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A spatially flat cosmological scalar field (4) model with the scalar field potential ~ exp( —@/&p ),

p & 1, provides a simple class of inflationary cosmologies (which includes the usual exponential expan-

sion inflation) that may be used as an analytical testing ground to help understand the predictions of the

inflation model of the very early Universe. We divide the evolution of this model into three distinct

epochs: scalar-field dominance and conventional radiation and baryon dominance; in each epoch we

only account for irregularities in the dominant form of matter. We present closed-form solutions of the

(synchronous gauge} relativistic linear perturbation equations that govern the evolution of inhomo-

geneities. These classical solutions, augmented with quantum-mechanically motivated initial conditions

and joining conditions to match the expressions for the irregularities at the scalar-field —radiation and

radiation-baryon transitions, are used to estimate the large-time form of the spectrum of energy-density

irregularities, of the local departure velocity from homogeneous expansion, of large-scale fluctuations in

the microwave background temperature, and of the gravitational-wave energy density. The inflation

epoch results agree with those found from a purely quantum-mechanical analysis. Depending on the

value ofp this model can have more large-scale power than the usual scale-invariant spectrum (at the ex-

pense of less small-scale power) and would seem to be marginally better at forming large-scale structure

than the canonical model; however, the decrease in small-scale power serves to exacerbate the problem

of late galaxy formation. As the model approaches the exponential expansion inflation limit, the power

spectrum tends towards the scale-invariant form, although, in this limit the numerical prefactor

diverges. We find that transverse peculiar velocity perturbations are not generated. Normalizing by

fitting to the observed large-scale departure velocity, we find that models which stop inflating around

10 -10' GeV are not obviously observationally inconsistent.

PACS number(s): 98.80.Cq, 98.80.8p, 98.80.Dr

I. INTRODUCTION AND SUMMARY

The simplest model for the formation of observed
structure in the Universe (galaxies, clusters of galaxies,
etc.) makes use of the characteristic ability of gravitation-
al instability to amplify small initial spatial inhomo-
geneities in the mass distribution to form larger-scale ob-
jects. In one version of this scenario the small initial spa-
tial inhomogeneities are assumed to result from
quantum-mechanical fluctuations during a very early
period of inflation. A currently popular example of this
scenario is what is known as the biased, adiabatic, scale-
invariant, cold nonluminous matter [hereafter, cold dark
matter (CDM), i.e., extremely weakly interacting matter
with almost no primeval thermal velocity] scheme [1].

The scale-invariant CDM scenario, which assumes a
scale-invariant spectrum for the adiabatic energy-density
fluctuations [2] (such a spectrum is present in a number
of particle-physics-inspired inflation models of the very
early Universe), has been analyzed in some detail. There
seem to be two problems with this scenario [3]: if the
spatial momentum-space power spectrum of energy-
density fluctuations P(k, t ) (which is ~ k in this scenario)
is normalized by 6tting to the observed large-scale fluc-
tuations in galaxy number counts (on a scale of order
10—30 Mpc), there is relatively little power on small
scales, which means that galaxies form late; furthermore,

with this normalization, the model predicts that aggrega-
tions of mass are anticorrelated on scales larger than
-50—100 Mpc (which also does not seem to agree with
the observations).

Although there have been some attempts to Gnd
inflation models which have more power on large scales
[4], we believe that the more pressing issue is to find mod-
els which enhance the power spectrum on small scales, so
that galaxies can form at a sufficiently early epoch. (The
models discussed in this paper do not have enhanced
small-scale power. ) However, in models in which galax-
ies form before a redshift of a few it would be very
difficult to reconcile the low dynamical estimates of the
mean mass density with the negligibly small space curva-
ture preferred by inflation via the construct of balancing
(1—Qd„„) against some form of CDM since gravitational
instability, given time, ensures that all forms of pressure-
less matter cluster democratically. [The density parame-
ter Q is the ratio of the mean mass density to the
Einstein —de Sitter value, Q(t) =8nGpl(3H ), w. here G is
Newton's gravitational constant, 0 is Hubble's parame-
ter, and p the relevant energy density. Qd „denotes the
dynamical estimate of the value of the density parameter,
on scales up to —10 Mpc. ] To alleviate this problem one
might assume that (1—Qd„„) is balanced by some kind of
nonluminous, nearly homogeneous, energy density, for
example, a cosmological constant [5] or a cosmological-
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"constant"-like scalar field [6,7].
The scale-invariant power spectrum of adiabatic fluc-

tuations in the standard exponential expansion inffation
model of the very early Universe is a consequence of the
form of the potential, V(C&), of the inflaton field, 4—an
exceedingly flat inffaton potential results in an exponen-
tially expanding scale factor, a(t) ~ exp(Ht), and a scalar
field two-point function that varies logarithmically with
scale [8], which results in a scale-invariant power spec-
trum [9]. (The belief that the scale-invariant spectrum is
a consequence of the time translation symmetry of de Sit-
ter spacetime is not correct. This is because the solution,
of the relativistic linear perturbation theory equations,
corresponding to this symmetry is a decaying, gauge-
dependent, solution. ) One way of modifying the power
spectrum would be to consider a different form for the
inflaton potential [10]. There are a number of possible
forms; in this paper we consider a potential of the form
V(4) ~ exp( —4/&p ), p & 0, which results in a scale fac-
tor a(t) o-t~ (for a spatially flat cosmological model); if
p & 1 this model describes an inflating cosmology (i.e., the
time derivative of the scale factor increases with time)
[11], with an energy-density power spectrum that can
have enhanced large-scale power compared to the scale-
invariant spectrum. In the limit p ~ ~ this model
reduces to the usual model of exponential expansion
inflation. This class of power-law inflation models was
proposed and examined by Lucchin and Matarrese
[12,13,7].

The main purpose of this paper is to study this simple
example of an inflation modified hot big-bang cosmology
in some detail, so as to develop some understanding of
the observable predictions of inflation. We shall model
the evolution of the Universe by dividing it into three dis-
tinct epochs. During the earliest, scalar-field-dominated,
epoch the scalar field energy density powers the
inflationary expansion of the Universe. This model for
the very early Universe is then patched on to a conven-
tional hot big-bang model with a radiation-dominated
epoch and a baryon-dominated, present, epoch.

Even though a specific particle-physics-based scalar
field inflation model of the very early Universe is com-
plete (in the sense that it has a given scalar field potential
and reheating temperature), we believe that the vast num-

ber of such models makes it more worthwhile to focus on
a class of macrophysical inflation models, rather than to
concentrate on a particular microphysics-based model,
and to study the constraints observations impose on the
reheating temperature and the scalar field potential dur-
ing inflation. [Of course, if one then wants to use the
models, with parameters that lie in the observationally
desired range, to examine further observational conse-
quences of inflation, one is open to the criticism that
these models are "fine-tuned" —unfortunately, in the ab-
sence of a theory of the very early Universe (as opposed
to a model), this is the best that can be done. ] In other
words, we wish to ask the question: Given the present
observational constraints on the large-scale structure of
the Universe, can one usefully constrain the energy scale
at which inflation must have ended (i.e., the particle-
physics energy scale which might be responsible for the

large-scale structure of the Universe)? This question can
only be posed in the context of a particular model of
inffation. For reasons which we shall discuss below, we
believe that the macrophysical model of inflation we ex-
amine is of sufficient (large time cosmological) generality
that the answer to this question might not be totally ir-
relevant. Interestingly, a preliminary comparison to a
fair fraction of the large-scale observational data suggests
the rather weak bound that models which stop inffating
around —10 -10' GeV are not obviously inconsistent
with the data. We emphasize that these models do not
seem to require a small dimensionless parameter (of order
10 '

), that some other inflation models seem to require,
to not disagree with the observations. (We note that
models at the lower end of this energy range will be more
accessible to the tests of high-energy experimental phys-
ics; they will, however, probably require a new baryosyn-
thesis subscenario. ) A more careful comparison will

probably reduce this spread in energy —the main purpose
of this paper is not to draw detailed quantitative con-
clusions, rather, we wish to develop a framework which
in the future might provide the appropriate setting for
such an analysis.

Perhaps the most striking feature of inflation is its abil-
ity to enormously expand inflation epoch length scales on
which quantum mechanics rules, to length scales that are
now of cosmological significance. This makes it possible
for inflation epoch zero-point quantum fluctuations to
transmute to large-scale irregularities in an otherwise
homogeneous large time cosmological model, and to
maybe be responsible for the observed large-scale struc-
ture of the Universe. We are particularly interested in
the behavior, in linear perturbation theory, of energy-
density irregularities in this simple inflation model. We
use the methods of Ref. [14] to derive closed-form solu-
tions of the (synchronous gauge) equations of relativistic
linear perturbation theory that govern the evolution of
spatial irregularities. These general solutions depend on
constants of integration; to determine the constants of in-

tegration in the inflation era expressions we use
quantum-mechanically motivated initial conditions [8).
(We shall see, in Sec. III C, that these initial conditions
only determine the constants of integration for gauge-
invariant solutions; for instance, they seem to leave un-

determined the constant of integration which corre-
sponds to the gauge-dependent, time translation invari-
ance solution. ) These explicit solutions allow one to use
this simple model to compare different methods of es-
timating the inflation epoch spectrum of spatial irregular-
ities. An analysis of the inflation epoch of this model us-

ing the Dirac-Wheeler-DeWitt formalism of Ref. [9] is
described elsewhere [15]. The expressions for the
inffation epoch perturbations found here agree with those
found from a purely quantum-mechanical analysis in Ref.
[15].

Given the explicit form of the scalar field and gravita-
tional irregularities during inffation, we may use the re-
sults of Refs. [14,16] to derive expressions for the pertur-
bations in the large time (radiation-fluid- and matter-
fluid-dominated) universe by joining the expressions for
the perturbations at the transitions. We assume that the
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transitions (from the scalar-field-dominated epoch to the
radiation-dominated epoch and from the radiation-
dominated epoch to the matter-dominated epoch) are in-

stantaneous and that the matter stress tensor is always
dominated by one type of matter —the scalar field in the
scalar-field-dominated epoch, radiation in the radiation-
dominated epoch and baryons in the matter-dominated
epoch (so that the total present density parameter
0„,„=1)—i.e., in each epoch we only account for pertur-
bations in the dominant form of matter.

We model the transitions by requiring that the equa-
tion of state (and hence the pressure) change instantane-
ously and discontinuously at the spatial hypersurface on
which the local (total) energy density reaches an ap-
propriate critical value (the transitions, after all, are
governed by local physics). This spatially homogeneous
local energy-density hypersurface di6'ers from the corre-
sponding constant time synchronous gauge hypersurface
only by terms that are of first- {or higher-) order in per-
turbation theory [16]. This means that we may match
the scale factor and the homogeneous "background" part
of the energy density on the constant time spatial hyper-
surface. The joining conditions for the constants of in-

tegration in the expressions for the perturbations in the
large-time universe are derived by requiring that the
linearized equations of covariant conservation of stress-
energy and Einstein's equations do not become singular
on the spatially homogeneous local energy-density transi-
tion hypersurfaces [16]. These joining conditions differ
from two earlier sets of joining conditions (which differ
from each other) [16].

Given the approximate nature of our model for the
transitions (especially the reheating transition), it is im-
portant to be able to identify those parts of the final re-
sults which do not depend sensitively on the joining con-
ditions used. In a preliminary attempt at studying this is-
sue, we have, in Ref. [17],derived joining conditions for a
transition at a spatially homogeneous local scalar field
spatial hypersurface and used these joining conditions in
the analysis of an inflation model —a discussion of the
dependence of the final results on changes in the joining
condition prescription is presented in Refs. [17,18].

The energy-density hypersurface joining conditions
may be used to determine the constants of integration in
the expressions for the fractional energy density, peculiar
velocity and metric perturbations in the radiation- and
matter-dominated epochs. Since this model does not in-
clude the physics which describes the coupling between
radiation and matter (as well as other small scale process-
es), the expressions we have derived are only valid on
fairly large scales. We, therefore, focus on perturbations
on scales larger than the Hubble radius during the transi-
tion from scalar field dominance to radiation dominance
and the transition from radiation dominance to matter
dominance. These large-time expressions for the pertur-
bations determine, among other things, the baryon-
dominated epoch form of the power spectrum of energy-
density irregularities. We find that the adiabatic mode,
for perturbations that reentered the Hubble radius in the
baryon-dominated epoch, has a power spectrum that is
given by

P(k, t )—:(5~(k, t )5~( —k, t ) )

k"' "'~A~'a'
2 7

mz

where 5z denotes the fractional energy-density perturba-
tion in the baryon-dominated epoch, k is the magnitude
of the spatial momentum of the mode under considera-
tion, v=(2+q )/[2(2 —

q )],q =2/p, mz is the Planck
mass and the coefficient in this expression is
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[it should now be clear that our neglect of the effects aris-
ing from the coupling of radiation to matter means that
this equation is only valid for large-scale perturbations
(see, for instance, Ref. [19]);without including this phys-
ics we cannot estimate the ("galaxy formation") epoch
when small scales (- galactic scales) go nonlinear], where
the coefficient is now given by

3/2
. 7/2 3/4

1 1 3 ~z ~a
e 20 v'2 k k

X [a(tee, )H(tee)] [a(tan )H(tan )] (1.4)

In the exponential expansion limit the power spectrum
diverges like e . {This divergence seems to be unrelated
to the infrared divergence of (massless, or almost so,
minimally coupled, scalar) field theory in de Sitter space-
time, studied in Ref. [8], which is responsible for the spa-
tial momentum dependence ( ~k) of Eq. (1.3).) The
physical origin of this divergence lies in a property of the
quasi —de Sitter spacetime that results in this limit: the
quasi —de Sitter background energy density evolves so
slowly that the spatially homogeneous local energy-
density hypersurfaces are exceedingly displaced from the

where tz@ and tir„are the synchronous gauge (transition)
times of equal scalar field and radiation energy density
and equal radiation and baryon energy density and A.~
and A,~ are characteristic wave numbers, at these transi-
tions, defined below Eqs. (4.34) and (4.43) below. We
note that for the allowed values of q E [0,2) (for which
the model of the early Universe infiates) the power spec-
trurn index n —=2(1—v) ranges from 1 to —~. The time
dependence of this power spectrum is of the standard
form, the spatial momentum dependence agrees with the
results of Ref. [12], while the numerical prefactor seems
to disagree with what was found in Ref. [12].

In the limit q =2e -0 this model reduces to the step
function potential exponential expansion model studied
in Ref. [9]. In this limit the power spectrum reduces to
the standard scale-invariant form [2]
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corresponding synchronous gauge constant time hyper-
surfaces; i.e., one must wait for a substantial time before
the change in pb is large enough to compensate for 5&„
even if 6+ obeys the standard assumptions of linear per-
turbation theory. This would not be a problem if one
stayed permanently in the de Sitter model, but the
Universe must eventually become radiation dominated
and the transition must take place simultaneously on a
spatially homogeneous local energy-density hypersurface
(since it is governed by local physics). In the radiation-
dominated epoch the spatially homogeneous local
energy-density hypersurfaces are not anomalously dis-
placed from the corresponding constant time synchro-
nous gauge hypersurfaces; since we have matched the
homogeneous background fields on a constant time hy-
persurface and need to match the perturbations on a spa-
tially homogeneous local energy-density hypersurface and
since the local energy-density hypersurface is anomalous-
ly displaced in the de Sitter epoch, we are forced to
choose 5z, during radiation dominance, to be very large
to achieve the needed matching. It might, therefore,
seem that, independent of the detailed form of the joining
conditions used at the transition, this (almost geometric)
property of de Sitter spacetime always results in an
exceedingly large power spectrum in the baryon-
dominated epoch (this is true provided the scalar-
field —radiation transition occurs rapidly on the relevant
Hubble time scale [18,20]). Our analysis of the transition
breaks down when e is very small because we make the
assumption that the local energy-density hypersurface
and the corresponding constant time synchronous gauge
hypersurface are "close," which is no longer valid (this
does not signal a breakdown of the standard linear per-
turbation theory assumptions on the de Sitter side of the
transition hypersurface) —however, for e small, but not
exceedingly so, our analysis holds and one sees the proto-
divergence begin to develop.

Although the simplified treatment of the reheating
transition presented here does not preclude the possibility
that a more complete analysis might alter the detailed
form of our (exponential expansion inflation limit) con-
clusions, we would be surprised if the relevant small-scale
physics is found to significantly influence the large-scale
form of the power spectrum. As we will discuss in more
detail below, this divergence only rules out an exact de
Sitter model; a naive analysis of the final results for an

e-10 (or even smaller) shows no obvious inconsistency
with the observations.

At this point, it is perhaps appropriate to note that, at
first sight, the final result of a substantial fraction of pre-
vious analyses of density irregularities arising from de
Sitter inflation [21—24] differs from this result (this will
be elaborated on in Sec. V B and in Refs. [18,20]). [We
note that a general formula presented at an intermediate
state of some of these analyses, when applied to the mod-
el studied here, does contain this divergence. ] More
specifically, in earlier analyses the formula which is used
to claim that inflation requires a very small ("fine-tuned")
microphysical coupling constant if it is to not disagree
with the observations also suggests that the large-time
perturbations arising from exact de Sitter inflation van-
ish. (We emphasize that here "fine-tuned" means that
the observationally desired value of the coupling constant
conflicts with the value suggested by the microphysics of
the model; this should not be confused with the "fine-
tuning" problem of the electroweak model [25], which is
something entirely different. ) This difference is the result
of the difference between the treatment of reheating used
here and that used in earlier analyses; since the scalar
field model studied in the earlier analyses differs from the
model we have examined here, we postpone a comparison
to Refs. [26,18,20] (where we consider the model used in
earlier analyses).

As a spinoff of our analysis of inhomogeneities, we find
that transverse peculiar velocity perturbations are not
generated in this class of scalar field inflationary models.
This means that such models of inflation are not the ap-
propriate description of the very early Universe in the
primeval turbulence scheme for structure formation. It is
unclear, at present, whether this effect may be used to ob-
servationally distinguish the scalar field inflation mecha-
nism for generating the progenitors of large-scale struc-
ture from other mechanisms. (This seems unlikely since
other mechanisms for producing these progenitors will

probably only generate decaying transverse peculiar ve-
locity perturbations which would seem to be extremely
difficult to detect observationally. )

We also study gravitational-wave perturbations. One
characterization of these perturbations is the spatial
momentum-space two-point function; we find, for pertur-
bations that reentered the Hubble radius in the baryon
dominated epoch,

(h' '(k)h' '( —k)) = k ' + 'a ~D~ 1 —cos
Pgp aH

4k . 4k k
sin.H aa +' .0 2

4k1+cos
aH

(&.s)

(1.6)

where A.z is a characteristic wave number at the scalar-field —radiation transition and is related to kz through
kz =&3~~. We find that the two-point function becomes time independent for long-wavelength gravitational waves
(and in this limit is proportional to k ' ", which reduces to k in the exponential expansion limit of the model for
the very early Universe), while on small scales it oscillates about a nonzero mean with amplitude ~ k '"+ 'a . The

where there is no implied summation over the index i which can correspond to either the + or X transverse polariza-
tion of the graviton (h+ =

h~&
—h» and h ~ =h &3+h3~) and the numerical prefactor is given by

3/2 —15/4
csc( vm ) ~z ~a

~D
~

=&Yr3( —')'"(2—q) +'" [a(r )H(r )] +'"[a(r )H(r )]'"
I (

—v) k
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energy density carried by the gravitational-wave perturbations is

2

s, (k, t ) = (h;(k, t)h;( k—, t ) ) + (h, (k, t }h,.( —k, t ) )
321T a

(1.7)

where an overdot denotes a derivative with respect to t and again there is no implied summation over i. Dirnensionally,

this expression plays the role of p& [(5(k )5( —k ) ) ]'~ in the ideal fluid model. When applied to the model studied here

we find that this becomes
'2
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aH aH

4
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where IFI is defined through
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' 3/2 ' —21/4
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In the long-wavelength limit the energy-density spec-
trum of gravitational waves is proportional to k a
(which reduces to k 'a in the de Sitter limit of the
inflation model). In the short-wavelength limit we find
that the dominant part of the energy-density spectrum
does not oscillate and scales as k '"+ 'a . We em-
phasize that both the spatial momentum dependence and
the scale factor dependence of the energy-density spec-
trum differ from that of the graviton two-point function.

To compare theory with observation we have to use
the same coordinate system for the theoretical expres-
sions and the observational data. Although this issue
does not yet seem to have been addressed in any detail in
the relativistic perturbation formalism, conventional wis-
dom suggests that theoretical expressions in the Newtoni-
an approximation (the limit in which the peculiar velocity
is small and one focuses on scales small compared to the
Hubble scale) may be directly contrasted with observa-
tional data. We, therefore, choose to transform the
theoretical expressions to the instantaneously Newtonian
synchronous coordinate system. This is the coordinate
system in which, at the epoch when the observation was
made, the time derivative of the trace of the metric per-
turbation is removed (and on scales much less than the
Hubble radius the expressions for perturbations in these
coordinates reduce to those which may be derived from
the corresponding Newtonian perturbation equations).
Furthermore, the limited resolution of an observation of
a given quantity means that it only senses a coarse-grain
average value for this position space quantity; we account
for this effect by using a window function to suppress
high spatial momentum modes in the Fourier transform
(which takes the momentum-space expression derived for
this quantity) back to position space.

Two quantities of particular interest are the large-time,
baryon-dominated epoch, forms of the mean-square mea-
sure of the fractional mass distribution and the rnean-
square measure of the (longitudinal) local departure ve-
locity from homogeneous expansion. The mean-square
measure of the fractional mass distribution is defined by

( (4, ~IR I
)

41=
X (Ss(k, t~)Ss( k, tN))—e

(1.10)

(
5M~

Q I —+—(%'H )2 2 2 now
m&

where the factor Q is given by

where the carets denote that the instantaneously
Newtonian synchronous coordinate system is being used,
t~ is the time at which the observation was made, and R
is the coordinate length scale which the observation was
sensitive to (and we have used a Gaussian window func-
tion); a similar expression is used to define the mean-

square measure of the local departure velocity from
homogeneous expansion.

The exclusion, from this model, of the small-scale
physics which describes the coupling of radiation to
baryons requires that we normalize the large-time expres-
sions, which describe the evolution of matter irregulari-
ties, by comparing the mean-square measure of the depar-
ture velocity from homogeneous expansion to that (tenta-
tively) observed on intermediate ("great attractor"} scales
of -60 Mpc [27]. (Linear perturbation theory should
not be too inaccurate on these scales. ) This results in a re-
lation that is, for present purposes, best interpreted as
determining the redshift of reheating (which is a "micro-
physical" parameter), z~c, in terms of the power-law in-
dex of the inflation epoch scalar field potential (another
microphysical parameter), q.

We find at the present epoch, on scales small compared
to the Hubble radius (AH„,„«1, where H„,„ is the
present value of the Hubble parameter and A is a proper
length scale), that the leading term in the fractional mass
distribution is

2
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" (3—n )" csc (nm /2) 5 ( 9)/2H2
25vr (1—n ) I' (n /2 —1)

(1.12)

for —3 + n + —1 (1.13)

[where b,„=(—n —1)/4 if n = —1, —3 and is unity oth-
erwise], and

([5P'(%)] ) = QI —+—h„(%H„,„)
mp

for —1 & n ~ 1 (1.14)

(where b,„=l/4 if n= 1 and is unity otherwise). The
change in the behavior at n = —1 is well known; the main
new feature here is that Eq. (1.13) is not cutoff dependent,
unlike the corresponding expressions in the standard
cosmological scenarios which must be cutoff in the in-
frared. In what follows we require —3 & n ~ 1, where the
lower bound is a consequence of the infrared behavior of
the momentum-space form of the mean-square fractional
mass distribution and the upper bound is a consequence
of the inflation model we have chosen.

To fix the normalization of the power spectrum we re-
quire that the expressions for the local departure velocity
agree with the observations, which are conveniently sum-
marized as

([5V'(%)] ) =y (AH„,„) (1.15)

where the great attractor measurements (tentatively) sug-
gest y =0. 1 on a scale AH„,„=2X 10,Ref. [28]. This
results in a relation that determines the redshift at the
epoch of reheating, z~c„ in terms of the spectral index n.
With this relation, the amplitudes and spectral indices of
all perturbations are fixed once n has been specified (in
contradistinction to standard cosmological scenarios
where, for instance, one must assume, as a separate initial
condition at early time, the amplitude of gravitational-
wave perturbations) and one may compare the resulting
expressions (in an almost standard manner) to other ob-
servational data. Some of the results of a preliminary ex-
amination are as follows (the numerical values are meant
to illustrate orders of magnitude and hence should not be
taken too seriously).

(i) The redshift of reheating, zz@, ranges from

In this expression zz~ and z~~ (both ))1) are the red-
shifts of the scalar-field —radiation and radiation-baryon
transitions and Hzz is the value of the Hubble parameter
at the radiation-baryon transition. Equation (1.11) is
only valid for n ) —3 (because of an infrared divergence
in the integrand of the transform of the momentum-space
expression to position space). There is a qualitative
change in the small-scale behavior of the mean-square
measure of the (longitudinal) local departure velocity
from homogeneous expansion when n passes through
—1. We find

2(5 —n )/2 3n+ 1

m&

-3X10' to -2X10, where we have suppressed the
dependence on h (H„, = 100h km s 'Mpc ') and as-
sumed the standard hot big-bang value z~~ =4X10 h,
these numbers are correlated with the value of n —the
lower end corresponds to n ——3, the upper to n —1.

(ii) The corresponding energy scale at reheating, ER~,
ranges from -7X10 GeV (n ——3) to —3X10' GeV
(n —1) (we have again chosen h = 1).

(iii) The root-mean-square measure of the fractional
mass distribution on the scale RH„,„=2X10 ranges
from 10 (for n ——5/2) to 0.2 (for n —1), the trend is
not monotonic (in n).

(iv) One-third of the root-mean-square measure of the
fractional mass distribution on the scale AH„,„=0.2
ranges from —(1—50) X 10 —this provides a very

rough, order of magnitude, estimate of the fractional spa-
tial anisotropy of the microwave background tempera-
ture resulting from the Sachs-Wolfe effect (we note that
we have not bothered to account for the general-
relativistic redshift correction, which should not alter the
order of magnitude of these numbers).

These quantitative conclusions are preliminary; the im-
portant point to be noted is that there seems to be a large
number of simple scalar field inflation models that are not
obviously inconsistent with large-scale observational
data. A qualitative feature of interest is that the adiabat-
ic fluctuations in this model are not of the scale-invariant
form characteristic of exponential expansion inflation; de-
pending on the value of n the model has increased power
on large scales (at the cost of reduced small-scale power)
compared to the exponential expansion inflation model.
This would lead to more large-scale structure than in the
scale-invariant CDM mode, and might lead to a problem
with the observational upper bound on the large-scale mi-
crowave background spatial anisotropy (our rough esti-
mates tentatively suggest that we must have n ~ —1.5
[29]). The reduction of small-scale power would seem to
result in a late epoch of galaxy formation (which could
also lead to observational problems), to quantify this
would require a more complete treatment of the small-
scale physics than we have attempted here.

In Sec. II we review the spatially flat exponential-
potential scalar field inflation model [7]. In Sec. III we

study the evolution of small spatial irregularities in the
inflation epoch, present closed-form solutions of the
equations of motion and use the remnants of general
coordinate invariance in synchronous gauge to catalogue
physical solutions. We than adapt the quantum-
mechanical initial conditions of Ref. [8] to determine the
constants of integration that appear in these solutions
and present asymptotic approximations of our exact ex-
pressions valid at early times and at late times (in the
scalar-field-dominated epoch). In Sec. IV we use the join-
ing conditions of Ref. [16] and the results of Sec. III and
Ref. [14] to determine expressions for small spatial irre-
gularities in the radiation- and matter-dominated epochs.

Section V is the "applications" section. We first deter-
mine the form the constants of integration take for per-
turbations on scales that were larger than the Hubble
scale during the transitions from scalar field dominance
to radiation dominance and from radiation dominance to
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matter dominance. These expressions are used to derive
the large time (baryon-dominated epoch) form of the
peculiar velocity perturbation and the fractional energy-
density irregularity power spectrum. The power spec-
trum is examined in the de Sitter (exponential expansion)
inflation limit and is found to diverge. We then deter-
rnine the baryon-dominated epoch form of the
gravitational-wave perturbation two-point function,
derive a measure of the energy density in these perturba-
tions (which seems to be more general than that previous-
ly used) and apply it to this model of the very early
Universe. To compare to observational data we trans-
form the theoretical expressions which describe baryonic
inhornogeneities to the instantaneously Newtonian syn-
chronous coordinate system and derive mean-square mea-
sures of the fractional mass distribution and the local
departure velocity from homogeneous expansion. The
mean-square local departure velocity is compared to ob-
servational data on intermediate scales and we find that
observationally allowed models are required to obey a re-
lation between the redshift of reheating, z~c„and the in-
dex of the inflation epoch scalar field potential q. We
conclude with a cursory comparison of the model to oth-
er large-scale observational data.

Friedmann-Lemattre-Robertson-Walker (FLRW) tnodel,
reduce to

y+3 —y ——H e ~=0,a. q —2

a 4

12—+—(y ) He——v=0a 4
a q

(2.4)

where an overdot denotes a derivative with respect to
time, y =&(q/2)(40 —@o' ') and

H2= 6 q 16
—2 [o]STDp pg3

A special solution (which is a time-dependent stable
fixed point for the relevant range of q, [7]) of these equa-
tions is

a, (t) =a, [1+M(t t, )]'v'—,

y, (t) =21n[1+M(t to)], — (2.5)

where M=qH/[2&2(6 —q)]. This solution describes an
inflating universe if q & 2.

When q =2@ -0 this model reduces to the step func-
tion potential model studied in Ref. [9]. In this limit the
scalar field potential, Eq. (2.2), becomes

II. THE INFLATION MODEL
V(@o)=2A[1 —e(40 —4(') ') ], (2.6)

The exponential-potential scalar field model has been
discussed in Ref. [7]; we collect sotne of the relevant re-
sults here.

The Einstein —scalar-field action is

(2.1)

where mz =6 ' is the Planck mass and the metric sig-
nature is (+ ———). For a spatially homogeneous sca-
lar field, 4o, the potential

a ( t ) =aoexp[H( t t~ )], —

4,=4,")+2eH(t —t, ),
(2.7)

where we have only retained the expanding solution and
have defined the Hubble parameter H = )/A/6. For later
reference, we note that in this limit the background equa-
tion of state is given by

2 2
pg = 1 E' pq),3

(2.8)

where we have defined the cosmological constant
A = 16am& p+', and the homogeneous solutions of the
field equations reduce to (to lowest order in e)

X exp
2

1 /2

(C) @(0))

V(@ )= 16ttm p' '

3

(2.2)

where the dominant first term in the parentheses corre-
sponds to a cosmological-constant "fluid"; the time varia-
tion of the background energy density is extremely slow:

causes the scalar field energy density to redshift as

(o)
pc pe (2.3)

or

pq)
— 2E Hp(p

(o)
pe pe

2P

(2.9)

(2.10)

here 4o ' is the value of the scalar field when the scale
factor a =ao and we have chosen the line element

ds =dt a(t)(dx)—
which describes homogeneous, isotropie, spatially flat
cosmological models. The desired numerical values of q
and p@' are to be determined from the observations.

With a potential of the form given by Eq. (2.2), the
Einstein —scalar-field equations, for a spatially flat

III. INHOMOGENEITIES DURING INFLATION

In this section we study the evolution of inhomo-
geneities in the scalar field and in the spacetime metric
for the exponential-potential inflation model, using the
techniques developed in Ref. [14]. The synchronous
gauge equations governing the evolution of inhomo-
geneities in a general Einstein-scalar field model have
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been derived in Sec. VII of Ref. [7]. These equations are
h "(x )+ h'(x )

q
)+3—

(I)
— V (t +—V"((Iio)(t =—h(Iio,

a
(3.1) ' 1/2

2 4(t'(x)+ (()(x), (3.7)

—h +—h =Co()()——V'(No)(t/,
a

h, —h...=CO();(t),

(3.2)

(3.3)

where a prime denotes a derivative with respect to x and
we have defined

1 a ~

ij, kk +h, ij hikjk hjk, ik ) hij

k ~—4/q —2( 2 —
q )x /q

2ao
(3.8)

——h 5;, —h,, =—5;) V'(40)(t); (3.4)
Using Eq. (3.7), h' may be eliminated from Eq. (3.6).
This results in

here spatial indices are raised and lowered with the
metric +5; . To derive these equations we have linear-
ized the metric about a spatially fiat FLRW background,
so the line element is given by

ds =dt a(t)[6—, h,, (t, x—)]dx'dx',

where a(t ) is the FLRW scale factor, h,,(t, x) denotes the
metric perturbations and h is the trace of the metric per-
turbations (and should not be confused with the parame-
ter in the numerical expression for H„,„). We have also
linearized the scalar field about a homogeneous back-
ground:

(()'"+ (t"+ (24—6q —
q )+f(x )

q q

+ (6—q)(2 —q)+ f(x ) ()I)=0 . (3.9)
2

q

()()(x ) =c2e '+
2

g
—3/2 —2x /qe

Since we have differentiated Eq. (3.6) to derive this equa-
tion, we must check whether all solutions of Eq. (3.9)
satisfy Eq. (3.6).

The general solution of this equation is

We tabulate the solutions of Eqs. (3.1)—(3.4) in the fol-
lowing subsection.

X [c+G,(x )+c G2(x )],
where we have defined

(3.10)

A. Solutions

Since the analysis involved in integrating Eqs.
(3.1)—(3.4) is very similar to that used to integrate the
fluctuation equations in the ideal fluid model, Ref. [14],
we omit technicalities and only list the solutions of the
equations. We Fourier expand the fluctuations P and h;, :

(t)(t, x)= 1 [it)(t, k)e'" "+i'*(t,k)e '" "],d k

(2qr)

h, (t, x)= [h, (t, k)e'" "+h;*(t,k)'e '"'"],d k

e =t —to+I (3.5)

The wave equations for the fluctuations (t and h, Eqs.
(3.1) and (3.2), in the exponential potential model, after
the spatial Fourier transform, where k =

~ k,- k, ~

'/ (in

first-order perturbation theory Fourier modes with
different wave vectors do not couple), are given by

(t)"(x )+ P'(x )+ +f(x ) (t)(x )
q q

1/2
2 h'(x ), (3.6)

where k is the spatial coordinate momentum,
k, E[—(x), ao],k x=5,"k,x and itp(t, k)=i'*(t, —k). It is
convenient to change from the independent variable t
(time) to x, where

G (x)=H"' (ke " q'" q)S (ke
—(2 —q)x/q)

t

+ ( )H(1)(g —(2 —q)x/q)
2

Xg (g
—(2 —q)x/q)

7

G ( ) H(2) (g
—(2 —q)x/q)g (7 e

—(2 —q)x/q)
t

+ ( )H(2)(g —(2 —q)x/q)
2

—(2 —q)x/q)
7

(the normal modes have been chosen so that
G2(x)=[G, (x)]"). Here H„" are Hankel functions and
S„are Lommel functions, cz, c+ are k-dependent con-
stants of integration and

1 2+q q k —p/q

2 2 —
q 2 —qao

The term proportional to c2 in Eq. (3.10) corresponds to
the time-translation-invariant solution (Sec. III of Ref.
[7]). The terms proportional to c+ are linear combina-
tions of "isocurvature" and adiabatic perturbations —as
will become clear when we analyze the long-wavelength
asymptotics of Eq. (3.10) [30].

We note, from Eq. (2.5), that (I)o~e " so the time-
translation solution in Eq. (3.10) satisfies (() ~,

~ No; furth-
2

ermore, the c+ terms in Eq. (3.10) do not seem to obey a
similar equation. We shall see, in Sec. III B, that the
time-translation solution is not gauge invariant; we shall
also see, in Sec. III C, that it does not seem possible to
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find an initial condition which determines the corre-
sponding constant of integration c2. Although it might
seem that some versions of the usual derivation of the
energy-density irregularity power spectrum (in the ex-
ponential expansion inflation model) make use of the
time-translation solution, when taken in the context of a
careful definition of the hypersurfaces involved, these
derivations are gauge invariant [31,18].

Using Eq. (3.10), we find that the general solution of
Eq. (3.7) is given by

' 1/2
2h(x)=c, —3 — c2e

+e '" ' '[c+F)(x)+c F (x)]

—(4—
q )x /qc~e (3.11)

where c1 and c5 are k-dependent constants of integration
(this is not the general solution when q =4),

2F,(x)=
1/2

g
—2 2(2 —

q )x/q ~ 2
2 —

q 2 4—
q

gl/2e —(2 —q)x/(2q)G (X )

+ + q ge
—(2 —q)x/q~()) (ge

—(2 —q)x/q) q H(1)(ge —(2—q)x/q)
4 v 1 4

2q 6—
q ~ 1 (2 —q)x/qH(1)

2 —
q 4—

q

and F (x)=, [F (x)] . The solution proportional to c) in Eq. (3.11) corresponds to the arbitrariness in rescaling ao.
e c term is the solution corresponding to time-translation invariance while the c+ terms are linear combinations of

"isocurvature" and adiabatic perturbations. We shall see that c5 must be related to c2.
Focusing on a plane wave with propagation vector k along the x ' axis and denoting the transverse directions by

x (I=2, 3), we find that Eqs. (3.3) and (3.4) reduce to
1/2

h 22(x )+h 33(x ) = — p(x ),8
(3.12)

hi', (x ) =0
1/2

h22(x )+h 33(x )+ [h 22(x )+h 33(x )]=
q

(()'(x )+ P(x )
q

(3.13)

(3.14)

1/2

[h22(x)+h33(x)]= ——e " 2h'(x)+(2q)'/ ())'(x)—(6—q) — p(x)
a

(3.15)

k
e " h+(x)+ h'+(x)+h'+(x)=0,

a

ke2" h „(x)+ h'„(x )+h'x (x )=0,
a

6—
qhiI (x )+ hI1(x ) =0

q

(3.16)

(3.17)

(3.18)

(3.19)

here h+ =h22 —
h33 and h~ =h23+h32 are the two physical degrees of freedom of the graviton and we have used

h;~ =hi; and Eq. (3.2) to simplify some of these equations. Equations (3.14) and (3.15) describe the behavior of the in-
duced perturbations in the curvature of spatial hypersurfaces, Eqs. (3.16) and (3.17) are the graviton equations of
motion and Eq. (3.18) is the equation of motion for the hi, components of the metric perturbations. Equations (3.12)
and (3.13) are constraint equations.

The general solution of Eq. (3.14) is
' 1/2

h22(x)+h33(x)= — — c2e +e " q' ' '[c+F)(x)+c F2(x)]+c7+c&e8

F, (x)=—

where c7 and c() are k-dependent constants of integration (we shall see that they must vanish),
' 1/2

[g
—3/2e3(2 —q)x/(2q)G (X )+g—le(2 —q)x/qH(1) (ge

—(2 —q)x/q)]
2
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h22(x )+h»(x )= c2e +

and F2(x ) = [F,(x )]*. The c2 term in Eq. (3.19) corresponds to the time-translation-invariant solution. The cz terms
correspond to adiabatic fluctuations [we shall see when we analyze the long-wavelength asymptotics of Eq. (3.19) that
one linear combination of the c+ terms present in the scalar field solution, Eq. (3.10), is subdominant in the large-scale
asymptotic expansion of the solution for h22+ h», Eq. (3.19)—this is the "isocurvature" or longitudinal peculiar veloc-
ity solution].

Using Eq. (3.19), we find, for the left-hand side of Eq. (3.12),
' 1/2 1/2

8 [c+Gi(x)+c Gp(x)] — c()e
6—

q
+ 1 — 2

(3.20)

while from Eq. (3.10) we see that the right-hand side of Eq. (3.12) is given by
' 1/2 ' 1/2 1/2

(t(x)= / e ' q[c 6, (x)+c 6 (x)];
q

(3.21)

1/2
2 —

q

q

2 q
A,

'/ e "/q[c G, (x)+ 6 ( )]

—(14—q)x/(2q)[ H(1) (g
—(2 —q)x/q)+ H(2) (g

—(2 —q)x/q)]

to satisfy Eq. (3.12) we must require that c() vanish.
From Eq. (3.19) we find that the left-hand side of Eq. (3.15) reduces to

k
2 ' 1/2

[h22(x )+h33(x )]=-
a

1 /2
2 —

q 8

q q

2 2

+ 2 —
q ~2 4~/z+ 2 —

q &2 (1Q—q)x/q

q q
(3.22)

while the right-hand side of Eq. (3.15) is given by
1/2

e 2h'(x )+(2q )' P'(x )
—(6—

q ) — P(x )
q q

—(4+ q )x /q

q q

1/2
2 —

q 8
e "/q[c+ 6, (x )+c G2(x )]

2 q

q

' 1/2
8

ke " '" ' q'[c H"', (Ae ' '/ )+c H' ' (Ae ( '"/ )], (3.23)

(3.24)

where we have used Eqs. (3.10) and (3.11). To satisfy Eq.
(3.15), we must require that c7 and c() vanish and that c~
be related to c2 through

1/2
2 (2—q) zC5= A, C2
q 2(4—q)

field-dominated inflation models, [32], so such models
cannot be used to describe the very early Universe in
primeval turbulence scenarios for structure formation.

The solutions of the graviton equations of motion, Eqs.
(3.16) and (3.17), are given by

—(6—
q )x /(2q )

+ x —e

Using Eq. (3.24) it may be established that Eqs. (3.10) and
(3.11) satisfy Eqs. (3.6) and (3.7).

The solution of Eqs. (3.13) and (3.18) is given by

X [ H(1) (g
—(2 —q)x/q)

H(2) (g
—(2 —q)x/q)] (3.26)

hei(x ) =ci, i (3.25) —(6—q)x/(2q)
X

where c~, are k-dependent constants of integration. We
shall see that the constants ci, may be removed by a
gauge transformation. As discussed in more detail below,
we find, on comparing this equation to Eqs. (37) and (38)
of Ref. [14],that these scalar field inflationary models will
not generate transverse peculiar velocity perturbations in
the large time universe. This will be true for all scalar-

X [ H(1) (g
—(2 —q)x/q)

H(2) (g
—(2 —q)x/q) ] (3.27)

where c+„c+2,c», and c ~2 are k-dependent constants
of integration. These expressions coincide with the solu-
tions for the gravitons in the ideal fluid model (Eqs. (39)
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and (40) of Ref. [14]), up to an unimportant sign

difference in the definition of A, , which arises from the
slightly different conventions used in Ref. [14]. This is
reasonable since gravitons are not sensitive to the nature
of energy density driving the expansion —they respond to
an ideal fluid or to a homogeneous scalar field, with the
same background equation of state as that of the ideal
fluid, in the same manner.

In summary, the solutions of Eqs. (3.1}—(3.4) are given

by Eqs. (3.10), (3.11), (3.19), and (3.25) —(3.27) where c7
and cs vanish and c, is related to cz through Eq. (3.24).
This leaves ten k-dependent constants of integration
(some of which describe gauge-dependent solutions) that
must be determined from initial conditions. These are c,
which describes the solution corresponding to the rescal-
ing of ao, c2 which describes the time-translation-
invariant solution, c+ which describe adiabatic and "iso-
curvature" fluctuations, cr, which describe the hr, com-
ponents of the metric perturbations, and c+„c+2,c»,
and c X2 which describe the gravitons.

+ij g(hij, kk+hij , hik, kj hjk, ki )

so we have, for the induced spatial scalar curvature,

(3) k' 'R =
z [h~z(x)+h33(x)]

a

(3.28)

= ——e ~ 2h'(x )+(2q }'/ i}}'(x)
q

' 1/2

(3.29}

where we have made use of Eq. (3.15). Using Eq. (3.23)
we find that this reduces to

The metric perturbations h 22+ h 33 measure perturba-
tions in the curvature of spatial hypersurfaces. The Ricci
tensor of the three-dimensional spatial hypersurface is
given by

(3)R = —4x/q 2 q
1/2

8
e ' «[c+G, (x)+c G~(x)]

2

q

1/2
—(6—

q )x /(2q )

r

~(1) (ge
—(2 —q)x/q)+c H(2) (ge

—(& q)&/«)]+
q q

(3.30)

e shall see that the term proportional to c5 in this equation is a gauge-dependent solution, while the linear combina-

tion of terms proportional to c+ is, by definition, the adiabatic perturbation.
An alternative way of determining the spectrum of energy-density perturbations would be to evaluate the linearized

stress tensor. From Eqs. (2.3) and (7.10) of Ref. [7] we have that the fractional perturbation in energy density corre-
sponding to the scalar field perturbation i}I} is given by

(3.31)

or as a function of the variable x,

5(x)=—1 q
3 2

3/2

P'(x) — iI)(x)
q

(3.32)

Using Eq. (3.10) this results in

3/2

5(x)=- q
3 2

6
C2e

q

6 / e " «[c+G, (x)+c G~(x)]
2

—(10—3«)x/(2«)[ ~( l)(g —(2 —«)x/q)+ ~(2)(g —(2 —q)~/q)] (3.33)
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We shall see that the term proportional to c2 in this equa-
tion may be removed by a gauge transformation.

B. Remnants of general coordinate invariance

—2ikw, (k) —f (k)—e

5h )t(x, k ) = ikw—t(k ),
5hJJ(x, k)= —f (k) e "5IJ—, (3.34)

Consistent with the choice of synchronous gauge, one
may still perform the following time-independent gauge
transformations (i.e., the corresponding gauge parameters
are time independent) on the metric perturbations
without altering the physics:

22 — 2

5h„(x,k)= —f (k)
q(4 —q)

tions, four corresponding to the gravitational-wave per-
turbations and two describing the scalar field perturba-
tion. We note that in the scalar field model, the two sca-
lar field solutions play the role of the adiabatic fluctua-
tion and the longitudinal peculiar velocity perturbation in
the ideal fluid model. Thus, on large scales (at late times)
one would expect that the linear combination corre-
sponding to the peculiar velocity perturbation will not
perturb the curvature of spatial hypersurfaces [14].

It is also interesting to note (as we show below} that
scalar-field-dominated inflation models provide initial
conditions (at second Hubble radius crossing) that require
that the transverse peculiar velocity perturbations in the
ideal fluid (which is used to describe the large time
universe) vanish.

The induced spatial curvature is a measure of the mag-
nitude of adiabatic energy-density fluctuations; however,
the expression in Eq. (3.29) is not gauge invariant. A
gauge-invariant characterization of energy-density fluc-
tuations [9,14] is

5h+ (x, k ) =0=5h „(x,k ),
)t'e -"-q'"'q

q(4 —q)

hp=a ' 'R+ —— h;; —h
a 8 3

a Bs
(3.36)

2ikw—, (k ) f (k ) —eo 12

q

where f and w; do not depend on the variable x. (We
note that the two transverse degrees of freedom of the
graviton, which are the only propagating modes, are
gauge invariant. ) From the definition of the stress tensor,
Eqs. (7.7)—(7.9) of Ref. [7], and its transformation proper-
ties, we find

1/2
8

q
~36/q (2 —

q )x /(2q )

X [ H(1)(g —(2 —q)x/q}

H (2)
( g

—(2 —
q )x /q

) ] (3.37)

where V =5;.();(3 . Using Eqs. (3.11), (3.20), and (3.30)
we find that this reduces to

5{5(x,k))= —2f (k)e
1/2

5$(x,k)=f (k) 8

q
e X

(3.35)

here we have set c7=0=c8. We note that the solution
proportional to c3 in Eq. (3.30), which may be set to zero

by a gauge transformation, does not appear in Eq. (3.37).

where 5(x, k) is defined by Eq. (3.31) [we hope that the
notation 5(5(x, k ) ) does not lead to undue confusion].

It is easily verified that the choice
f (k)= —(c2/2)(q/2)'/ allows us to set to zero the
terms proportional to c2 and c5 in Eqs. (3.10), (3.11) [here
we use Eq. (3.24) to relate c3 to c2], (3.19), and (3.33),
while the choice w, (k ) =c, /(2ik ) allows us to remove
the solution corresponding to the rescaling of ao from
Eq. (3.11) and the choice wt(k ) =ct ) /(ik) allows us to set
the hr, part of the metric perturbations to zero. This
leaves six physical solutions which are parametrized by
the constants c+, c+, , c+2, c», and c X2, these constants
must be determined from initial conditions appropriate to
the quantum mechanics of inflation [8,9].

It is interesting to contrast this analysis of the scalar
field model with that of the ideal fluid model [14]. In the
ideal fluid model one found that eight initial conditions
were needed to determine the eight independent physical
solutions which correspond to an adiabatic fluctuation, a
longitudinal peculiar velocity perturbation (the "isocur-
vature" perturbation}, two transverse peculiar velocity
perturbations and four graviton solutions. In the scalar
field model there are only six independent physical solu-

C. Initial conditions and asymptotics

—(2 —
q )x/q 2 k Pf dt'

2 —
q aH " a(t')

(3.38)

where H=(a/a) is the Hubble parameter and confor-
mal time ~ is defined by

We have solved the equations of motion for small per-
turbations about a background FLRW —homogeneous-
scalar-field cosmological solution for the exponential-
potential scalar field model. To determine the constants
of integration c+, c+„c+2,c&&„and c&&2 (which corre-
spond to gauge-invariant solutions) we study the inflation
epoch expressions on small scales (or at early times,
k ))a) and require that they reduce to the usual
quantum-mechanical "vacuum state" form [8,9]. In this
section we also derive asymptotic forms of the inflation
epoch solutions valid at late times (on large scales) —in
this limit we shall disregard some decaying (in time)
terms for some of the fields.

It is useful to note that
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t dt7=
a(t') (3.39)

C+ =C+
' 1/2

16~ k q~
mp 2 2 q

' 1/2

( M 2/q
)
—5/2

+i ( v—1/2) n. /2Xe— (3.40)

If we replace the constants of integration c+ by the x-
independent constants c+ defined through

c+ =1 and c =0, (3.43)

16~
Ci1 Ci1

mp

' 1/2
' 1/2

( M2/q )
—3/2

2

where we have made the assumption that c+ do not de-
pend on k; this is equivalent to the initial condition of
Ref. [8] for the scalar field ground-state wave functional.

Replacing the constants of integration c,.„c,.2 (where
i = +, X ) by the x-independent constants c,.„c,2 where

then in the short-wavelength (early time) limit (i.e., for
fluctuations well inside the Hubble radius for which
k ~ 0() ) Eq. (3.10) reduces to

' 1/2
161T 1

m p2 V'2ka '

Xe +i(v+3/2)m'/2

1/2
' 1/2

16m. tier
( M )Ci2 C;2

m
ao

—i ( v+ 3/2)~/2Xe 7

(3.44)

~ dt'
X c+ exp ik-

a t

+c exp +ik f f dt
a t' (3.41)

16m
2

mp

we find that at early times (on small scales) the expression
for the graviton, Eqs. (3.26) and (3.27), become

' 1/2

h, (k, t)=
2ka

We note that the prefactor on the right-hand side of this
equation depends on the scale factor a(t) in the manner
expected for a relativistic scalar field. Even though P is
really a massive scalar field, for large enough spatial
momentum its dispersion relation is that of a massless
field, co= ~k~. The first factor in the prefactor is a conse-
quence of the unconventional normalization of the scalar
field action, Eq. (2.1). [In deriving Eq. (3.41) from Eq.
(3.10) we have dropped the solution proportional to c2,' it
is interesting to note that quantum mechanics does not
seem to provide an initial condition to determine this
constant of integration, which corresponds to a gauge-
dependent solution —this also seems to be true for other
gauge-dependent constants of integration. ] In terms of
the dimensionless scalar field y(k, t)=a(t)(t(k, t) Eq.
(3.41) reduces to

1/2

y(k, ~)= 16m 1
(c+e '"'+c e+'"'), (3.42)

m~2 3/'2k

where we have replaced t by conformal time v. Since
large spatial momentum modes sample regions of space-
time that are essentially flat (these momentum modes are
indistinguishable from the corresponding mornenturn
modes of a conformally coupled scalar field since, in this
limit, the spatial gradient term in the scalar field action is
far more important than the R(t) conformal coupling
term) the appropriate initial conditions (for the scalar
field vacuum state) are derived by requiring that the
momentum mode in Eq. (3.42) reduce to the correspond-
ing expansion for the harmonic-oscillator "vacuum state"
in a conformally fiat spacetime [8,9]. This follows from
the fact that a suitably rescaled, conformally coupled,
scalar field, in a conformally flat spacetime, does not
recognize as special the length scale set by the spacetime
curvature [8]. Comparing to the Fourier expansion of
Sec. III A we see that relativistic covariance requires that
we choose

t dt'
X c;,exp —ik

a t

t dt'+c;2exp +ik
a t' (3.45)

which should be contrasted with the scalar field kinetic
term,

mp
( —' '(t')

2

We note that the prefactor on the right-hand side of Eq.
(3.45) depends on a (t } in the expected manner.

Scalar field fluctuations outside the Hubble radius (i.e.,
in the long-wavelength or large-time limit when k «a)
are described by

k ) —
ve

—2( 2 —q )x /q

where

+—k1+v —(6—q)x/q+ .I (3.46)

q
mp 2 q

3/2 —v

(
2/ )v g/2 2 csc(vqt}

I (1—v)(5/2 —v)

X(C ei( v2+)m)/2+/C —i(v+)/2)m/2)c+e /

77
CI

mp 2

3/2+ v

( 2/q), 5/2 2 '+'csc(vm. )

I (1+v)(5/2+ v)

X (
— —i( v+ 3/2)vr/2+ — i( v+ 3/2)m /2 )+ I ~

the appropriate "vacuum state" initial conditions are
c;,=1 and c;2=0. The factor 2 in the numerator of the
prefactor of Eq. (3.45) is a consequence of the extra factor
of —, in the graviton kinetic term of the action, Eq. (2.1),

2
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Again, we have dropped the term proportional to c2 in
Eq. (3.10) [there is, however, a term proportional to
k / e "in Eq. (3.46} which has the same time depen-
dence as the cz term in Eq. (3.10) and is the slowest de-

caying term for some range of q]. It is pleasing to note
that the time dependence of this result agrees with what
was found in Sec. III of Ref. [7]. As discussed there,
when q & 2 the scalar field perturbation has no growing
mode; the solution describes a stable fixed point —we em-
phasize, however, that scalar field irregularities, like most
other perturbations, do evolve (in, for all practical pur-
poses, a gauge-invariant fashion) outside the Hubble ra-
dius. The term proportional to cA is the adiabatic solu-
tion while that proportional to cr is the "isocurvature"
solution —it does not contribute to spatial curvature per-
turbations on large scales (although it does perturb spa-
tial curvature on small scales}.

At large times the expressions for the graviton, Eqs.
(3.26) and (3.27), reduce to

"'R(k, t)=[a(t)] ' +q' '

& dt'
X c+exp —ik

a t'

t dt'+c exp +ik J'
a t' (3.48)

where we have defined

[The time independence of the leading term in Eq. (3.47)
means that graviton fluctuations do not evolve outside
the Hubble radius. ] Comparing the two terms of Eq.
(3.47) to those of Eq. (61}of Ref. [14] we see, as expected,
that both the time (t) dependence and the spatial momen-
tum dependence of these solutions are the same.

At early times we find that curvature of spatial hyper-
surfaces, Eq. (3.30), is given by (we have set c~ =0)

Z (1 x)=e'k-"-'+c'k"+'e-"-q)"/q+ .
i ~ i I 7

q
2 q

-1 ~ 23+ v
l

mp

i(v —3/2)a/2 1 — —i(v —3/2)~/2 &X ~ci1e +C;2e J

3/2+ v

v —5/Z CSC(vqt)

r(2+ v)
q

2 q
21 —v

c('
mp

X (- i( v+ 3—/2)n /2+- i( v+ 3/2)m/2)c;1e 12

where i = +, X and we have defined
' —1/2 —v

~2/q)v —1/2 CSC(VK)

r( — )

(3.47)
C+ =2C+

1/2
16qr k

( ~2/q)q/2 kivr/2
2 ao

mp

(3)g(l x)=e —4«qre k) —v+e k3 —
ve 2(2 q)x—/q—

7 LCA

where

k3+v —(6—q)x/q+. . .
] (3 49)

Expanding Eq. (3.30) for small k, i.e., for fluctuations at
large times, we find

cA

' —1/2 —v

a~z/qiv —5/2 2 S (V~) i — i(v+)/2)m/2 i — —i(v+(/2)n/zx'+c e
q I (

—v)

mp 2 —
q

'IT

mp 2 —
q

—1/2~ 3/2+ v
M2/q)v 9/2 q w CSC(vqr)

(
— i(v —3/2)v/2+- —i(v —3/2)n/2}

I (1—v)(5/2 —v)

mp 2 q

' 5/2+v —1/2 3/2 —v
Mz/q) — —9/2 q 2 "csc(vqr)

(
— —'( —1/2) /2+ — '( —1/2) /2)

I (2+v)(5/2+ v)

Here, the dominant term (that proportional to c„)is the
adiabatic solution, while the "isocurvature" or longitudi-
nal peculiar velocity solution (the term proportional to
et) is subdominant. As with Eq. (3.46), we have dropped
a term proportional to k' e from within the square
brackets; for some range of q this terms decays slower
than the ez and ct terms in Eq. (3.49). Prom Eq. (3.49)
we see that the leading term in the dimensionless quantity
a ' 'R is time independent —perturbations outside the
Hubble radius in the curvature of the spatial hypersur-
face corresponding to adiabatic perturbations evolve in
the expected fashion.

As noted in Sec. III of Ref. [7], in this model (for q & 2)
the scalar field perturbations, Eq. (3.46), do not grow
even in the presence of nonzero space curvature fluctua-

5(ltt) = [,a(t )]

dt
X c+ exp —ik

a t

f dt'
+c exp +ik

a t' (3.50)

tions, Eq. (3.49). This should be contrasted with the be-
havior of the adiabatic solution in the ideal-fluid-
dominated cosmological model where a nonzero space
curvature perturbation is always accompanied by a grow-
ing fractional energy-density irregularity.

For small scale fluctuations, we find that 6, Eq. (3.33},
ls given by
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where we have set c2=0 and
' 1/2

16~
Cy =C+

mp
M2/q} —q/2 +in/2

%Phile on large scales we find

(k,x)=c,k' e " q+c k'+"e "+ .
p 2

where we have defined

(3.53)

From Eq. (3.33) we find, in the large-time limit,

k 1 —v —2(2 —
q )x /q+ k 1+v —(6—

q )x /q+
A 7 mp 2 q

' 1/2 —v 5/2+ v
2/q }1/2+

&q r(1 —v)

(3.51)

where we have defined
1/2

c = ——(10—3q ) — c1 q
A 3 8 A

' 1/2

ct = ——(6—q)
1

CI,

These terms are suppressed relative to those of Eq. (3.51)
by a factor of (k/aH); for inflation models aH is an in-

creasing function of time. This should be compared to
the ideal fluid model [14],where aH is a decreasing func-
tion of time and hence the higher-order terms in the
large-scale asymptotic expansion grow with time (relative
to the lower-order terms).

At early times, we find that the gauge-invariant mea-
sure of energy-density perturbations, bp, Eq. (3.37), be-
comes

hp(k, t)=[a(t)]" ""
t dt'

X c+exp —ik
a t'

and c„and ct are given below Eq. (3.46). Again, we have
suppressed a term proportional to k / e "in Eq. (3.51).
It is pleasing to note that the spatial momentum depen-
dence and the time dependence of the terms in Eq. (3.51)
agree with those of Eq. (3.46). (We again emphasize that
the fractional perturbation in the energy density does
evolve outside the Hubble radius. ) The term proportional
to cz is the adiabatic solution (i.e., it depends on the
coeScients V'+ in exactly the same way as the dominant
term in ' )R) while that proportional to ct is the "isocur-
vature" solution. As discussed above Eq. (3.50), even
though there are nonzero space curvature perturbations,
the fractional perturbation in the energy density, Eq.
(3.51), decays in time.

It is interesting that higher-order terms in this asymp-
totic expansion (i.e., terms with higher powers of k in the
numerator) grow slower —the next two terms are propor-
tional to

k 3—v —4(2 —q)x/q ~ ~ 3+v —(10—3q)x/qe and k e

X (
— i( v+ 1/2) v/2+ — —i( v+ 1/2) v/2 )c+e I

q

mz 2 —
q

1/2+ v

2, q 1/2 „2 'csc(vm)
v'q r(1+v)

XH'" [2k/[(2 —q)aH] j

XH'„' [2k /[(2 —
q )aH ]J, (3.54)

which agrees with the corresponding expression, Eq.
(4.31), given in Ref. [15]. While from Eqs. (3.26) and
(3.44) we have

(h (k)h ( —k)) =
m~ 2 —qHa

XH'„'+, [2k /[(2 —
q )aH ]}

X H'„+', I 2k /[(2 —
q )aH ]], (3.55)

which agrees with Eq. (4.25) of Ref. [15]. This also
agrees with the expression for the graviton two-point
function given in the first of Refs. [11] [see their Eqs. (2.4)
and (2.6a) and the discussion below their Eq. (2.4}]up to
unimportant phase factors and a relative factor of 2 (Eq.
(3.55) seems to be larger than the expression given in Ref.
[11]).

For q =2e -0 this model reduces to the step function
potential model [Eqs. (2.6)—(2.10)] studied in Ref. [9]. In
this limit we find that the inflation epoch power spectrum
reduces to the scale-invariant form [2]

P~(k, t)=(b~(k, t)hq, ( k, t)) = ——
, (3.56)m'9aH''

P

X (C e
—i( v+ 3/2)n'/2+

C ei( v+ 3/2)n/2)'c+e I ~

To compare the expressions derived here to those de-
rived from a purely quantum-mechanical analysis in Ref.
[15] it is most convenient to use the momentum-space
two-point functions for the invariant measure of energy-
density perturbations hp and for the graviton polariza-
tion h+. From Eqs. (3.37), (3.40), and (3.43) we find

(hp(k )b,p( —k ) ) = k aH16 m.

m

where

c+ =2cg 16m.
2mz

1/2

(a M2/q)q/2e+i~/2

t dt+c exp + ik
a t

(3.52}
where b,q, is defined in Eq. (4.23} below. [We note that
the adiabatic terms in 6+ and 5@ are related by
5@=6,@(10—3q)/(4 —3q). This result is only valid for
0 & q & 2—in particular, in the baryon-dominated model
(for which q=3) we find 5& =b, t), see the discussion in
the paragraph below Eq. (4.46).] For completeness we
note that the power spectrum, for perturbations on scales
larger than the Hubble scale, is given by
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Pt, (k, t)= I (v)(2 —q) '
9m' a 3H aH

2(1 —v)

(3.57)

For the exponential expansion model the inflation
epoch graviton two-point function, Eq. (3.55), reduces to

2
32 H(h+ (k )h+ (

—k ) ) = 1+
mp k aH

(3.58)

x
aH

(3.59)

which is time independent [see Eq. (3.47)].
In the next section we shall use the explicit expressions

for the inhomogeneities along with the inflation epoch
constants of integration found here to derive the form of
energy-density irregularities in the radiation- and
matter-dominated epochs and to thereby determine, in
Sec. V, the large-time power spectrum of energy-density
irregularities.

IV. LARGE TIME: THEORETICAL
CONSIDERATIONS

To be able to contrast the predictions of the
exponential-potential inflation model with observations
we have to evolve the expressions found in the previous
section through the radiation-dominated epoch to the
present, matter-dominated, epoch. We shall assume that
the scalar field gets massive enough, at the end of
inflation, so that it does not significantly influence the
large-time evolution of the universe, and that the stress
tensor for matter is always dominated by one kind of
matter —the scalar field in the scalar-field-dominated
epoch, the radiation fluid in the radiation-dominated
epoch and the baryon fluid in the matter-dominated
epoch (i.e., we only account for perturbations in the dom-
inant form of matter}. We shall also assume that the
transition from the scalar-field-dominated epoch to the
radiation-dominated epoch and the transition from the
radiation-dominated epoch to the baryon-dominated
epoch occur instantaneously, at different values of the
synchronous gauge time (t) in different parts of space,
when the local energy density drops to an appropriate
critical value; i.e., we model the transitions by requiring
that the equation of state (and hence the pressure) charge
discontinuously at the spatial hypersurface on which the
transition occurs.

That the value of the local energy density determines

[inserting a factor of 16almp in Eq. (5.18) of Ref. [8] we
see, as expected in de Sitter spacetime, that the graviton
two-point function is exactly a factor of 4 larger than the
scalar field perturbation two-point function], while in the
general q model, for perturbations on scales larger than
the Hubble scale, we find that it is given by

32 2 2

(h~(k)h+( —k)) = (2 —q)
mp I ( —v) Ha

' —2(v+1)

the hypersurface on which the transition occurs means
that this hypersurface of simultaneity will differ from the
corresponding synchronous gauge constant time hyper-
surface. Since the spatial gradients in the local energy
density are of first order in the perturbations, the spatial-
ly homogeneous local energy-density transition hypersur-
face and the corresponding synchronous gauge constant
time hypersurface only differ by terms that are of first or-
der in the perturbations; i.e., these hypersurfaces coincide
to zeroth order in the perturbations [16]. As a result we
may match the scale factor and the homogeneous part of
the energy density on the synchronous gauge constant
time hypersurfaces corresponding to the transition from
the scalar-field-dominated epoch to the radiation-
dominated epoch (at redshift zz@) and the transition from
the radiation-dominated epoch to the matter-dominated
epoch (at redshift z~~ ).

Implicit in our assumption that the transition from the
scalar-field-dominated epoch to the radiation-dominated
epoch occurs instantaneously on a spatially homogeneous
energy-density hypersurface are two separate assump-
tions: that both the time scale on which the scalar field
decays to radiation at the end of inflation and the time
scale on which the radiation equilibrates (and hence can
be treated as an ideal fiuid) are much shorter than the
time scale on which the perturbations evolve. These as-
sumptions are, of course, slightly unphysical and in reali-
ty the scalar-field-radiation transition will be spread out
over a time scale that is determined by the microphysics
governing the decay of the scalar field to radiation as well
as the microphysics governing the subsequent equilibra-
tion of radiation [18]; however, the more correct model
(in which the time it takes to reheat the Universe is finite)
is, at present, analytically intractable. Although the mi-
crophysics governing the time scale over which the equa-
tion of state changes during the radiation-baryon transi-
tion differs from that which governs the time scale for the
scalar-field —radiation transition, we shall also model this
second transition by a discontinuous change in the pres-
sure. These small-scale approximations should not
significantly affect the quantities which we wish to deter-
mine; i.e., the large-scale power spectrum of baryon
energy-density irregularities and the large-scale power
spectrum of gravitons in the large time, matter-
dominated universe (the small-scale limit of our expres-
sions are, of course, not physically relevant).

To derive the joining conditions that determine the
constants of integration in the expressions for the pertur-
bations during the radiation- and matter-dominated
epochs (given in Ref. [14]}from the expressions for the
perturbations in the scalar-field-dominated epoch (de-
rived in the previous section) we require that the equa-
tions of covariant conservation of stress-energy and
Einstein's equations do not become singular on the spa-
tial hypersurfaces of spatially homogeneous local energy
density on which the transitions occur [16]. The equa-
tions of motion we use are those of a general Quid model
which allows for a spacetime-dependent "speed of sound"
c„[16].The equations of this model contain, as special
cases, the scalar field model equations of motion, Eqs.
(3.1)—(3.4), and the ideal fiuid (constant c, ) model equa-
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tions of motion, Eqs. (5)—(9) of Ref. [14] (see Ref. [16]);as
a result, the joining conditions derived in this general
model apply to more general transitions than those to
which we apply them to in this paper.

Once the constants of integration in the expressions for
the perturbations in the baryon-dominated epoch have
been determined, current observations may be used to
constrain the four free parameters of the model, zR@,z~R,
the present value of the Hubble parameter, H„, , and the
index of the scalar field potential, q. To focus on the
characteristics of the inflation epoch we further simplify
the model by requiring that the present Universe be
baryon dominated and flat (so 0„,„=1), that the value of
H„,„=100h kms ' Mpc ' (this determines the present
value of the baryon energy density up to a factor of h )

and that the parameter z&R has the conventional hot big-
bang-value (zBR =4X 10 h )—this leaves the model with
two free parameters zR@ and q (as well as h).

Determining the constants of integration. We first dis-
cuss the joining of the expressions for the spatially homo-
geneous part of the energy density and the scale factor at
the transitions. Since the spatially homogeneous local
energy-density transition hypersurface and the corre-
sponding constant time synchronous gauge hypersurface
coincide to lowest order in the perturbations, we match
the scale factor and the spatially homogeneous part of the
energy density on the appropriate constant time synchro-
nous gauge hypersurface [16].

Matching the scale factor at zR@„ the redshift of equal
radiation and homogeneous scalar field energy density (or
alternatively at the time tR@) we find, in the radiation-
dominated epoch,

The redshift in the baryon-dominated epoch is given by

[1+MB ( t„,„tB—R ) ]1+z=
2/3[1+MB(t t—BR )]

(4.3)

where t„ is the present value of t, while the redshift in
the radiation-dominated epoch is

[1+MR (tBR tRC,
—)]'

1+z=
1/2[1+MR (t tR q—, ) ]

X [1+MB(t„,„—tBR ) ] (4 4)

and that in the scalar-field-dominated epoch is given by

[1+M(tRq, tp)] —~~

1+z=
2& [1+MR ( tBR

—tRe, )]'
[1+M(t t, )]'"—

X [1+MB(t„,„tBR)]— (4.5)

Pba, (tRC, ) PbR (tRC, ),— (4.6)

From Eqs. (4.3)—(4.5) it is straightforward to get expres-
sions relating zaR to taR and zRe to tRe.

Matching the scale factors at the transitions ensures
that the homogeneous part of the energy density
matches, i.e.,

a (t ) =a, [1+MR (t —
tRq, )]'

where we have defined

(4 1) as well as

PbR BR ) PbB(tBR ) . (4.7)

and

a, =ap [1+M(tRe, t p ) ] ~~, —

' 1/2
8w

~R 2 PbR
3mp

The evolution of the scale factor in the scalar-field-
dominated epoch is given in Eq. (2.5) and PbR' is the value
of the spatially homogeneous energy density (in radiation)
at the scalar-field —radiation transition when a =a &.

Similarly we find, in the baryon-dominated epoch,

a(t) =a~[1+MB(t tB„)]— (4.2)

3 8n. (2)
B 2 2 PbB

3mp

1/2

where P„'B is the value of the energy density (in baryons)
at the radiation-matter transition when a =a2.

where t&R is the time of equal baryon and radiation ener-

gy density,

a2 =ap[ 1+M(tR@ tp )] [1+MR (tBR tRq&)]'

and

We note that having chosen to use observational evidence
to fix zBR (up to a factor of h ) the numerical values in
Eq. (4.7) are fixed, however, since we have not yet con-
strained zRz, (and hence the energy density in the scalar
field just before reheating) the numerical values in Eq.
(4.6) have not yet been fixed.

To determine the constants of integration in the ex-
pressions for the perturbations during the radiation- and
matter-dominated epochs we require that the equations
of covariant conservation of stress-energy and Einstein's
equations on an appropriate spatially homogeneous local
energy-density transition hypersurface are free of singu-
larities [16]. (The equations we use are those of the
spacetime-dependent "speed of sound" fluid model which
is general enough to apply to all the types of rnatter that
we need to consider, Sec. II of Ref. [16].) This allows us
to determine a set of joining conditions, on the fields, at
the transitions, Sec. III of Ref. [16].

For a transition at a corresponding synchronous gauge
time t~R, from a pretransition epoch dominated by a
"fluid" denoted by R to a post-transition epoch dominat-
ed by a "fluid" denoted by B (where the coefficient in the
equation of state and the "speed of sound" of the "fluids"
are left unspecified) these joining conditions are



1930 BHARAT RATRA 45

P&B( BR +P&B BR )
5B( BRONX) 5R(tBR&X)

P&R tBR +P&R tBR )
(4.8)

P&R(tBR ) P&B(tBR ) P&R(tBR )
[P&B( BR ) P&B( BR )]vB( BR x) [P&R(tBR )+P&R(tBR )]VR(tBR x)+ B,5R (tBR,x),

u(tBR )H(tBR ) P&R(tBR )+P&R (tBR )

(4.9)

h22'(tBR k)+h33 (tB„,k)=h22'(tBR, k)+h33 (tBR,k),

hli (tBR,k)=hl, '(tBR, k),

h22 (tBR)x)+h33 (tBR~X) h22 (tBRtX)+h33 (tBR~X)+2H(tBR ) 5R(tBR~X) ~

'(B) '(B) '(R) (R) PbR BR PbB BR

P&R( BR )+P&R( BR)

hll (tBR&x) hll (tBR&x) ~

' (B) ' (R)

h (B)( k) h(R)( k)
k P&R BR P&B BR(t ) — (t )

~(tBR )H(tBR ) P&R(tBR )+P&R(tBR )

(4.10)

(4.11)

(4.12)

(4.13)

P&R BR P&R BR
R tBR

P&R( BR) P&R( BR P&B( BR) P&B( BR)
(4.14)

' (B) (R) P&R(tBR ) P&B(tBR )
h (tBR,k) =h (tBR,k)+3H(tB„) 5R(tB„,k),

P&R tBR +P&R tBR

5B(tBR,k) —5R (tBR ) k)

P&R(tBR ) P&B(tBR )

P&R( BR )+P&R( BR )

T

X
P&R(tBR)+P&R(tBR) . (R)

h (tB„,k)
2P&R

'2
1 k 3

+H(tBR )5R(tBR,k) + P&R( BR)[P&R( BR)+ P&R( BR)+P&B( BR)]
l2(tBR )H(tBR )

(4.15)

3H(tBR )5R (tBR )

ICsB[p&B(tBR )+p&B(tBR )] csR [p&R(tBR )+p&R(tBR )]J
P&R ( tBR ) +P&R ( tBR )

h,
' '(tB„,x)—h '(tBR, x),

h '(tBR, X)=h '(tBR, x) .

(4.16)

(4.17)

(4.18)

We first describe what these equations do (we shall as-
sume some familiarity with the results and analysis of
Ref. [14]). 5B, vB, and h22 +h33 depend on three con-
stants of integration, cz ' and c+ ' which are determined
by Eq. (4.8), by the i =1 part of Eqs. (4.9) and by Eq.
(4.10). Equation (4.11) and the i =I components of Eqs.
(4.9) are four joining conditions for the four constants of
integration, ci, ' and ci 2', in the solutions for vB and hl, '.
Equation (4.12) is a consistency equation that must be
satisfied by the expressions for c+ ' and c 2

' derived from
Eqs. (4.8)—(4.10)—this will provide a check on our alge-
braic manipulations. Equations (4.13) is another con-
sistency condition —the expressions for cr z' must satisfy
it. Equation (4. 14) fixes the constant of integration c', ' in
the solution for the trace of the metric perturbation, h '

(it must be modified if either of the fluids is radiation, see
the discussion below Eqs. (3.59) of Ref. [16], and is ig-

mp +02

a, (t,
16ir a (p&@+p& @)

(4.19)

nored in what follows since we do not have need for
CI '). Equations (4.15) and (4.16) are further consistency
equations. The four gravitational-wave perturbation con-
stants of integration, c, ' and c 2

' (where i =+, X ), are
determined from Eqs. (4.17) and (4.18). The consistency
conditions also follow from the perturbation equations of
motion and the other joining conditions (see Sec. III of
Ref. [16])—they contain no new information but serve to
provide a check on our algebraic computations.

In the scalar-field-dominated epoch, the fractional
energy-density 5@ is given by Eq. (3.31), while the trans-
verse peculiar velocity perturbation is (Eq. (7.11) of Ref.
[7])
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and the "speed of sound" c,+ may be determined from
Eqs. (3.31) and (7.12) of Ref. [7]:

2

4&pb@8$) 16 [@QQ I (@0)$] (4.20)

We have shown, in Sec. IV of Ref. [16], that the con-
stants of integration for the gauge-invariant solutions
may be determined from gauge-invariant combinations of
the above joining conditions. Along with the gauge-
invariant joining conditions (4.17) and (4.18), which
determine the four gauge-invariant constants of integra-
tion c, ' and c 2 ', we have

dius during the matter-dominated epoch.
Using the joining conditions for 5, (pb+pb)v and

h22+h33 [Eqs. (4.8)—(4.10)] at the scalar-field —radiation
transition, we find, in the radiation-dominated epoch,

(X )
—C(R) —x

2g
—5/2e —

x/2[c (R)g R (x ) + c (R)g R (x ) ]

(4.26)

where
1/2

G, (x)= — (ilRe" 2 —2i—A„'e ,
"

)

b B(iBR,k) bR(t—BR,k),
AB(rBR, k) AR( rBR, k)

PbB ( rBR ) +PbB ( rBR ) PbR ( tBR ) +PbR ( rBR )

(4.21)

(4.22)
X exp(i)(, R

e" )

[and 62 =(G", )*],as well as

(4.27)

where the gauge-invariant variables 5 and A are defined

by VR(X ) — lk, R
3 (R)e —x/2

2 ' 2'2 '

and

b =5+3i pb (pb+pb)v
.aH 1

k

Pb (Pb+Pb)("22+ 33
3

4

(4.23) +~—s/2[c GR(x )+c' 'GR(x)]],

(4.28)

where we have defined

where b, is related to bp [Eq. (3.36)] through

hp= —16m.m~ a phd . (4.25)

' 1/2

G", (x)= — — (1+2iA„'e ,
"l )exp(i)(,Re"/ )

We choose to match the closed-form expressions for
the irregularities (Sec. III and Appendices C and B of
Ref. [14])at tR~ and tB„ to determine the constants of in-
tegration and then, in Sec. V, focus on the approximate
expressions valid for wavelengths that were large corn-
pared to the Hubble scale during the transitions —these
are the fluctuations of interest in the large-time universe
for which our expressions are physically relevant. Our
expressions do not describe the physics of shorter-
wavelength perturbations since we have not included the
effects of reheating or of the coupling between radiation
and matter. These effects cannot significantly affect the
evolution of perturbations outside the Hubble radius and
hence may be ignored if we only wish to determine the
behavior of irregularities that first enter the Hubble ra-

(4.29)

[and G2 =(G) ) ], and

i (R)(X )+I (R)(X )
—C(R) —x

+2e3x/4[c(R)FR(x)+~(R FR(x )]

(4.30)

where
' 1/2

e"p(i~ e"") (4 31)F (x)=2i
m

[and F2 =(F) )']. The integration constants in these for-
mulas are given by

1/2

C = C
(R)
2 2 2

16~
2Plp

' 1/2

k
—3/2 &3m.

q(2 —q)

1/2

a 1/2 R i(v —1/2)7I /2-'R e "e—

2 g
1+R 3~v

(4.32)
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1/2
(g) . 16m. m qk

ppgR2 24 (2—
q }'/

5/4

g4 z ((v—)/2)n/2 g
.g R

)ze e exp~ I & e

X —,'[2 —q+ —,'(4 — )iA. ]H"'(Ae

2 q

1/2
1677

2mz

5/4
s 4 R i(v (/—2)n/2 i ~ a R

)
24 (2—q)

(4.33)

X —,'[ —2+q+ —,'(4 —q)i ARe " ]H"'(Ae )

2
(4.34)

In these expressions c2 is the constant of integration cor-
responding to the inflation epoch time translation solu-
tion, v, )(,, aoM /~, and the function G, (x ) are given in

Sec. III A, and we have defined

e'= —eR g M
x 4 x

R ~3 R

we note that e"jumps at the transition.
It may be verified, from the above equations, that the

consistency conditions (4.12), (4.15), and (4.16), [33], are
satisfied at the transition. It is pleasing to note that the
constants of integration for the gauge-invariant terms
c+' do not depend on the inflationary epoch, gauge-
dependent, time-translation solution constant of integra-
tion c2. This is because the expressions for c~+ ', Eqs.
(4.33) and (4.34), may also be derived by matching the
gauge-invariant quantities b and A /(pb+pz) at the tran-

sition, Eqs. (4.21) and (4.22). [Alternatively, the fact that
c+ ' do not depend on c2 can be viewed as a rather non-
trivial verification of our joining conditions, since one ex-
pects, on fairly general grounds, the coei5cient of the
large-time adiabatic solution to carry physical (i.e.,
gauge-invariant) information. ] For completeness, we
note that the gauge-invariant measure of energy-density
perturbations, hz, in the radiation-dominated epoch, is
given by

1/2

e~ —5/2 —x /2

7T

(X )
—&(B) —x+ (B) 2x/3

1(X )
—i M

—2/3 (B) —2x/3. 3 k
B 8 g B 8

Q2

(4.36)

(4.37)

h' '(x)+h' '(x)= — M c' '+c' 'e (4.38)
40 a2

where we have defined

e =t —tBg+MB ' .

stants of integration corresponding to the tirne-
translation solution in the scalar-field-dominated epoch,
c2, and in the radiation-dominated epoch, c2"' [Eq.
(4.32)], cannot be simultaneously removed by a gauge
transformation. The joining condition for the gauge pa-
rameter f (k) (Eqs. (3.34) and (3.35) and Eqs.
(Cll) —(C13) of Ref. [14]) is consistent with Eq. (4.32);
i.e., if we choose to remove c2 in the inflationary epoch
expressions then we automatically remove the c2-
dependent term in the radiation-dominated epoch expres-
sions, Eq. (4.32)—a different choice for c2 will result in a
different value for c2 '.

Similarly, one may match the trace of the metric per-
turbation at the scalar-field —radiation transition to deter-
mine the constant of integration c'1"' in the radiation-
dominated epoch. Since we do not require the explicit
form of the trace of the metric perturbation h we shall
not record c'1"' here.

Using the joining conditions for 5, (pb+pB)U and

h22+h33 at the radiation-baryon transition, we find, in
the baryon-dominated epoch,

X[c(+R)(1 iARe
"/ )exp—(iARe"/ )

+c' '(1+iARe" / )exp( i ARe" / —)] . (4.35)

The constants of integration in these expressions are re-
lated to those in the radiation-dominated epoch through

The last factor in Eq. (4.27) [as well as the similar factors
in Eq. (4.35)] means that small-scale energy-density irre-
gularities oscillate during the radiation-dominated epoch.

It is interesting to note that the gauge-dependent con-

e(B) &(R) 2g
—5/2e [c'"'G"(x )+c' 'G" (x )]

(4.39)

where we have defined
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G, (xB)=
1/2

2 —xB /2 xB /2
(

—2ikR , e —2+i lR, e

+—xRe"

where

(B) 3c(B)—Sg —5/2e & [c(R)GR(— )+c(R)GR(—
)]

(4.45)

(4.40)
(which, as expected, does not depend on c2), and we have
defined

[and G2 =(G) )"], and the constant of integration c' ',

corresponding to a gauge-invariant solution, is given by
' 1/2

(B) 3 2
C = AB e

5

L xB/2 xB /2
X c'+ ' 1+—}(,R e exp(iA, R e )

' 1/2

G) (xB)="R — 2
7T

1
1 —ik. e ——eR R

l ~3 3xB/2
( } xB/2)

10

(4.46)

+c' ' 1 ——A. e exp( il—e , )
R t xB /2

R R

(4.41)

as well as

(B) —4 (R)
C8 3C2

16 ~ —5/2 Be

X [c'+ )G, (xB )+c' )C2 (xB )], (4.42)

where

G) (xB)= XB /2 ~ —1 B/
e —1 —3iA, eR R

xB /2
X exp(iAR e ) (4.43)

[and Gz =(Gz )*]. In these formulas the constants c(2"'

and c(+ ' are given by Eqs. (4.32)—(4.34) and we have
defined

e =M ', e =—'e, X =3k(a M )B & 4 & B 2 B

It is pleasing to note that the inflationary epoch, gauge-
dependent, constant of integration c2 does not appear in
the expression for c' ' which corresponds to a gauge-
invariant solution in the baryon-dominated epoch. It is
straightforwardly verified that the consistency conditions
(4.12), (4.15), and (4.16) are satisfied [33]. Contrasting
Eqs. (4.32) and (4.39) we see that an appropriate choice
for the value of inflation epoch constant of integration c2,
which corresponds to the gauge-dependent time-
translation solution, may be used to remove one of either
c2, c(2R', or c(2B) [see the discussion in the paragraph fol-
lowing Eq. (4.35)].

In the baryon-dominated epoch the gauge-invariant
measure of energy-density perturbations, hB, is given by

h(R) e
—x/4( (R)H(1) (g x/2)—1/2

+,' '0' ', (X " )], (4.47}

and G, =(G( )'. Equations (4.41) and (4.45) may also be
derived by matching b, and A /(pb+p& ) at the transition.
We note that unlike Eq. (4.35), EB in the matter-
dominated epoch, Eq. (4.44), does not oscillate inside the
Hubble radius.

It is pleasing to note that the growing mode in b, B [Eq.
(4.44)] and 5B [Eq. (4.36)] have exactly the same numeri-
cal coefficient; only the coefficient of the decaying mode
in 5B is gauge dependent —this is the reason why, the
comments of some proponents of the gauge-invariant for-
malism notwithstanding, synchronous gauge computa-
tions of the large-time behavior of energy-density irregu-
larities are physically correct (i.e., gauge invariant).

We now consider the large-time transverse peculiar ve-
locity perturbations. The relevant joining conditions are
Eqs. (4.9) and (4.11). From Eq. (4.19) we see that the
transverse peculiar velocity perturbation v+ vanishes in
the scalar-field-dominated epoch (this is true no matter
what the form of the scalar field potential); Eq. (4.9) then
implies UR =0=vB or ci 2' =0=cd )' (where we have used
Eqs. (C9) and (B16) of Ref. [14]}. Since hi, is time-
independent during infiation [Eq. (3.25)], Eq. (4.11) im-
plies hi", '=hi, =hi, ' or cI, '=ci, =ci, ' (from Eqs. (C8)
and (B15) of Ref. [14]). [It is obvious that these expres-
sions for the constants of integration satisfy the con-
sistency condition (4.13).) This result means that such
scalar field models of inflation do not generate transverse
peculiar velocity perturbations, v =0, and so are not the
appropriate description of the very early Universe in the
primeval turbulence scenario for structure formation.

The joining conditions for the graviton degrees of free-
dom at the transition are that h,. and h,. (where i = +, X )
should match, Eqs. (4.17) and (4.18). From Eqs. (39) and
(40} of Ref. [14] and Eqs. (3.26), (3.27), and (3.44) we find,
in the radiation-dominated epoch,

—
(

(B) 3 (B)
)

—x+ (B) 2x/3
C2 4C8 (4.44) where XR =3/3A, R and
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[H'" (X e " )H'" (« " )+H'" (X ' )H'"(«)]
In the matter dominated epoch we find

ii (B) e
—x/2[c(B)H(i) (g x/3)+ (B)H(2) (g x/3) q—3/2 —3/2 ae

where we have defined
1/2

c (
'=i

4
ABe [c (

'[H' 5/2(ABe )H'")/2(XRe ) H' 3/—2(XBe )H'"3/2(/(Re )]4 3

(4.49)

(g) . K 2
Ci2 l

4 v'3

xg /3 (2) — xg /2 (2) — xg /3 (2) — xg /2+cz [H 3/2(XBe )H )/2(XRe )
—H 3/2(ABe )H 3/2(ABe )]],

(4.50)' 1/2

ABe Ic "('[ H'"
5/2(A Be )H' I/2(ARe )

—H' 3/2(XBe )H'"3/2(XRe )]

+c z"'[H —3/2(XBe )H' ')/2(ARe )
—H'

3 /2(k Be )H' 3/2(i(R—e )]] .

Although the expressions in Eqs. (4.47)—(4.50) can be
written in a slightly simpler form (Hankel functions of
half-integral order are a product of an exponential and a
polynomial) we shall not bother to do so, at this stage,
since the resulting expressions are not much more il-

luminating. We note that both in the radiation-
dominated epoch, Eq. (4.47), and in the baryon-
dominated epoch, Eq. (4.49), graviton perturbations oscil-
late inside the Hubble radius. It is also interesting to
note that in the scalar-field-dominated epoch, on small
scales h; ~ exp[ i (k~ —kx) ]—(where r is conformal time)
while in both the radiation-dominated and matter-
dominated epochs h, has a contribution proportional to
exp[ i(kr —kx)] —as well as a term proportional to
exp[i(kr+k x)]; in a matter- or radiation-dominated
universe the graviton vacuum" state initial condition
would have required that the second type of term be ab-
sent. If we discard these terms in our model we would
find that we could not require that both h; and h; match
at the transition.

V. LARGE-TIME EXPRESSIONS FOR LARGE-SCALE
INHOMOGENEITIES

In this section we evaluate the power spectrum of
energy-density irregularities, the spectrum of local depar-
ture velocity from homogeneous expansion and the
gravitational-wave energy-density spectrum in the large-
time, baryon-dominated, universe. The microphysics un-

derlying this inflation model is, at present, unknown,
rather, the normalization of the power spectrum will be
determined from observational data. We choose to deter-
mine the normalization of the power spectrum from ob-

servational data because the scalar field inflation picture
of the very early Universe (like all other scenarios) is, at
present, incomplete —the reheating temperature and the
inflation epoch scalar field potential differ from model to
model and experimental high-energy physics has not yet
distinguished a preferred standard model. Even though a
given, microphysics-based, inflation model has a fixed
reheating temperature and scalar field potential, the vast
number of grand unified, higher-dimensional and
superstring-inspired inflation models makes it more
worthwhile to work with a class of macrophysical models
rather than to concentrate on any single model that is
motivated by a particular choice of short-distance philo-
sophy.

The model also does not include the physics which de-
scribes the coupling of radiation to matter so the frac-
tional energy-density irregularity power spectrum we
derive is not valid on scales on which this coupling is
important —it is only correct on large scales ( R few tens
of megaparsecs). We are, hence, forced to fix the normal-
ization of the power spectrum at an unconventionally
large scale. On these ("great attractor") scales, the
relevant observed quantity is the local departure velocity
from homogeneous expansion [28]. Requiring that the
theoretical expression agree with the (tentative) observa-
tional data results in a relation between the two free pa-
rameters of the model: zR+, the redshift at the epoch of
reheating, and q, the index of the inflation epoch scalar
field potential (as well as h).

Prior to comparing theory to observation we must en-
sure that the theoretical expressions and the correspond-
ing observational measurement are recorded in the same
coordinate system. We transform the theoretical expres-
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sions to the coordinate system in which the time deriva-
tive of the trace of the metric perturbation has been re-
moved on a specified spatial hypersurface on which the
observation was made; this is the instantaneously
Newtonian synchronous coordinate system. Further-
more, we may only compare a position space course-grain
average of the theoretical expression to the observational
measurement.

A. Large-scale approximation

The characteristics of the inflation epoch are most easi-

ly examined if we focus on perturbations on scales larger
than the Hubble radius during the transitions from scalar
field dominance to radiation dominance and from radia-

tion dominance to baryon dominance. These perturba-
tions are unaffected by small scale processes such as en-

tropy production and baryosynthesis at reheating and the
interaction of radiaton with matter —they are truly
primeval. (Since our expressions for the perturbations do
not include the effects of small-scale processes they are
only physically relevant for such large-scale perturba-
tions. ) The large-scale perturbations are the leading
asymptotic terms of the expressions derived in the previ-
ous sections and in Ref. [14] when k/'[(2(tR@, )H(tR@)]
and kl[a(tRR )H(tRR)] are small.

For perturbations that were outside the Hubble radius
during the scalar-field-radiation transition, the constants
which characterize the energy-density and longitudinal
peculiar velocity perturbations in the radiation-
dominated epoch, Eqs. (4.32)—(4.34), reduce to

' 1/2

c(R)C2 — C2
2

16
' 1/2

2
m& q

1/2
~v+ ) /2 CSC( V&) i(v+ ) /2)n/2k —3/22 q J r(-v) e

a(tR~)H(tR@)

' —v —3/2

(5.1)

and
' 1/2

(R) 16m 3 2
C =+ 7r

mp 8 q
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iv+)/2 CSC(V77) i(v —)/2)m/2 R k22 q) r( —v)
e

k

' —v —3/2
k

a(tRC, )H(tR~)
(5.2)

in these equations the constant c2 corresponds to the inflation epoch time-translation invariant solution and v is defined

in Sec. III A. (We have only recorded the leading terms in these asymptotic expansions. ) In the matter-dominated era
we find that Eqs. (4.39), (4.41), and (4.42) reduce to, for perturbations that will first reenter the Hubble radius in the
baryon-dominated epoch,
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In deriving Eqs. (5.3) and (5.5) we have made use of

k k))
a(rRR )H(rRR ) a(&Rc, )H(rR+)

(5.5}

For future reference we note that the combination c(2 ) —(3/4)c(() ', which is a constant of integration for a gauge-
invariant solution [Eq. (4.45)], is given by
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To derive some of Eqs. (5.3)—(5.6) one needs to retain subleading terms in Eqs. (5.1) and (5.2); in sotne cases it is neces-
sary, because of cancellations, to go to the fourth or fifth order in the asymptotic expansion.

For perturbations that were outside the Hubble radius during the scalar-field —radiation transition, the constants
which characterize the graviton in the radiation-dominated era, Eqs. (4.48), become

3/2
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—v —3/2
k
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k
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while for perturbations that reenter the Hubble radius in the matter-dominated epoch we find that Eqs. (4.50) reduce to
3/4
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We shall use these results, in the next two subsections,
to evaluate the large-time, baryon-dominated epoch, form
of the peculiar velocity perturbation, the power spectrum
of energy-density irregularities and the energy-density
spectrum of gravitational-wave perturbations that reenter
the Hubble radius in the baryon-dominated epoch. It is
straightforward to derive the corresponding formulas for
large-scale perturbations in the radiation-dominated
epoch —we shall not record these expressions here.

B. Peculiar velocity perturbations and the power spectrum
of energy-density irregularities

Transverse peculiar velocity perturbations vanish [see
the discussion in the paragraph above Eq. (4.47)]. We
note that these are gauge-invariant perturbations. In the
baryon-dominated epoch the longitudinal peculiar veloci-
ty perturbation (which transforms under the remnants of
general coordinate invariance in synchronous gauge) de-

cays linearly with the scale factor, Eq. (4.37).

U' =i-', kc(B)aB 8 8 (5.9)

where c's I is given by Eq. (5.5).
There are two ways of characterizing large-time

energy-density inhomogeneities —5z [Eq. (4.36)] and hs
[Eq. (4.44)]. b, ~ is invariant to the remnants of general
coordinate invariance in synchronous gauge while 5B is
most straightforwardly related to the large-scale anisotro-
py of the cosmic microwave background temperature.
We note that both hB and 5B have two terms one of
which varies as t ' while the other grows as t ~ . (As
previously discussed, the growing modes in b B and 6B
are identical —5B does carry gauge-invariant informa-
tion. )

To determine the corresponding power spectra we need
to evaluate (5s(k)5~( —k)) and (b,~(k)hs( —k)). We
find, in the baryon-dominated epoch,

Pt (k, t)=(b~(k, t)b~( k, t))= —k " '(~A~ a +~B~~a ' '+~C~~ a '),
mp

(5.10)

where
~

3 ~, ~Bt, ~, and
~ Ct, ~

correspond to gauge-invariant solutions (for which expressions are given below). The term
proportional to

~
3

~
in this equation is the growing adiabatic mode (and has the expected dependence on the scale fac-

tor). Since we have used a quantum-mechanical Fourier expansion to transform to spatial momentum space (Sec. III A)
this definition of the power spectrum divers, by a factor of 4, from what is conventional in cosmology. In particular,
the mass autocorrelation function is

d k
g(~x —

y~, t)—= (6~(x, t)6s(y, t))=I 4(5s(k, t)5~( k,t))e'"'"—
(2~)'
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We note that the numerical coefficient of the decaying
term in 5~ depends on c2, the constant of integration for
the inflation epoch, gauge-dependent, time-translation
solution [see Eqs. (4.32), (4.39), and (5.3)]. If we use the
remnants of general coordinate invariance in synchro-
nous gauge, during inflation, to choose c2 such that c2 '

vanishes, then the only term in Ps(k) —= (5&(k)5&( —k))
is the term proportional to

I
A

I
in Eq. (5.10). [This argu-

ment differs from the more familiar one used to discard
these terms in 5~, i.e., that the other terms in P& will,
given time, soon be overshadowed by the growing adia-
batic term. ] In this gauge c~s ' is defined by Eq. (5.6)
where cP' =0 and then the coefficient in Eq. (5.9) is fixed
with kc' ' ~ k

The coefficients in Eq. (5.10) are given by
1/2

(2 )v+)/p csc(v17)—
q I ( —v)

3 31T

20 V'2q

~R
X

' 7/2 — 3/4

X [a(t„+)H(tz~)]"+ [a(tstt )H(ts~ )]

2
1

( pv+~ csc '(v'tt)

25 (2)~/' q r'( —v)
7/2 —3/4

k

~R
X

X [a(tttz, )H(tzc, )] "+ [a(tstt )H(ttttt )]

1/2
jib

(2 )v+ &/&

45 q I (
—v) k

X [a(tzc, )H(t„~)]"+ [a(tsar )H(tttz )]

(5.11}

(5.12)
—3/2

(5.13)

P, (k,t)=, k(I A I'~'+l&~l~ '"+Ical'u '},
mp

(5.14)

where the coefficients are now given by

3/2
1 3

e 20 v'2 k

7/2 — 3/4

X [a(t~@)H(t„q,)] [a(t~~ )H(t~„)] (5.15)

It is interesting to note that the spatial momentum
dependence of all three terms in the gauge-invariant
power spectrum, Eq. (5.10), is the same. The allowed
range of q is from 0 to 2 and the corresponding range of
the power spectrum index n =2(1—v) is from 1 to —oo.

In the limit q =2@ ~0 the inflation model reduces to
the usual exponential expansion model [Eqs. (2.6)—(2.10)];
in this limit the power spectrum of energy-density irregu-
larities reduces to

' 7/2 — —3/4
1 1 4 ~a
2 50(2)1/4

X [a(tzz, )H(tz~}] [a(t~z )H(t~„)]
1/2

' — —3/2

Ic I=—1 1 2
@15 3 k

(5.16)

X [a(t~q, )H(t„c,)]'[a(ttttt )H(t~„)] (5.17)

We note that the spatial momentum dependence of the
dominant adiabatic part of the power spectrum [the term
proportional to IA I

in Eq. (5.14)] is of the standard
scale-invariant form [2]. Since we have not included the
effects arising from the coupling of matter to radiation,
this expression does not correctly describe the short-
wavelength form of the power spectrum, Eq. (6) of Ref.
[19]. It is interesting to note that in this limit the power
spectrum diverges like e; as far as we are aware this
effect has not previously been discussed.

The physical origin of this divergence lies in a rather
interesting property of the quasi —de Sitter spacetime that
results in this limit —even though 5@, is small (i.e., even
though the standard assumptions of linear perturbation
theory are valid) the spatially homogeneous local energy-
density hypersurfaces in this spacetime are exceedingly
displaced from the corresponding synchronous gauge
constant time hypersurfaces. This is because the back-
ground evolution is so slow, Eq. (2.9), that one must go to
a synchronous gauge hypersurface of substantially
different time before the change in pb~ is large enough to
compenste for 5+. It is straightforward to quantify this;
in the relevant limit Eq. (3.33) reduces to

16~ 1/2k-3/2
5 ( k, t ) = ec H i—e—

2

. k kXH 3—3i +
aH aH

. k
Xexp i

aH
(5.18)

ht(t~, k) = —
5C,(t~,k) .

Pb&(t@ )

Pb&( t(b )
(5.19)

This expression may also be derived by solving the linear
perturbation equations, in the background described by
Eqs. (2.6) and (2.7), to zeroth order in e (i.e., we work to
zeroth order in e in the first-order perturbation equations
for the fundamental fields (t and h;, while we work to
first nontrivial order in e in the homogeneous back-
ground equations and in the definition of derived fields
such as 5~); with this method of derivation the first term
in Eq. (5.18) would not be seen. Now from the discussion
around Eqs. (3.3)—(3.7) of Ref. [16] we have that the spa-
tial momentum-space form of the temporal displacement
of the spatially homogeneous local energy-density hyper-
surface from the corresponding constant time (t~) syn-
chronous gauge hypersurface is given by, in the scalar-
field-dominated epoch,
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From Eqs. (2.9) and (5.18) this results in

i 16m.
ht(t~, k)= —e

2 E m

2

X 3 —3i +
aH aH

. k
Xexp i

aH
(5.20)

where all time-dependent quantities on the right-hand
side are evaluated at t =t+. The first term on the right-
hand side corresponds to the time-translation solution (it
is, as expected, time independent) while the second term
corresponds to all other solutions (and in particular the
adiabatic solution); the first term, for a sufficiently sensi-
ble, fixed, value of c2 (which is arbitrary), does not
diverge, while the second term diverges linearly for small
e. This means that the spatial hypersurface on which, in
particular, the adiabatic mode is spatially homogeneous
is not "close" to the corresponding synchronous gauge
constant time hypersurface. Now the reheating phase
transition must occur on a spatially homogeneous local
energy-density hypersurface (because it is governed by lo-
cal physics) and in the radiation-dominated epoch the
spatially homogeneous local energy-density hypersurfaces
and the corresponding synchronous gauge constant time
hypersurfaces are "close" (i.e., for reasonable values of
5~); we have joined the background fields on a constant
time hypersurface, to be able to join the perturbations we
need to get the two corresponding spatially homogeneous
local energy-density hypersurfaces (the scalar-field-
dominated epoch one and the radiation-dominated epoch
one} to line up —this requires an unreasonably large
value of 5z (for sufficiently small e).

For small enough e the assumption that the transition
spatial hypersurface is close to the constant time spatial
hypersurface breaks down and invalidates our results—
however for e small (but not excessively so) they are
relevant and hence the "divergence" in Eqs.
(5.14)—(5.17) is physically meaningful. [It is unclear, at
present, how to deal with the exact de Sitter case. It is
possible that it behaves sensibly (although we suspect that
it does not); one might conceive of approaching it from
another direction in the space of potentials, i.e., instead
of Eq. (2.6) we might construct another potential, which
in the limit of a small parameter vanishing approaches a
constant value. In any case it is unlikely, for the physical
purposes of inflation, that an exact de Sitter spacetime is
of much relevance. It is also possible that this divergence
disappears when one correctly accounts for the effects of
the perturbations on the evolution of the background. ]

We now consider whether this divergence might have
been anticipated from the general expression derived in
previous analyses (for instance, a representative sample,
which is by no means complete, includes Refs. [21—24])
of density irregularities arising from inflation. From Eqs.
(5.10) and (5.14)—(5.17) we see that as we increase q from
2e (or as we increase e from 0) the numerical prefactor
becomes smaller and the power spectrum index,

n =1—2e, decreases from unity; i.e., a small numerical
prefactor is accompanied by a deviation from a scale-
invariant power spectrum and a deviation away from an
exceedingly flat potential (and exponential expansion
inflation). The intuition developed from some of the re-
sults of the analyses of Refs. [21—24] suggests the oppo-
site conclusion. In particular, they consider a model with
an inflation epoch scalar field potential of the form
V(4)= Vo

—Af(4), where Vo is large and dominates
during inflation and the small second term causes the sca-
lar field to slowly roll during inflation. A, is a coupling
constant (which microphysics suggests is of order unity)
that governs deviations away from the exact de Sitter
solution and f(4) is a polynomial in 4 that might in-
clude logarithmic terms (see, for instance, Eq. (4) of the
first of Refs. [23] where f 0-4 or Eqs. (3.7}-(3.9) of Ref.
[24]). [In the exponential expansion inflation limit of our
model the step function potential, Eq. (2.6), is
V(4) = Vo

—e2A(4 —4O' ').] These analyses typically
conclude that at second Hubble radius crossing
P(k) =(5(k)6( —k ) ) ~ A, (see, for instance, Eq. (22) of
the first of Refs. [23], the equation in the first column on
page 297 of Ref. [21],Eq. (18) of Ref. [22] or Eq. (3.17) of
Ref [24]); a more careful analysis of this result suggests
that if one wished to make the numerical value of P(k )

small one should consider micr ophysical theories in
which 2((1 (this is the "fine-tuning" problem that the
inflation scenario is supposed to have, i.e., density pertur-
bations at second Hubble radius crossing do not violate
the bounds on large-scale spatial anisotropy of the cosmic
microwave background temperature only if this coupling
constant is exceedingly small during the inflation epoch).
The limit A, ~O corresponds to an exceedingly flat poten-
tial and hence exponential expansion inflation; this result
of these references suggests that the numerical value of
P(k) decreases as the deviation from exponential expan-
sion inflation decreases, which differs from our con-
clusion that the numerical value of P(k) decreases as the
deviation from exponential expansion inflation increases.

At this stage, it is perhaps appropriate to note that a
general formula presented in earlier analyses, when ap-
plied to the model studied here, suggests a result some-
what similar to what we have found. In our notation
their expression for the power spectrum at a second Hub-
ble radius crossing is given by

HP(k)=(5(k)5( —k)) . , k'(y(k)(b( —k)),
+o

where the time-dependent quantities on the far right of
this equation are evaluated at first Hubble radius crossing
(see, for instance, Eq. (16) of the first of Refs. [23] and Eq.
(7.8) of the second reference or Eq. (2.37c) of Ref. [24]).
It is straightforward to establish, in de Sitter spacetime,
that H is independent of E and @o~(p zb, +p +b~}e H
(i.e., the kinetic energy of the scalar field is negligible
compared to the potential energy during the "slow-
rolling" epoch of the exponential expansion inflation
scenario). In this limit the expression for the scalar field
perturbation, Eq. (3.10), reduces to
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p(k, t)=e c2H+ 16~

mp
H i+

2 aH

X exp
aH

The first term is the gauge-dependent time-translation-
invariance solution, which vanishes when @=0 (for a
reasonable, fixed, choice for the value of the constant of
integration c2 which does not seem to be determined by
the quantum mechanics of inflation), the second term in-

cludes the adiabatic solution and exactly agrees with the
expression given in Eq. (5.18) of Ref. [8] (which was de-
rived using the convention 16m/mt, .= 1). If one ignores
the time-translation solution, Sec. III of Ref. [18], then

( P(k )P( —k ) ) is independent of e. This results in
P(k}~e which agrees with the e dependence of Eqs.
(5.14)—(5.17). That this effect is not present in the final
result of Refs. [21—24] is a consequence of the different
treatment of the reheating transition used in these analy-
ses; in these analyses reheating takes a time comparable
to the Hubble time at this epoch, while in our analysis
reheating is much more rapid (this is discussed in Refs.

[18,20]).
Finally, we note that the analysis of the Dimopoulos-

Raby geometric hierarchy super-symmetric grand-
unified-theory model presented in Sec. III B of Ref. [24]
also illustrates the effect of the de Sitter spacetime diver-
gence. In this model the deviation of the scalar field po-
tential from that corresponding to a constant cosmologi-
cal constant is governed by their parameter c2 [Eq. (3.19)
of Ref. [24]]; Eq. (3.23) of this reference suggests
P(k ) ~ (cz) so the power spectrum increases as the de-

viation from exponential expansion inflation becomes
smaller.

To elaborate on the physical implications of this diver-
gence we must first phenomenologically relate the epoch
of reheating to the scalar field exponential-potential index

q by making use of observational data. We shall return to
this later on in this section.

C. Gravitational-wave energy-density spectrum

In the matter-dominated epoch, the momentum-space
graviton two-point function, corresponding to the polar-
ization state i =+ or X, for perturbations that reenter
the Hubble radius in this epoch, is given by

(h' '(k)h' '( —k)) = k ' + 'a ~D~ 1 —cos
mp aH

4k . 4k k
sin

aH aH aH

2
4k1+cos
aH

(5.21)

(it is interesting to note that the factor in curly brackets is
a universal function of k/aH, i.e., unlike the prefactor it
is not an explicit function of q), where we have used Eqs.
(4.49) and (5.8) and there is no implied summation over
the index i on the left hand side of this equation (as is the
case in all other equations, involving gravitons, in this
subsection); the numerical coefficient ~D ~

is

(h.' '(k)hf '( —k})= k '~+ "~E~
mp

where the numerical coefficient is now given by

3/4

~E~ = &n —— (2—q)'+'~
3 2 I (

—v)

(5.23)

/D/=&~3—
2

' 5/4(,„+)y2 csc(v7T)
2 g) r( — )

~R

k

3/2 ' 3/4

X

3/2
~B

—15/4
X [a(tz+)H(tz+)] +3~ [a(tzz )H(tzz )]'~ . (5.24)

X[a(tz@)H(tz@)]'+ [a(tzz)H(tzz )]'

(5.22)

The time dependence and spatial momentum dependence
of Eq. (5.21) (including the term in curly brackets) agrees
with the corresponding baryon-dominated epoch expres-
sion which may be derived from the results of the first of
Refs. [11] [see their Eqs. (2.10) and (2.11)]. On large
scales Eq. (5.21) reduces to the time-independent expres-
sion

On small scales it is clear that Eq. (5.21) oscillates (the
factor [1+cos[4k/(aH)]] in the last term in the curly
brackets oscillates between 0 and 1, the square root of
this expression is icos[2k/(aH)] so, as expected, the
amplitude oscillates about zero mean); in this limit the
factor in front of the oscillatory term is proportional to
k ' 'a . (We note that it is only on these small
scales that the perturbation s we have been calling
gravitational-wave perturbations behave like "true"
waves. )

In the de Sitter inflation limit (q =2e -0) of the very
early Universe model we find that Eq. (5.21) becomes
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(h '(k)h' '( —k))= k a IDOI 1 —cos
4k . 4k k

sin
aH aH aH

2
4k1+cos
aH

(5.25)

where the coefficient now takes the form
- 5/4

' 3/2 ' ' —15/4
3 ~R ~B

2 k k

X [a(tRe)H(tRe)]'[a(tBR )H(tBR )] (5.26)

we note that unlike the energy-density irregularity two-
point function, this expression does not diverge in the de
Sitter limit. The time dependence of Eq. (5.25) agrees
with the baryon-dominated epoch results of Ref. [34] [see
the last of their Eqs. (5) and the equation following it],
however, although both the k factor and the factor in
curly brackets in Eq. (5.25) appear in the corresponding
expression derived from the results of Ref. [34] their ex-
pression seems to have an extra, spatial momentum-
dependent, factor sin (kr, +y), where r, is the value of
conformal time at reheating and y is a phase, which does
not appear in Eq. (5.25); furthermore, the numerical pre-
factors seem to differ. For long-wavelength perturbations
Eq. (5.25) reduces to the time-independent expression

(h' '(k)h' '( —k)) = k EOI
mp

where IEOI is given by

3/4 3/4
1 3

3 2 k k

X[a(tRa, )H(tRc, )] [a(tBR)H(tB„)]' "

3/2

(5.27)

(5.28)

Small scale perturbations oscillate, Eq. (5.25), and the
prefactor is proportional to k a

We now turn to deriving the energy-density spectrum
of gravitational-wave perturbations: E;(k, t ), where
i = +, X. Using the techniques described in Refs. [14,15]

I

one may expand the action (2.1) to quadratic order in the
perturbations. This expanded action may be used to
derive the corresponding quadratic order Hamiltonian;
rewriting this Hamiltonian in terms of the fields and their
velocities we find, for a gravitational wave of momentum
k propagating in the x ' direction with polarization i, that
the energy-density spectrum c;(k,,t ) is given by

2

e, (k, t)= (h, (k, t)h, ( k, t))—
k+ (h(k t)h ( k t)—) . (529)
a

The expectation value of the gravitational-wave part of
the quadratic order Hamiltonian is related to E;(k, t)
through

d k(H, (t)) =f,a'(t)[e+(k, t)+E„(k,t)];—~ (2~)
the square of c,; plays a role somewhat similar to that of
pq(5(k)5( —k)) in the case of fluid perturbations. As
far as we are aware, this characterization of
gravitational-wave perturbations has not previously been
used; in the high spatial frequency (WKB) limit e; is
presumably related to the expressions for the (time-time
component of the) effective gravitational-wave stress ten-
sor given in Refs. [35]. It would be intersting to more
closely examine the relation between the expressions
given in Refs. [35] and those derived, for gravitational-
wave perturbations, from the relevant parts of the expec-
tation value of the generators of time translation (the
Hamiltonian) and space translation (the momenta).

Using Eqs. (4.49), (5.8), and (5.21) we find that the
energy-density spectrum for gravitational-wave perturba-
tions in this model is given by

2

(k ) =k '"+ 'a IF I

.9+ 16
k +32 k

aH aH
3

k k
36 —32

aH aH

k
9—56

aH

4k
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aH

(5.30)

where
3/4—9 3
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~R ~B
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—21/4

X [a(tRz, )H(tR+, )] + [a(tBR )H(tBR )]' . (5 31)

E (k, t)=k 'a IGI

~R

k

where the numerical prefactor I 6 I
is given by

3/4

I
G

I (2 )v+1/2
3v'2 2 I (

—v)

3/2 3/4

k

(5.32)

For long-wavelength perturbations this reduces to X [a(tR~)H(tRq, )] [a(tBR )H(tBR )] ' (5 33)
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we note that the long-wavelength contribution to the
graviton energy density, Eq (5.32), depends on spatial
momenta and the scale factor in a manner that differs
from that of the two-point function, Eq. (5.23) [in fact, in
this limit E, (k)=(mp/16')(k/a) (h, (k)h;( —k))/2].
As far as we are aware, there has been no previous esti-
mate of the energy-density spectrum of gravitational-
wave perturbations arising from inflation in the very ear-
ly Universe. It is interesting to note that the a depen-
dence of Eq. (5.32) is not the appropriate scale factor
dependence of the energy density of a (massless} relativis-
tic field; this is not unexpected since these perturbations
are "true" gravitational waves only on small scales. For
short-wavelength perturbations the dominant part of Eq.
(5.30) does not oscillate (this is also not unexpected since
the energy density of gravitational-wave perturbations
must contribute to the expansion of the Universe) and is
proportional to k '+ 'a, which is the expected
dependence on the scale factor. In the de Sitter limit of
the model for the very early Universe Eq. (5.32) reduces
to

E;(k, t)=k 'a ~GD~

where

(5.34)

1 3
OI

=
3~2 2

3/4
R

k

3/2 ' 3/4

X [a(tze)H(tz~)] [a(t~z )H(t~~ )]' (5.35)

while on small scales the energy density is proportional to
k a; again these expressions do not diverge.

We plan to eventually use these results to examine the
constraints that the observational limits on gravitational
waves impose on this model of the very early Universe.

D. Predictions and observational constraints

Theoretical cosmology has been partially hamstrung by
the difficulties involved in determining a reliable observa-
tional estimate for the density parameter on scales
greater than a few tens of megaparsecs (a recent applica-
tion of the number count of conserved objects versus red-
shift test [36] holds promise, although it is still in the ear-
ly stages of development). Since it is unlikely that a reli-
able large-scale estimate will be available before the turn
of the millennium, we have decided to assume that
0„, = 1 (which is the preferred, but not the only, value
suggested by the infiation scenario). We shall also use the
conventional factor h to account for the uncertainty in
the Hubble parameter. With these caveats the large-scale
features of the scalar field inflation model are governed
by the values of the parameters zR+ and q.

The normalization of the linear perturbation theory
power spectrum may be determined by a best fit to the
observed mass autocorrelation function on "intergalac-
tic" scales (-10 Mpc) and the observed peculiar velocity
perturbation (which is still tentative) on "great attractor"
scales (-60 Mpc). This would require an expression for
the power spectrum that is also valid on "intergalactic"
scales and needs a more complete treatment than we have

attempted here —we are, hence, forced to determine the
normalization of the power spectrum by normalizing the
theoretical expression for the peculiar velocity perturba-
tion on scales on which the coupling between radiation
and matter can be ignored (for instance, "great attractor"
scales, Ref. [28]), [27]. Fixing this normalization results
in a relation that determines zz@ in terms of q (or vice
versa, which would be more convenient if one had an ex-
perimentally preferred model for baryosynthesis) —the
models are then classified by the vaue of q.

There are then at least two "independent" observation-
al upper bounds (for which our linear perturbation theory
expressions are valid) that may be used to constrain q-
observational constraints on large-scale spatial anisotro-

py in the cosmic microwave background temperature
constrain the large-scale energy-density irregularity
power spectrum and the large-scale gravitational-wave
energy-density spectrum (we shall not discuss this con-
straint here). Observational constraints on the small-
scale microwave background anisotropy will also con-
strain q; however, in this case one has to correctly ac-
count for more small-scale physics than has been done
here.

A detailed analysis of the linear perturbation theory
predictions for these observational tests will require a
more complete analysis of the small-scale form of the
power spectrum of energy-density irregularities. It will
also require some consideration of the observational
methods used to make the measurements, as well as,
perhaps, a more correct treatment of the radiation-
baryon transition. Such an analysis certainly deserves
consideration and we hope to return to it elsewhere; in
what follows we shall present preliminary, order of mag-
nitude, estimates of what the model predicts and how it is
constrained by the observational upper bounds.

To compare with observational data we must first
transform our expressions to the coordinate system used
in the observations. Since the peculiar velocity is small,
on the (small) scales of interest, conventional wisdom sug-
gests the use of the coordinates used in the Newtonian
approximation of the relativistic theory (Sec. 84 of Ref.
[37])—the instantaneously Newtonian (or locally Min-
kowski) synchronous coordinate system. These are syn-
chronous coordinates, x"=(t,x'), in which the time
derivative of the trace of the metric perturbation, fok(x ),
vanishes on a spatial hypersurface at the time t = tz when
the observation was carried out. These coordinates are
related to the synchronous coordinates we have mostly
worked with so far through the equations

(5.36)

where t~=t~ ht(tz) and we sh—all determine b t and f'
below. (The following manipulations are very similar to
those of Sec. III of Ref. [16] so we shall omit technical
details which may be found there; b, t(tz) and f '(t ) are, of
course, not to be confused with ht(tzz ) and f '(t ) defined
there. ) To ensure that the x coordinates are synchro-
nous, we must require

(5.37}
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t3. t(trav ) = — H —1+—1 2 2 k
9 9 aH

2 —1

we shall set w; =0 in what follows.
Requiring that fob vanish, we find

(5.38)

68(k, t)v)=(1+18K,B e )

X [(1+30'—2 N
)

(8) /If

+( (8) 3 (8)
) W]

u81(k, tx)=(1+ 18kB'e '"N")-12lX81

(5.41)

58(t)v ) =58(t)v ) 3H(t—tv )t).t(trav ), (5.39)

where all time-dependent quantities on the right-hand
side of this equation are evaluated at t=tz. In these
coordinates, the fractional energy-density perturbation
5z and the longitudinal peculiar velocity perturbation uz
are given by

where
' 3/2

3v'3 k
a3/2(t )

X[c' 'e " ——'(c' ' ——'c'8')e ]2 4 8

(5.42)

vB(t)v) uB—(t~) 1
— t3, t(t~) .

a(t)v)
(5.40)

These expressions obey the Newtonian equation
$058 = —();vB/&—hence the name "Newtonian" coordi-
nates. It is straightforward to verify that the other
"Newtonian" equation, 5&58+2HI)058 =(41r/tnt, )pbBtlB
also holds in these coordinates.

Using the results of Sec. IV as well as those of Appen-
dix B of Ref. [14],Eqs. (5.39) and (5.40) result in

and all the other symbols in Eqs. (5.41) and (5.42) have
been defined in Sec. IV. It is pleasing to note that in the
limit when k ))aH the dominant terms in Eq. (5.41) are
proportional to t and t ', which agrees with the re-
sults of the Newtonian analysis, Eq. (11.7) of Ref. [37].
In this limit the dominant terms in Eq. (5.42) are propor-
tional to t' and t i, which agrees with Eq. (14.7) of
Ref. [37].

From Eq. (5.41) one finds that the (spatial momentum
space) fractional energy-density power spectrum, for per-
turbations that reentered the Hubble radius in the
baryon-dominated epoch, is

Ps (k, t)v ) = ( 58 ( k, t)v )SB( k, t)v ) )—
2 —2

9 a ( trav )H( t~ )

2 2
a(trav }H(ttv )

X A 1+
2

2
a(t)v )H(ttv )

a (t~)+IBt, I
1+

2
a 'i (t)(()+IcaI a (t)v) ',

(5.43)

where we have used Eqs. (5.4) and (5.6) and the numerical
prefactors A I, IBt, I, and

I Cz I
are defined by Eqs.

(5.11)—(5.13). Similarly, the longitudinal peculiar veloci-
ty perturbation two-point function is given by

—3/2

(5.47)

( v 8 ( k, t)v )uB ( k, t tv ))—
2 —2

16' 2 9 a (t)v )H(t)v )
k 1+—

m2 2 k

X [I A, I'a(t)v)+ IB„la '"(t~)
+ IC„ I'a '(t„}],

where
I A, I, IB, I, and

I C, I
are defined by

—3/2

I A, I

=2&'3

—3

(5.44)

(5.45)

(5.46)

In terms of the power spectrum index n =2(1—v ) [see
the discussion below Eq. (5.13)] the power of spatial
momentum in the prefactor of Eq. (5.43) is n (which is al-
lowed to range from —~ to 1 in this inflation model of
the very early Universe) and that in the perfactor of Eq.
(5.44} is n —2 (which ranges from —co to —1 in this
model).

Note that in terms of the proper wave number,
~=k /a ( tz ), the factor, in Eqs. (5.43) and (5.44),
a(t1(()H(tz)/k=H(trav)/~. To determine the normaliza-
tion of the power spectrum we are interested in the be-
havior of the power spectrum and the peculiar velocity
perturbation two-point function on scales much smaller
than the Hubble scale —for a momentum mode with a
wavelength corresponding to such a scale the H(tN)/tr
terms are not significant; however, they contribute a
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correction R 50% to the "adiabatic" term in
[(gs(k )gs( —k ) ) ]'/ [the term proportional to
~
p ~2tt2(t~) in Eq. (5.43)] for a momentum mode with a

wavelength of the size of the Hubble scale and so are
presumably of interest for an analysis of the large-scale
microwave background anisotropy. In any case, even
through we shall eventually be mostly interested in per-
turbations on scales well inside the Hubble radius, this
Newtonian approximation is most properly made in posi-
tion space rather than in momentum space.

To contrast the theory with observational data we need

to derive position space expressions which are related to
the fractional energy-density and longitudinal peculiar
velocity two-point functions. These position space ex-
pressions should only sense a coarse-grain average of the
corresponding quantity, so large spatial momentum
modes cannot contribute significantly to them—
mathematically this is accomplished by using a window
function to suppress these contributions.

A measure of the departure away from homogeneity of
the mass distribution (the fractional mass distribution) on
a coordinate length scale P, about a point x o, is

f [P(x', t~) Ps(ttv—)]W(~xo —x'~, P)& (tN)d x
(t iR)—=

f p&(tN)W(ixo x'i, P—)& (tN)d x
(5.48)

in which case Eq. (5.48) reduces to

(ttt)R )=f Ss(x, t~)W(ixo —x!,R )dsx, (5.50)

where W is a window function (see Sec. 26 of Ref. [37])
whose precise form is determined by the manner in which
the observation of the fractional mass distribution was
performed. For our purposes it suSces to adopt a nor-
malized Gaussian window,

W(~xo —x'~, R)=(2m' )
' exp[ —~xo —x'~ /(2R )],

(5.49)

f vs(x', tz) W( ~xo x'~, N )d x—
sf''("t„N ) = f W( ~x o

—x'~, R )d'x
(5.52)

where, as explained above, the factor of 4 on the right-
hand side of this equation is the result of our Fourier ex-
pansion conventions. We emphasize that 5s is the quan-
tity that determines the fractional mass distribution-
one must not use the gauge-invariant fractional energy-
density perturbation here.

A measure of the (longitudinal) local departure velocity
from homogeneous expansion on a coordinate length
scale R, about a point x o, is

manipulations similar to those above, with a Gaussian
window function, lead to the mean-square measure

d k([5P'(t~~R )] ) =4f 3 (us(k, tN)vs( k, t~))—
(2n. )'

(5.53)x
where we have again replaced x coordinates by x coordi-
nates. We note that the momentum-space Gaussian win-
dow in this equation and in Eq. (5.51) suppresses large
spatial momentum modes —these are the modes for
which our analysis is incomplete (because of the neglect
of the coupling between radiation and matter).

From Eq. (5.44) we find, in the exponential potential
inflation model of the very early universe, that Eq. (5.53)
reduces to

=4f (Ss(k, tN)Stt( k,tN))e-
(2n. )

(5.51)

where we have neglected the difference between the x and
x coordinates since Eq. (5.50) is a first-order expression
and the difference in coordinate systems will only con-
tribute to this equation in the next order in perturbation
theory (here R should not be confused with the subscript
for radiation). Fourier expanding Ss and performing the
spatial integration we find that the mean-square measure
of the mass distribution is given by

([SP'(z„)~)]')= [)7 ['(1+z„)'"-""+[8((1+z )'+""+[C ('(1+z )"+"'"]16m

mz

(l+1) ( 9)'(%0 ) ' " '1—(n—/2+1/2 —l)
1=0

1 )J'+ I( 9 /2 )
n /2+ i /2+ J'(QH )

2J—2(l+1) g j![(n/2+3/2+ j) —(1+1) ]
(5.54)
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v+ 1/2

A, I

(2—q) csc( }(1+ } H'
53/ q I ( — )

X ( 1 +z )31v—3/21/2H5/4 —v
BR BR (5.55)

2v+1 2
)1/2 —2 H2 +5/4

757rq I (
—v)

R4

where zN and HN are the redshift and Hubble parameter
at time t =tjv, the proper length scale %=a(trav )R, and
we have defined

=(1+zs„) (5.58)

divergence in the integrand, although nothing drastic
seems to happen (to the right-hand side) if n does not
obey this bound. We note that even for n ) —5 there are
values of n (for instance, —3, —1, 1) for which individual
terms on the right-hand side are singular (these excep-
tional cases are examined more carefully below). For fu-
ture reference, we note that from Eqs. (5.55)—(5.57) and
the relation (HR@/H7171 )' =( I+z21@)/( I+zs21 ) we find

X ( 1+ )3v 7/2H—3/4 2—
BR BR

v+ 1/2
C

I

(2 —q) s ( }(1+ )
' H„"+

303/7rq I ( —v)

X zBR
)(3v—5/2)/2H —1/2 —v

BR

(5.56)

(5.57}

or, with the value we have assumed, for zBR,

=3X 10"h
3 Ia. l

6 lc. l

(5.59)

where HR~ and HBR are the values of the Hubble param-
eter at the scalar-field —radiation and radiation-baryon
transitions and zR+ and zBR are the corresponding values

of the redshift. The expression on the right-hand side of
Eq. (5.54), which is derived in the Appendix, is formally
valid only for v & 7/2 (i.e., n ) —5) because of an infrared

this relation will allow us to simplify the large-time form
of the local departure velocity, Eq. (5.54).

In a manner similar to the derivation of the mean-
square measure of the local departure velocity, we find,
from Eqs. (5.43) and (5.51), that the mean-square measure
of the fractional mass distribution is given by

'I
OO 9 2I „3 n 3 2 n 1

g (
—1)'(I+1) — (%H )

' " IW, II —+——I +IW (%H ) I —+——I
mp 1=0

+IW I(XH ) r4 n 1
3 N

n /2+ 3 /2+ j
ca

1 j+1
+2(1+1)g gl

X (AH1v ) [ I W1 I [(n /2+ 5/2+ j ) —
( I + 1 ) ]

+—'
I W2I [(n /2+3/2+ j) —(1+1)2]

+ —,', I W3 I
[(n/2+1/2+ j) —(I+1)2]

(5.60)

where

I W, I

=
I A, I'(I+z~)'" ——I&, l(i+z~)' "

+—lc I
(1+ }"

9

I w, I

= 1 s
I A„ I'(I+z~ )'/2- —5

I &, l(1+z& )'

(5.61)

(5.62)

I W, I

=
I A, I'(1+z„)'" (5.63)

and
I A„ I, I B„I, and

I C„ I
have been defined in Eqs.

(5.55)—(5.57). To derive Eq. (5.60) we must require

& & 5/2 («12 ) —3) because of an infrared divergence in
the integrand; this is a stronger constraint than that
which follows from the derivation of Eq. (5.54}. [It
remains to be seen whether this divergence just means
that we need to find a more careful way of defining the
relevant position space expressions (in the n & —3 mod-
els); physically, these models have a lot of power on large
scales and (aside from probably being observationally
ruled out) should, perhaps, make sense. ] In what follows
we impose —3 (n ~ 1, where the upper limit is a conse-
quence of requiring that this particular class of models of
the very early Universe inflate. We suspect that there is
another class of inflation models which are not restricted
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to n ~ 1 —we hope to return to this elsewhere.
To determine the normalization of the power spectrum

we normalize the mean-square measure of the local
departure velocity, Eq. (5.54), to observational data on
"great attractor" scales (-60 Mpc), Refs. [28]. The red-
shift at which the observations are made is z& ——0 and the
"great attractor" scale corresponds to AHN «1, so we

only retain the leading term in Eq. (5.54). [As a conse-
quence of Eq. (5.59) we may ignore ~B„~ and ~C„~ com-
pared to

~ A„~ .] There is a qualitative change in the
asymptotic behavior of ([5P'] ) when n passes through—1; we find, on "small" scales and at the present epoch,

2(5 —n)/2 3n+1

mp

for —3 &n & —1 (5.64)

[where b,„=( n ——1)/4 if n = —1, —3 (this is discussed
below} and unity otherwise] and

r

i.e., the Fourier transform is not divergent at n =1,
which is the value that must be used in Eq. {5.67). This
results in the correction factor b,„ in Eq. (5.65).

On small scales and at the present epoch the mean-
square measure of the fractional mass distribution, Eq.
(5.60), reduces to

2

g r —"+—(wH )-'"+";
M 3 liow

(5.68)

it is pleasing to note that this scale dependence agrees
with Eq. (26.5) of Ref. [37]. This equation [like Eq.
(5.65)] is singular on very small scales —similar caveats
also hold here.

Parenthetically, we note that if we retain only the adia-
batic term in Eq. (5.10), we find, in the original synchro-
nous coordinates, that the present fractional mass distri-
bution agrees with Eq. (5.68), i.e.,

& [s$"(A)]'&=, gr —"+—a„(AH„.„)
mp (

5M(~)
(

5 (~)
)

(5.69)

for —1 & n 1 (5.65)

where we have made use of zR@ &&1, zBR &&1 and the re-
lation Hiie =H~z (zine/zax ) .

For the exceptional values of n ( = —3, —1, 1) of in-
terest, it can be shown that the term in large parentheses
in Eq. (5.54) reduces to

j=0

1)j+i (9/2)n/2+1/2+j
Hj) n /2+5/2+ I +j

[where b,„=1/4 if n = 1 (this is also discussed below) and
unity otherwise], which is singular on very small scales.
We note that our analysis ignores two major effects which
will certainly change the very-small-scale behavior
of ( (5P' ) ) (and could conceivably render it
nonsingular) —the coupling of radiation to matter and
the nonlinear effects associated with the late stage of de-
velopment of irregularities. The change in the asymptot-
ic behavior at n = —1 is well known; the main new
feature is that, unlike in the standard scenario where the
correlation function (5.44) does not have the extra k-
dependent factor in the denominator (i.e., its k depen-
dence is just k" ) and the infrared divergence must be
cutoff, the expression here is not cutoff dependent. The
coefficient g in Eqs. (5.64) and (5.65) is

2 " (3—n)" csc (nm/2)
25~ 1 n—

(5.66)

This is expected since, inside the Hubble radius, the adia-
batic mode is invariant to the remnants of general coordi-
nate invariance in synchronous gauge. In these coordi-
nates and with the further choice c2' ' =0 [to fix the rem-
nants of general coordinate invariance in synchronous
gauge, see the discussion in the paragraph above Eq.
(5.11)] we find that the mean-square measure of the local
departure velocity from homogeneous expansion is given
by

gi =
—,', /C„/' (5.71}

and ~C„~ is defined by Eq. (5.57).
It is conventional to express the observed local depar-

ture velocity from homogeneous expansion in terms of
the corresponding Hubble velocity:

([5P'(R)] )=y (%H„,„) (5.72)

where the great attractor observations (tentatively) sug-
gest y =0. 1 on scales AH„,„=2X 10,Refs. [28].

Combining Eqs. (5.64) —(5.66) and (5.72) we find

& [sv'(x)]'& =, g,r —"+—(xH„.„) ~"+'~-
mp

(5.70)

[which differs from both Eqs. (5.64) and (5.65)], where

+5 {—1)'(AH ) '"+"exp[ ', (WH ) ]——(5.67)
3n25(5 —n)/2

( 2)2(3 )n
—2

I 1 ——
(n+5)(n —1)

where 5„, is unity for n = 1 and vanishes for n %1; in this
form none of the terms in Eq. (5.54) are singular for the
range of n of interest. This expression results in the
correction factor 6„ in Eq. (5.64) when n = —3 or —1.
For n =1 it is important to remember that the e diver-
gence is in the factor in front of the series in Eq. (5.54); and

h„p„
X

" '""z'" "/2(XH )
'

4 zBR now
y mp

for —3 & n & —1, (5.73)
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22(5 —n) (n 2)2(3 n )n
—2

75m 1 —n

n 1 2 nI —+—I 1 ——
2 2 2

A„p„,„X " no~ Z(n —3)l2(~~ )
—

( n+3)
4 zBR now

y mp

for —1 & n & 1, (5.74)

where p„,„ is the present homogeneous background
energy density in baryons (with 0„,„=1) and

mz p„, =3.6X10 ' h . Using the numerical values
chosen above, these expressions reduce to

z„q,——753/2( 3 n)—(3 n) (2 ——n) 2 n

(n+5)(n —1)
1/( n —5)

X1.1X10 h (n —1)/(n —5)

and

for —3 & n & —1, (5.75)

z71 ~ =2. 5 X 10 ( 3 n)—
T

(3 n) —(2 —n) n 1 2 n

1 —n 2 2 2

1/( n —5)

x2.4x10 '" h (n —1)/(n —5)

for —1 &n &1 . (5.76)

In the limit when this model of the early Universe
reduces to the exponential expansion inflation model
( n = 1 —2e ) Eq. (5.76) reduces to

z~~=5.4X ~p"v'Eh~ (5.77)

we note that this number is not unreasonable even for
fairly small e. To get a rough idea of the range of nurner-
ical values, we note that Eqs. (5.75) and ( 5.76) imply

3.8X10 h'

2.2X10 4h'

2.9X10 2h /"

1.2X10 'h'
R 4 3 5 X 1019h 5/13

2.4X10' h

2.3X10"h'"'
3. 1X10' h'

(n =1/2),
(n =0),
(n = —1/2),

(n = —1),
(n = —3/2),

(n = —2),
(71 = —5/2),

(n = —3),

(5.78)

where the first four expressions have been derived from
Eq. (5.76) and the last four from Eq. (5.75).

The characteristic features of the trend in Eqs. (5.77)
and (5.78) seem to be a consequence of two interesting
phenomena: the stability of the model of the very early
Universe to small spatial irregularities and the anomalous
displacement, in de Sitter spacetime, of the spatially
homogeneous local energy-density hypersurfaces relative
to the constant time hypersurfaces. We have shown, in

Sec. III of Ref. [7] and in Sec. III C here, that small spa-
tial irregularities decay, as a power of time with exponent—4/(1 —n ), even though there are nonzero spatial curva-
ture perturbations; we note that these perturbations de-
cay the slowest for n = —3 and the fastest for n = 1 —2e .
If we require that the power spectrum has a fixed arnpli-
tude, on a given scale in the large-time universe, then as
we raise n from —3 the model would have to compensate
for the faster decay at larger n by spending more time in
the radiation-dominated epoch (relative to a model with a
lower value of n) to take advantage of the fact that per-
turbations grow on scales larger than the Hubble scale in
this epoch. However, when we raise n towards 1 the
geometric property of anomalous hypersurface displace-
ment in de Sitter spacetime starts becoming important—
since this results in a very large value of the fractional
energy-density perturbation after the scalar-
field —radiation transition the model cannot a6'ord to
spend too much time in the radiation-dominated epoch
(when n is near 1) if the power spectrum in the large-time
universe is to have a fixed amplitude —this is the reason
why z1(~ in Eq. (5.77) is ~ '(/e.

The energy scale at reheating may be conveniently ex-
pressed, in units of the Planck mass, as

1/4
PR4

4
m&

(5.79)=1.7X10 zR@,

where pR+ is the value of the homogeneous background
energy density at the scalar-field —radiation transition and

z2(~ is given by either Eq. (5.75) or Eq. (5.76). In more
conventional units the energy scale at the scalar-
field —radiation transition, E71~=(p„~)' is

ER~—-2. 1X10 '
zR~ GeV . (5.80)

In the exponential expansion inflation model this expres-
sion reduces to

E„z,——1.1X10' 3/eh GeV, (5.81)

which, as expected, is not unreasonably small, even for
small e. As n is varied, the numerical range of this ener-

gy scale is

8.0X10' h'

4.6X 10"h '

6. 1X10 h

2.5X10 h'
E71q (in GeV)= '7 4X10ehsy)3

5.0X 10 h

4.8X10 h

6.5X10 h'

(n =1/2),
(n =0),
(n = —1/2),

(n = —1),
(n = —3/2),

(n = —2),
(n = —5/2),

(n= —3) .

(5.82)

Having related the redshift of the scalar-
field —radiation transition to the power spectrum index,
we now turn to estimating the value of other observable
quantities. The following analysis is, of course, almost
standard; the main new feature is that, unlike in the stan-
dard cosmological scenarios, the amplitude and spectral
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index of all the perturbations are now determined once
the value of n is specified (in the standard scenarios the

amplitude of gravitational-wave perturbations are not
necessarily fixed once the corresponding quantity for
energy-density irregularities has been fixed.

Given an estimate of the mean-square local departure
velocity from homogeneous expansion on a scale
%'H„«1, Eq. (5.72), the mean-square measure of the
fractional mass distribution, Eq. (5.68), on the same scale,
1s

0.80 (n =1),
0.29 (n =1/2),
0.20 (n =0),

(
0. 12 (n = —1/2),
0.28 (n = —1),
0.039 (n = —3/2),
0.024 (n = —2),
0.014 (n = —5/2);

(5.87)

2(.—s)r2
(A) = ( n ——1)(n+5)3n+I

Xl —+— (%H )IlOW

t

for —3 & n & —1 (5.83)

[n = —3 is no longer allowed because the fractional mass
distribution transform diverges in the infrared], and

although the numbers are quite crude, they do illustrate
the problem (at small scales) with shifting the power to
large wavelengths —this effect will probably result in a
later epoch of galaxy formation in models with a smaller
value of n. To get a rough estimate of the behavior of the
fractional mass distribution on larger scales we consider a
scale %H„,„=0.2 [this number was chosen as a
compromise since we expect the subleading term in the
series (5.60), on this scale, to modify the numerical values

below only by = 5 —10']. On this scale, we find

2
n+1 y for —1&n ~1 .

2
(5.84)

On scales RH„,„=2X10 with y =0. 1 these equations
result in

0.2 (n =1
8.6X10-2
7. 1X10 '

' )n 5.0X10 '
0. 14 (n =
2.3X10
1.7X10 '
1.2X10 '

(n =1/2),
(n =0),
(n = —1/2),

—1),
(1T = —3/2),
(n = —2),
(n = —5/2);

(5.85)

the mathematical reason for the rather large changes at
n = —1, 1 is the factor b,„ in Eqs. (5.83) and (5.84), the

physics behind them is not yet as obvious.
The fractional mass distribution on a scale %H„,„ is

related to that on the scale AH„,„on which the local
departure velocity is measured through

' (n+3)/2

(5.86)

where the fractional mass distribution on the scale
%H„, is given by either Eq. (5.83) or (5.84). To get a
very rough estimate of the fractional mass distribution on
smaller scales we consider a scale %H„, = 10 (the
neglect of the coupling between radiation and matter
means that these numbers should not be taken too seri-
ously); we find

5Q
M

6.6X10 4

5. 1X10 4

7.5X10 4

9.4X10 4

4.7X10 '
1.3X10-3
1.8X10
2.2X10 '

(n =1),
(n =1/2),
(n =0),
(n = —1/2),

(5.88)
(n = —1),
(n = —3/2),
(n = —2),
(n = —5/2)

(here we have ignored the general-relativistic redshift
correction, which should not change the order of magni-
tude of these numbers). These numbers give a very
rough, order of magnitude, estimate of 5T/T (the frac-
tion perturbation in the microwave background tempera-
ture) on large scales. Except for the anomalous jump at
n= —1 the general trend is what one would expect.
These numbers also suggest that the models with n ~ —1

are probably inconsistent with the observational con-
straints on large-scale 5T/T [29]. A more accurate esti-
mate will require, at the very least, retaining higher-order
terms in Eq. (5.60). One might also need to examine
more carefully the gauge in which the fractional mass dis-
tribution is related to 5T/T (since the major contributor
is the adiabatic mode, one might expect this to not be a
very significant effect, however, the issue of gauge choice
is complicated by the fact that the perturbations one is
interested in are on scales AH„,„—1).

The difference between the functional dependence on
%H„, of Eqs. (5.64) and (5.65) might prove useful in
constraining the power spectrum index (at least as far as
this model is concerned since the difference is model
dependent, although one might hope not sensitively so,
i.e., it might be a rather generic feature of the behavior of
large-time velocity perturbations in the inflation modified
gravitational instability scenario). If the observed frac-
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tional departure velocity scales as VI. CONCLUSION

( ) )%H„,„) (5.89)

where VH is the Hubble velocity on the same scale, one
might be lead to suspect n ~ —1; if the observed func-
tional form is steeper,

(5.90)

where p) 1 (p=2 is the predicted value for the scale-
invariant model), one might believe n ) —1 with
n =2p —3. It is conceivable that a slight improvement on
the present observational data might suffice for this test.
One issue that might need to be examined is the precise
relation between the longitudinal local departure velocity
studied here and the observed local departure velocity,
which is not necessarily longitudinal.

We defer an examination of the observational con-
straints on gravitational-wave perturbations to future
work and close this section with a speculative remark.
We note that in a cosmological model that is not based
on a theory of the very early Universe (for instance, the
canonical CDM model for which one assumes as initial
conditions, at early time, the amplitude and spectral in-
dex of the energy-density irregularity power spectrum),
the amplitude of the gravitational-wave energy-density
spectrum must be assumed as an initial condition at early
time. This is not necessary in the model studied here; the
amplitude and spectral index of the gravitational-wave
energy-density spectrum is determined, from the quan-
tum mechanics of inflation, in terms of the same quanti-
ties which determine the power spectrum —z~~ and q.
In particular, in Sec. V C we found that, on large scales,
E; ~ k ' [we note that the quantity directly related to
the mean-square microwave background fractional tem-
perature anisotropy is proportional to k (h;(k )h, (

—k ) ),
which, on large scales, has the same spatial momentum
dependence as s;(k ) ]; if the energy density of gravitation-
al waves, pow ~ Jd k(E++e&& ), is not to diverge in the

infrared we must require n ) —1. The ultraviolet behav-
ior of the integrand does not result in a constraint on n

since our expressions do not hold on small scales. If it is
sensible to insist that the integrand in pz~ not diverge in

the infrared (we note that the constraint n ) —3 came
from the similar requirement on ((5M/M) ) in the in-

frared; however, this constraint seems to have more than
a little support from the large-scale observational upper
bounds on oT/T), then we are lead to suspect that
((5V'/VH) )' must drop faster than (%H„,„) ', Eq.
(5.90); if it is found to drop like (%H„, ) then this sim-

ple model of inflation is probably not the correct theory
of the very early Universe (or, at the very least, one might
either have to make sense of a gravitational-wave energy
density that diverges in the infrared or speculate about
what might have happened "before" inflation).

We have constructed a simple, sernirealistic, model of
an inflation modified hot big-bang cosmology which may
be used to derive, among other things, an expression for
the (model-dependent) large-time, baryon-dominated
epoch, form of the power spectrum of energy-density ir-
regularities. Our model approximates the evolution of
the Universe by dividing it into three distinct epochs: an
early scalar-field —dominated inflation epoch, during
which the expansion of the Universe is driven by a scalar
field with an exponential potential; an intermediate,
radiation-dominated, epoch; and the present, baryon-
dominated (0„,„=1), epoch. In each of these epochs we
have only accounted for perturbations in the dominant
form of matter; also, the transitions between epochs have
been approximated as instantaneous. Although we have
argued that this approximate cosmological model suffices
for the purpose of determining fairly accurate (or, at the
very least, not grossly inaccurate) expressions for energy
density (and gravitational-wave) irregularities in the
large-time, baryon-dominated, epoch, we have not sup-
ported this belief with a quantitative underpinning. This
issue certainly deserves further investigation —in particu-
lar, it would be interesting to know if it is possible to con-
struct a simple extension of our model that includes the
effects of reheating (and whether the effects associated
with this transition significantly affect our conclusions).
It would be difficult to overemphasize the need for a sim-

ple, semirealistic, inflation cosmological model that may
be used to quantitatively analyze the entropy production
and baryosynthesis subscenarios of canonical inflation.

We have presented closed-form solutions of the relativ-
istic linear perturbation equations which govern the evo-
lution of inhomogeneities in this simple class of inflation
models. These closed-form expressions for the irregulari-
ties depend on constants of integration. To determine
these constants of integration in the inflation epoch ex-
pressions we have adapted the, now standard, quantum-
mechanical initial conditions of Refs. [8,9] for our classi-
cal analysis here. The inflation epoch expressions that
follow from these initial conditions agree with those de-
rived from a purely quantum-mechanical analysis [15]—
this justifies the use of these initial conditions here. To
determine the constants of integration in the large-time
(radiation- and baryon-dominated epoch) expressions we
have used joining conditions derived by requiring that the
equations of motion for the inhomogeneities do not be-
come singular at the transition hypersurfaces [16]. These
joining conditions are necessary since we have only re-
tained perturbations in the dominant component of the
stress tensor in each epoch. Again, the issue of whether
our single "fluid" instantaneous transition model is a
good approximation to the real Universe could do with
further study —we hope to eventually return to this else-
where.

We have used these large-time expressions to derive the
large-time form of the power spectrum of large-scale (i.e.,
an expression that is not valid on very small scales be-
cause of the neglect of the coupling between baryons and
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radiation) energy-density irregularities, the spectrum of
the local departure velocity from homogeneous expansion
and the energy-density spectrum of gravitational-wave
perturbations. We have found that the energy-density
perturbation power spectrum "diverges" in the limit in
which the exponential-potential scalar field model
reduces to the step function potential model (the
exponential-expansion inflation limit). Although it is
possible that a more complete treatment of the reheating
transition or a careful accounting for the back reaction of
the perturbations on the background will smooth the
"divergence, " we suspect that the change will not be
qualitatively significant.

Since we have decided not to restrict ourselves to a
particular microphysics-based model, we have had to
normalize the power spectrum by comparing to observa-
tional data. (It is certainly of interest to attempt to find a
consistent microphysical model that underlines this ma-
crophysical model and to examine whether the numerical
values of the microphysical parameters of the model that
are observationally preferred conflict or agree with the
range of numerical values that the underlying microphy-
sics might suggest. Of course, the real test of the validity
of this macrophysical model of inflation is observational. )

Normalizing the power spectrum entails transforming the
relevant theoretical expressions to the instantaneously
Newtonian synchronous coordinate system "used" in the
observations and comparing suitably coarse-grain aver-
aged forms of these expressions to the corresponding ob-
servational measurements. [We note that although the
use of gauge-invariant combinations of the dynamical
variables tends to somewhat simplify the perturbation
equations of motion, they do not facilitate the compar-
ison to observational data (which is determined in a pre-
ferred gauge). In fact, as far as we are aware, the issue of
comparing theory to observation has not yet been exam-
ined in the gauge-invariant formalism. ] To normalize the
power spectrum we have compared the derived mean-
square measure of the local departure velocity from
homogeneous expansion to that observationally deter-
mined on "great attractor" scales. This results in a rela-
tion that determines the redshift of reheating, zz+, in
terms of the power-law index q of the inflation model sca-
lar field potential.

We have found that as the fractional energy-density
spectral index is raised from —3 the main effect is a rise
in the redshift of reheating. When n approaches 1 (the
scale-invariant value) the de Sitter spacetime "diver-
gence" tends to lower zz+. The reason for this behavior
was explained in Sec. VD. It is not yet clear if the
z~@—n relation is monotonic between —3 and —1 or
whether there is fine-structure superimposed on the gen-
eral trend. The de Sitter spacetime "divergence" does
not seem to be a particularly severe problem (except in
the exact exponential expansion inflation limit, a limit in
which our analysis is no longer valid and a limit which, in
any case, is probably not very physically realistic). Our
preliminary comparison to the observations suggests that
models which stopped inflating in the range 10 —10'
GeV (a given number is correlated with a fixed value of
the spectral index n) are not obviously inconsistent.

Although we have focused on a macrophysical
inflation model of the very early Universe, it might be ar-
gued that this large spread in energy scale at which
inflation must end indicates that it is not difficult to con-
struct models with small enough fractional energy-
density perturbations at large times. One might even
speculate that the main effects of the underlying micro-
physics would be to modify our simple model of the
reheating transition; i.e., if the microphysics ensures
sufficient inflation then the main qualitative effect of
varying microphysical parameters (coupling constants) is
to influence reheating dynamics and not the large-time
amplitude of the fractional mass distribution (the micro-
physics would, of course, determine zz@,).

Although the spread in the energy scale at which
inflation must have ended, 10 —10' GeV, is large, the
bounds seem to carry some nontrivial information. It is
interesting to note that, in the context of this macrophys-
ical model, it is probably not possible to associate
inflation with the electroweak transition. The models at
the lower end of this range, those which stop inflating
late, will probably require a new mechanism for generat-
ing the observed baryon asymmetry. What, however,
seems to be somewhat remarkable is the upper bound of
—10' GeV —if inflation, is responsible for the observed
large-scale structure, then, in the context of this model,
something must happen on energy scales (&10 3mp)
well below the Planck scale —this is very fortunate since
it holds out hope that a model of the very early Universe,
free of the complexities of quantum gravitation (and so a
model that can be analyzed with the methods we have
developed), might be able to explain the observed large-
scale structure of the Universe. Rubakov, Sazhin, and
Veryaskin [34] have also found a qualitatively similar re-
sult in a more restricted model (the scale-invariant model)
from an analysis of the effects of gravitational-wave per-
turbations (which do not diverge in the exponential ex-
pansion inflation limit) on the microwave background
spatial anisotropy (through a Sachs-Wolfe-like effect).
(That the analysis of two "independent" observational
tests suggest similar conclusions is, perhaps, not just a
coincidence). Now that we have slightly more precise es-
timates for gravitational-wave perturbations we hope to
be able to present a quantitatively more precise upper
bound elsewhere.

The cosmological model we have considered here is, at
large times, a spatially flat, baryon-dominated model with
an adiabatic power spectrum ~ k" where —3 & n ~ 1 (in
the original synchronous gauge coordinates; the power
spectrum changes when transformed to instantaneously
Newtonian coordinates). It might be argued that this
model is sufficiently general yet simple enough to be used
for a fairly reliable quantitative analysis of the scalar-
field-dominated inflation scenario. (We suspect that there
is an equally simple model which fills in, at least part of,
the rest of the range of n of interest, 1(n (4—we hope
to return to this elsewhere. ) The reason we believe that
this model is (cosrnologically) general enough is because
it is the simplest (and probably unique, within a set of as-
sumptions) scalar field model of the very early Universe
that underlies part of the range of standard large-time
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adiabatic cosmological models on which attention has
been focused. It is also more restrictive (and hence easier
tested) than a standard cosmological model with the same
power spectrum because the inflation epoch quantum-
mechanical initial conditions make the expressions for
the perturbations both more precise than in a convention-
al cosmological model and produce interrelations be-
tween the expressions for a variety of di6'erent perturba-
tions (energy density, peculiar velocity and gravitational
wave) which allows for the use of a variety of "indepen-
dent" observational tests to attempt to coherently con-
strain the model;:

If a power spectrum of the form that results in this
model is thought not too inconsistent with the available
observational data then a detailed comparison between
the large-time theoretical expressions and the observa-
tions is called for. This is likely to be a more productive
undertaking for such an inflation-based model (than for
the case of a more phenomenological cosmological mod-
el). In recent years it has become clear that there are
over half a dozen "independent" large-time observational
tests that may be used to judge the validity of using a
given inflation model to approximate the physics of the
early Universe. In particular, the large-time fractional
energy-density spectrum derived here should prove useful
in determining an estimate for the spatial anisotropy in
the temperature of the cosmic microwave background.
This anisotropy, once detected, will eventually provide a
fairly sensitive discrirninator between various scenarios
for structure formation and might provide the first obser-
vational information about very-short-distance physics.
Current upper bounds on gravitational-wave perturba-
tions, on both small scales and large scales, might also
constrain the possible range of the relevant short-distance
physics. We plan to return to the comparison of inflation
theory with observational data in due course of time.
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APPENDIX: DERIVATION OF EQ. (5.54)

16m 8 1 4

mz2 8i 2 N N

x(l&, l a~+lB, laN +lc„l a~ (A2)

The integral in this equation may be reexpressed as
1/a —e)f dx x~[1+ax ] e "+a f dx x~

0 i/a+a,

X [1+I/(ax )] e (A4)

where the infinitesimal positive convergence factors e„ez
have been introduced to allow the binomial expansion of
the terms in square parentheses, and it is understood that
the equivalence is in the limit when they vanish. It is
clear that ax & 1 in the first integral while I/(ax ) & 1 in

the second and so the standard assumption of the binomi-
al expansion is satisfied. Expanding and interchanging
the order of integration and summation (there are no
divergences), we find Eq. (A4) becomes

00 1/a —e
&g (

—I)'(1+1) a'f dx x~+ e
1=0 0

+ —(1+v) d p —1 —2 —x

(A5)

Integral representations of the incomplete gamma
functions are {Ref. [38] Eqs. (6.5.2) and (6.5.3) )

y(b u)= f dxx 'e " (Reb)0), (A6)
0

I (b, u)= f dx x" 'e
Q

(A7)

using these equations Eq. (A5) becomes

g (
—1)'(1+l)[a'y(P+l+1, 1/a —e, )

1=0

+a "+ 'I (p —1 —1, 1/a+e )] . (A8}

Furthermore

We note that for large k())R ') the exponential factor
in the integrand in Eq. (Al) makes it sufficiently well
behaved, while for nonsingular infrared behavior we must
require v(7/2. It is convenient to change variables,
k —+x where x =k R; this change, along with the
definitions a=(2/9)(a&RH&) and p=5/2 —v, results
in

([5P'(tNlR)] ) =—QR " f dx x~(1+ax) e
2 0

(A3)

Here we consider the derivation of Eq. (5.54). From
Eqs. (5.44) and (5.53) we have

I (b, u )=I (b) y(b,p)— (A9}

([6&'(t„l~)]'&=gf "dk k"'-' 1+—
0 9 aNH~

X k

2 —2

(Al)

(Eq. (6.5.3) of Ref. [38]),and

(
—1 y u"+'

y(b, u) = y ., (Iul&~)j! (b+j) (A10)

where we have performed the momentum space angular
integrations in Eq. (5.53), az =a(tz },H~ =H(tz) and

{Eqs. (6.5.4) and (6.5.29) of Ref. [38]).
Using Eqs. (A9) and (A10} we find that Eq. (A8)

reduces to
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oo co
1 j+1

g ( I )l(I+ I )
—(I+2)1 (P I I)+ y tz

—~—j-
jt1=0 j=0

2(l+ 1)
+tz(e)+Kg)

[(p+j) —(I+1) ]
(A 1 1)

where we have made use of the fact that ae, « 1 and ac& « 1; since the first term in the large parentheses does not van-
ish (for j, l ( ao ) we may now set et=O=ez. Equation (5.54) follows on combining Eqs. (A3) and (All) with some
straightforward algebra.

The derivation of Eq. (5.60) proceeds in a manner similar to that of Eq. (5.54) and will not be recorded here.
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