (a A, + a2A1)

+ ~1cu2 ) qq 0 & 0[(db)" iBO & asAg

( )
R

+ ~&~p qq 0 (0 db" 8 &C6At
)

+ & ~1~2 I (dd) 10 && 0I (dzsb) IB' & asA~ (811)

& p p F83 iB &= — & p+i(ub)„ iB && p i
(du)" i0 & [a+A, + (a1+a4) A, ]

+ & p+p i(uu)„i0 && 0i (db)" iB' & (a A, ya2Ag)

+ p p I qq 0 &0 db" B )a3At
4 J„

(+ p+p- qq 0 (0 db P Bo) c6At
)„

+ & p+ p i (dd) i0 && Oi (dysb) iBO & a A, (B12)
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The four decay matrix elements in (B9)—(B12) have the property that in zeroth-order @CD they are proportional
to A, + A~ ———A„= V„'d V„~ A . Therefore all these decays have small branching ratios. Next we give the matrix
elements for the decays Bo ~ cup, pa@:

& ~l(db) IB' && @I(ec)"Io & [—a-A +(as+ cs)A]

+ & @l(db) IB'&&~I(uu)" lo) [a A, +(a2+as+cs)A, ]

+ & @I (db) IBO && ~l (dd)" I0 ) (as+ a4+ cs) Aq

+ & ~PI(uu)„ IO )& 0I (db)" IB' & (a A, + aqAq)

—& ugf(qc) [0 && 0[(db) fBq & a A, + (ug ) (qq)~ 0) & 0[(dq) [B & aqA,

+ ~@ ) (qq)„0 & 0I (db)" IBO) csA, (~/I (dd) IO && 0I (dysb) IBo ) asA,

& p'&IHs"IB' &= — ( & p'l(db)„ IB' && 4l(ec)" I» [—a-A. + (as+«) A~]

(B13)

+ & gl (db) IB' && p'I (uu)" I0 & (a A, + a~A, )

+ & p @I (uu)„ IO &( 0I (db)" IBO ) (a A, + a2A&)

—& p @I (ce)„ IO )& Ol (db)" IBO & a A, + ( p @I (dd) IO &&
I (dp5b) IBO & a5Aq} .

(B14)

In both matrix elements the second nonannihilation diagram is OZI forbidden, so that the dominant part consists of
just one amplitude.

Since the matrix element for Bo ~ D'+D" was already given in (4.5) we are left with four matrix elements for
8 decays, namely, for 8 ~ ~p, p p, p Q, D* D, which are written below.

&~p IHs IB &= — ( &~l(ub)„IB && p l(db)" I0) a+A, y(a, +a4)A)

+ & p I (db) IB && ~l(uu)" I0 & [a A, + (a2+ as+ c6) A, j

+ & p I (db) IB && ~l (dd)" IO & (a3+ a4+ es) Ag

+ ( urp
I (du) I0 )& Ol(ub)" IB & a+A, + (aq + a4) Aq

x & cup
I (du) I0 && Ol(upsb) IB & a5Ag) . (B15)

& p'p IHs"IB &= — ( & p'l(ub)„IB && p I(du)" Io & a+A +(a~+a4)A~

+ & p I (db) IB && p'I (uu)" IO ) (a A, + agA, )

+ & p'p
I (du) Io &«I(ub)" IB & ~a~A, + (ay+ a4) A,

+ & p p I (du) I0 && 0I(up5b) IB & a5A, ) . (816)

In this matrix element we have interference only through the mass difference of p and p, otherwise the helicity
matrix elements generated from the first and second lines in (B16) differ only by a common factor.

& p QIHs IB &= — ( & p I (db) IB &( @I (cc)" IO ) —a A, + (as + es) Aq]
2

+ & @I (ub)„ IB && p 1(du)" lo & [a+A, + (a, + a4) Aq

+ ( p qI (du)„ IO && Ol (ub)" IB & [a+A, + (a2+ a4) Ag

+ & p &I (du) Io && oI(uv. b) IB & a5Aq)

The second term of the right —hand side is OZI forbidden.

(B17)



45 BRANCHING RATIOS AND CP ASYMMETRIES IN THE DECAY B~VV 215

& D"D' (H3~(B ( & D"((cb)„(B && D'
( (dc)" (0 & (—a+A, + a4A, )

+ ( D' D' ((du) (0 && 0((ub)" (B & a+A, + (ag + a4)Agj

+ ( D' D' ((du) (0 && 0((675b) (B & asAg) . (B18)

This matrix element is dominated by the term propor-
tional to a+A, so that penguin terms are unimportant
here.

In the following we present the formulas for
decays without penguin contributions induced by

H&, H4e+, Hse, and Hs . These matrix elements have
far fewer terms. We start with the matrix elements for
Bo ~ ~D'o, p D' and for B ~ p D' (see Table II
for the list of all H&+ induced transitions):

(poD+0(Hefr(B0)

V'aV b & p'l(db) IB' && D'I ( )"I» —,2"
(B20)

&p D' IHi IB

V„'~V,b & D"+((cb)„(B0)2"
x & p ((ud)" (0 ) a+ . (B21)

2"'''V„'gV,b, & ~( (db) (Bo && D' ((uc)" (0 & a

(B19)

The matrix elements for the transitions B
It' D'+, I&' D', and B -+ I&' D' induced by H4
are

( It' D'+(H4 (Bo &= V„', V,ba+ & D'+((cb)„(B' && A" ((su)" (0 &, (B22)

V:.V.ba- & i~'I(»)„ IB' && D"l(cu)" I0 &, (B23)

& Ii' D'0(H4~(B &= V„;Vb[ & I&' ((sb)„(B && D' (0( uc)" (0& a2"'"
I (cb)„ IB- && Z'-

I
(su)" lo ) a+1 (B24)

The decays induced by Hse~, namely, B'0 -+ I&' D' and B -+ IY' D' have, as pure b ~ u transitions, small
branching ratios. The matrix elements are

& It'D'IHs" IB' &= V.'b V-a- & It'l(sb) IB' && D"
I
(uc)" Io &,2"'" (B25)

& I&' D'0(H5 (B &= V„'bv„a & I|" ((sb) (B && D' ((uc)" (0 &

The transitions originating from H6+ are suppressed
even further since they have additional Cabibbo sup-
pression as compared to the H5+ transitions. The ma-
trix elements for B ~ p+D', p D' cuD', and B
p D', p D', ~D' are

& p+D' IH'~(B0 &

& p'D" (Hs IB' &

—& p'l(db) IB' && D'I( )" Io &2""
(B28)

& ~D' (Hs (Bo &

v;„v.ba & ~((db) (B' && D'I(uc)" Io &

(B29)

~&v.ba+, & p+I (ub)„ IB' &
2

'

x & D'
(
(dc)" (0 &, (B27)

G
vqv„ba ( p ( (db) IB && D'0((6c)" (0 &,

(B30)
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& poD* iH;"iB & urD' iHs iB

6
V 1V-sa+ & I 'i (ub) p I»& D

i
(«)" 10 &,

2
'

(B31)

0
V;~V„sa+ & ~i(ub)„ iB && D*

i
(dc)" i0 &

(B32)
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