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Small-scale structure on cosmic strings and galaxy formation
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The density perturbations produced by cosmic strings in cold dark rnatter are examined using the
Zel'dovich approximation. We use the results from recent numerical simulations which show that the
strings have significant small-scale structure. It is shown that the string network produces wakelike
overdensities which may be able to account for the observed large-scale structure of the Universe. In the
process of producing wakes the strings also produce large-scale peculiar velocity fields. It is shown that
these velocities are coherent over distances which are too small to account for the observed large-scale
streaming motions. It is also shown that the small-scale structure on the strings can fragment the wakes
into pieces which have the mass of a galaxy.

PACS number(s): 98.60.Ac, 98.80.Cq

INTRODUCTION

Over the past decade the possibility that cosmic strings
produced the density perturbations required for the for-
mation of galaxies has been extensively studied. In the
original scenario for string-seeded galaxy formation [1—7]
it was assumed that the strings had essentially no struc-
ture on scales smaller than the horizon and that the typi-
cal separation between the strings was approximately
equal to the horizon. The loops produced by the string
network would then typically be on the size of the hor-
izon. It was then assumed that these loops would frag-
ment into a small number of non-self-intersecting loops
which would exist for long periods of time decaying only
through the emission of gravitational radiation. It was
these long-lived loops that would produce the density
fluctuations required for galaxy formation. Early work
on this scenario seemed quite promising. For example,
Turok [4] found that this scenario gives the correct corre-
lation function for Abell clusters.

The above assumptions upon which the original
scenario for galaxy formation rests have recently come
into conflict with numerical simulations of the evolution
of cosmic-string networks performed by Bennett and
Bouchet [9—12] and by Allen and Shellard [8) (the simu-
lations of Albrecht and Turok [13] disagree with these
simulations). These simulations show that there is a
significant amount of small-scale structure on scales from
the horizon down to the limit of resolution of the simula-
tion. In fact Bennett and Bouchet [9—11] find that the
energy of the small-scale structure is about 45% of the
total energy of the strings in the radiation-dominated era
and about 28% in the matter-dominated era. This per-
centage remains approximately constant as the string net-
work evolves. Most of this structure is due to kinks
which form when strings cross and intercommute. Nu-
merical studies [14] indicate that strings will always inter-
commute when they cross. Allen and Caldwell [16] esti-
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mate that there will be on the order of 10 kinks on a
horizon-size segment of string in the radiation-dominated
era and about 5 X 10 kinks on a horizon-size segment of
string in the matter-dominated era. In these simulations
the coherence length of the strings is about one-half of
the horizon and the typical interstring separation is about
one-third of the horizon. It is also found that the velocity
of the string averaged over a coherence length is only
about 0.15c [8,15]. These recent simulations also contra-
dict the assumptions that the scale of loops produced by
the string network is set by the horizon size. The stable
loops produced in the simulations are very small
( ( 10 ct) and their size is set by the scale of the small-
scale structure on the long strings. From these simula-
tions we can conclude that the loops produced during the
evolution of the cosmic-string network are probably too
small to play a significant role in the formation of galax-
ies [9]. Therefore if strings are relevant for galaxy forma-
tion it is the density fluctuations generated by the long
strings which will have acted as the seeds for galaxy for-
mation.

The density perturbations produced by a moving
straight string have been extensively studied [3,17,18].
The effect of a straight string moving through a medium
of cold dark matter in a flat background space-time can
be seen quite easily since the space-time about the string
is that of a flat space-time minus a wedge. As the matter
flows by the string it forms a wedge of overdensity
6p/p=1 behind the string. The opening angle of the
wedge is 8n.G)Lt (c=1). For GO=10 the string leaves a
nearly plane wake of overdensity behind it. Analysis
[17,18] shows that for cold collisionless matter in a
Robertson-Walker (RW) space-time the wakes which
formed at z =2z, (z, =redshift at which matter and ra-
diation densities are equal) will be the most dominant
(i.e., have the largest surface density).

Since recent numerical simulations show that the long
strings have significant small-scale structure it is impor-
tant to understand the effect that this structure will have
on the density perturbations produced by the string net-
work. In this paper we wi11 examine the density pertur-
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bations produced, in a medium of cold dark matter, by
cosmic strings with small-scale structure. Since the typi-
cal distance between the strings is approximately one-
third of the horizon this will also be the typical separa-
tion between the wakes. For wakes formed at t,q

the
average separation between the wakes today is
=5.3h Qo

' Mpc (h is defined by H =100h km/s Mpc).
Wakes formed before t, can accrete most of the matter
in the Universe, but will be swept up into wakes formed
at -t, or later. Wakes which form at later times have
larger interwake separations but accrete a much smaller
fraction of the matter in the Universe. We will assume
that it is the last wakes which accrete almost all of the
matter in the Universe which set the size of the large-
scale structure. We find that the interwake separation for
these wakes is about —16+p&h ' Mpc. The time at
which these wakes formed will depend on p6, h, and Qo
but will be larger than t, for Q0=1. For wakes formed
at t, we require hQO~ —,

' to match the observed large-
scale structure. There will also be larger voids with much
smaller underdensities. Since it is expected that the
string velocity is coherent over about an expansion time
(except when the long strings intercommute) we can ap-
proximate the structure of the wake generated by a string
as a series of connected sheets whose surface dimensions
(for wakes formed at t,q ) are about =4X9h Qo

' Mpc.
We will find that the thickness of the sheet is —11p6QO
Mpc. Between these sheets we expect there to be regions
of low density. According to earlier ideas, galaxies would
form about the loops and some fraction of the loops
would be swept up into the wakes. Thus the loops would
accrete the galaxies and the wakes may produce the
large-scale structure. But as we have seen the loops are
probably too small and are moving too rapidly to be
effective in forming galaxies in this fashion. Hence the
fragmentation of these sheets into galaxies and clusters of
galaxies will likely occur by a different mechanism, which
will be discussed later in this paper.

Recent surveys [19] indicate that galaxies may lie on
the surfaces of bubblelike structures whose sizes are
=25-50h ' Mpc and whose interiors are low-density
voids. The density of these voids is only about 20%%uo of
the mean density. Thus the above scenario for galaxy
formation may be able to account for the large-scale
structure of the Universe for p6 ~ 3.

We will also find that traveling wave pulses on the
string can fragment the wake into galaxy mass objects.
Throughout this paper we will take the cosmological con-
stant to be zero.

STRING DYNAMICS

Since we will be dealing with small-scale structure on
cosmic strings later in this paper it will be important to
review some of the properties of the dynamics of strings
in a Aat space-time. We will also examine the gravita-
tional field, in the weak-field limit, produced by cosmic
strings.

The motion of a string in Minkowski space generates a
two-dimensional surface which can be parametrized by
two variables z and o.. The action for the string is the
area of this surface, i.e.,

8 x' x"—(x x')x'"
[(x x') —x x' ]'i

+ 8 x x'"—(x x')x"
()g [(x.x )2 x2x 2]&n

where

ax~, ax~x"=, x'"=
Br Bo

=0, (2)

(3)

By performing a coordinate transformation on the sur-
face it is always possible to find a gauge in which

s= t, x "x„' =0, x +x' =0 .

In this gauge the equations of motion are

x —x"=0
with the constraints

(4)

x x'=0, x +x' =1, (6)

where we have taken x"=(t,x(t, rr)). The constraint
x x'=0 tells us that the velocity of the string is perpen-
dicular to the string.

The energy-momentum tensor of the string can be
found from the action and is given by [7]

T"'=lJ,f do (x"x' x'"x'")5'(x—x(t, o )) . — (7)

The metric in the weak-field limit is written as

g„=g„+h„,where h„, is given by

S„(x',rx )
h „=46 dx' (8)

x—x'

~z is the retarded time and S„=T„,——,'g„,T. Substitut-

ing Eq. (7) into Eq. (8) gives

h„(x, t ) =4Gp f do.
~ ~ ( / 2x x x x 'g

R —Rx
where R=x —x(cr, rz ) and all quantities in the integral
are evaluated at the retarded time ~z.

Another solution to the equations of motion which
does not in general satisfy the gauge conditions (6) is

t =r, x =o, y = f(o+7), z =g(o+r), (10)

where f and g are arbitrary functions of the same argu-
ment (i.e., either o.+r or cr —r ). These solutions
represent waves propagating along a string which is situ-
ated on the x axis. It is important to note that the sum of
two waves propagating in opposite directions is not, in
general, a solution to the equations of motion. The
energy-momentum tensor for these solutions has been
found by Vachaspati [20] and for f and g being functions
of o.—~ is given by

S= —pf & g—"'drdo,

where g' ' is the determinant of the induced metric on
the surface and p is the linear mass density of the string.
In Minkowski space the equations of motion which fol-
low from this action are
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1+f' +g'

fl2+gl2
T""=p5(y —f)5(z —g)

fl2+g 2

—1+f' +g' f—'

0 0
0 0

where f'=df (u) Idu. In the weak-field limit the metric is

gpv=

—[1+h(f' +g' )]
h(f' +g' )

hf'—
—hg'

h(f' +g' )

1 h(f—' +g' )

hf'
hg'

hf—' —hg'

hf' hg'

1 —h 0
0 1 —h

where

h =4Gpln[po [(y f ) +(z ——g) ]]

8 r = —V,4,
at2

(15)

where p = (y f ) + (z ——g) . This reduces to (11)for

—1/8Gp ((~ (( 1/8Gp

Po
(13)

Since the radius of a cosmic string is much larger than
e ' "and since e' " is an extremely large number we
see that the weak-field limit is valid in any region of in-
terest exterior to the string (po- radius of cosmic string).
Thus from now on we will use the weak-field approxima-
tion (11) for traveling waves. We will also use the weak-
field approximation (9) for general string motions.

THE ZEL'DOVICH APPROXIMATION
AND STRAIGHT STRINGS

In this section we will review the Zel dovich [22,23] ap-
proximation for the growth of density and velocity per-
turbations and apply it to the velocity perturbations gen-
erated by a moving straight string. We take the Universe
to contain both matter and radiation.

We begin by writing the trajectory of a cold-dark-
matter particle as

and po is a constant of integration. Garfinkle [21] has
found the exact generalization of this metric. It is of the
same form as the metric in the weak-field limit with h re-
placed by

—8Gp

(12)
Po

where 4 is the gravitational potential which satisfies

V24 (r, t ) =4m G [p, (t)+ 3P, (t)+5p(r, t }], (16)

p (rt)— a(t) p,
8%,

det 5,, +
Bq,

(17)

where pb (t) =a(t) p, is the background matter density.
For ~Bqi;IBq ~

((I we can expand the determinant to
linear order in BV;/Bq to get

p (r, t)=pb(t)[1 —
Vq %(q, t)] .

Therefore the density perturbation to linear order is
given by

5p(r, t) =
pb (t)Vq %'(q, t)—.

Equation (16) then becomes

(19)

pb(t) is the background density, Pb(t} is the background
pressure, and 5p(r, t) is the density perturbation in the
matter. Now transform to the comoving coordinates.
This transformation is well behaved as long as q(r) is a
single-valued function. When q(r) becomes a multiple-
valued function we say that shell crossing has occurred.
From now on we shall only consider regions in which
shell crossing has not occurred. In the comoving coordi-
nates the matter density (p, ) is constant. Transforming
back to the r coordinates gives

r(q, t )= [q+%(q, t)],a(t)
a(t, )

(14)
V,'4(r, t)=4~G p, (t)+3P, (t) p„(t)V,.V—(q, t)

a(t, )

where t, is some initial time, q are the comoving coordi-
nates of the matter and 4 is the perturbation to the Hub-
ble expansion. Once we have picked an origin for our
coordinates the Newtonian approximation will be valid as
long as the particle velocities do not approach the speed
of light and as long as we deal with particles which are
well within the horizon. For particles which satisfy these
conditions we have

The solution to this equation is

V,@(r,t)= G [pb(t}+3',(t)]r
4m

3

—3 pb (t)%(q, t )
a(t)
a t,

(2O)

(21)
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Here we have assumed that V, X%=0. It can be shown

that this will be satisfied by the density perturbations pro-
duced by cosmic strings.

The equation of motion for 4 can be obtained by sub-
stituting (21) and (14}into (15). This gives

a+2——4m—Gpb (t) 4'=0 . (22)
a Bt

The solution to this equation is well known [24,25] and
for an Einstein —de Sitter space-time (i.e., Qo= 1 ) is given

by

+(q, t )= tz(q)D &(t)+p(q)D&(t),

where

D, (t) =1+-',a(t),

(23}

(24)

and a and p are arbitrary functions of q. For a (t) we use
the scale factor for a universe filled with both radiation
and matter and take a(t, )=1. In this section we will

only consider wakes formed at t,q
The fir.st term in (23)

is referred to as the growth solution and the second term
is referred to as the decay solution. As we shall see below
the effect of the cosmic string can be approximated by a
pure velocity perturbation. That is as the string passes by
a given particle we can approximate its effect as a veloci-
ty perturbation at time t,q. We will find that it will be a
reasonable approximation to give every particle its veloci-
ty perturbation at the same time. Hence the initial condi-
tions for (22) are

'P(q, t, )=0, (q, t, )=v;(q) .ae
at

(26)

1+a t ' +1
D2(t) = [1+—,'a (t)]ln, —3[1+a(t)]' z

[1+a (t) ]' 1—
(25)

d x
dt2

Bho, 1 Bhoo+-
dt 2 ()x'

(29)

The total impulse given to the particle, taken to be at a
fixed position, is then

„ah
b.v'= —f dt+ —f . dt .

Bt 2 —oo Qx
(30)

We will now take the string to lie along the x axis at
t =0 and have a velocity v=pcj. Since the problem has

planar syrnrnetry we only need to calculate hv, . The first

term in (30) involves ho3 evaluated at + oo, which is zero.
Therefore

&v= —f Vh~dt .
2 00

(31)

Substituting hoo from (9) into (31) and using the relation

[x—x(o, r)] x(cr, rx )dt= 1— d'pg
X X 0', 7g

gives

(32)

ticle it will attract that particle towards the surface gen-
erated by the motion of the string. For small Gp the ve-

locity of the particle will always be nonrelativistic. Since,
as can be seen below, the influence of the string is largest
when it is closest to the particle, it will be a reasonable
approximation to give each particle its impulse at some
time close to when the string passed by. Since the veloci-
ty of the string is -0.15c and the motion of the particles
is nonrelativistic it will also be a reasonable approxima-
tion to give to each particle its impulse at the same initial
time t, . The problem has now been reduced to one of
planar geometry, for which the Zel'dovich approximation
turns out to give the exact results up to the time of shell
crossing. For particles with nonrelativistic velocities the
equations of motion in the weak field are

For t &&t, the decay solution becomes negligible and the
solution to (22) satisfying the initial conditions (26) is

&v, =2Gp f dr f dtrV,
X X CT, V

(33)

%'(q, t) =0.63t,qv;a(t) . (27)

For Qo ~ 1,4 =0.63t,qv;(1+z, )Qo~ where (1+z,q )

=a(to) and to is the present time. The perturbation
5plp is given by

(r, t) =0.63t,qa(t)Vq v;Qo
Pm

(28)

As we shall see the velocity perturbations produced by
the string satisfy V .v,.(q}=0 (except on the surface
swept out by the string) so that to linear order the string
produces no density perturbations.

We now calculate the velocity perturbations generated
by a straight string [17]. The gravitational field produced
by the string at distances which are much smaller than
the horizon will be closely approximated by the gravita-
tional field of a string in Minkowski space-time. To cal-
culate the effect of the string on its surroundings we will
consider a straight string moving in a medium of cold
collisionless matter. As the string sweeps by a given par-

Substituting x(o, r) =y 'o a+pcWjinto the above expres-
sion for Av, and integrating gives

b, v, = —4m.GpyPc sgn(z) . (34)

To get an idea of the magnitude of hv, take Gp = 10
and yP=1. Then ~hv,

~

=10 c, which is certainly non-
relativistic. It is important to notice that ~b, v, ~

is in-
dependent of z. Bertschinger [22] has calculated the im-
pulse assuming that the particles have an initial velocity
given by the Hubble flow. This introduces a Av~ com-
ponent and a correction to Av, . These changes are quite
small if the particles are well within the horizon and will
therefore be ignored. Thus Av, is to be identified as v„ in
Eq. (27}. From (28) we see that to linear order the density
perturbation generated by the string is zero (except at
z =0 where it is singular}. The velocity perturbations
produced by the string create two surfaces of interest.
The first surface, known as the turnaround surface, con-
sists of those particles whose velocity in the z direction, at
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z =a(t)[q, +q,i(q, t)]+ a(t)%', (q, t) =0 .

For ~II(q, t) given in (27) this becomes

q, = —2', (q)= —1.3t, (1+z, )U„(q)Qoi~2 .

(35)

(36)

For the velocity perturbation of a straight string q, is
given by

q, =+5.0m.t,q(1+z,q) yPcQO
Gp
e

(37)

We take t~q 3 X 10 h Qo s) 1 +zcq 2o 5 X 10 h 0
and Gp/e =p6X10 . The coordinate distance to the
turnaround surface is then given by

the present time, is zero. The particles which define this
surface are in the process of turning around from the
Hubble flow and heading back towards the plane traced
out by the string. To find this surface we look for the
coordinates q which satisfy

structure hQO~ —,'. Thus the amount of matter accreted
by the wakes is &7pgy percent of the matter in the
Universe. So far we have discussed the density perturba-
tions in the cold collisionless matter, which we have tak-
en to be the dominant form of matter in the Universe.
There is of course a baryonic component to the matter
density. This baryonic component cannot begin to col-
lapse onto the wakes until after recombination. We will
assume that the distribution of luminous matter mirrors
the distribution of the cold collisionless matter. There-
fore to be in reasonable agreement with the Center for
Astrophysics (CFA) survey [19] which found that the
density of the luminous matter in the voids is =20% of
the mean density of luminous matter we would require
p6))1 (for Py &1). Since the loops produced by the
string network are very small it can be shown that they
do not disrupt the wakes [9]. It can also be shown [18]
that the wakes formed by the string network will not col-
lapse under their own gravitational attraction.

q, =+1.2X10 yPp6h Mpc . (38)
VELOCITY PERTURBATIONS 1

o =2(1+z,„)q,p0-1.7X10 yPp6h~QOM~/Mpc2, (39)

where

1
Po 2 oQ (40)

The physical distance to this surface [z =(1
+z, )(q, +~P, )] is =1.5yPp600 Mpc. The coordinate
distance to the horizon at this time is
=6.4 X 10 h Qo Mpc. The surface density con-
tained within the turnabout surfaces is

In this section we examine the velocity perturbations
produced by a string carrying traveling waves of the form
(10) (i.e., waves propagating in one direction only). The
velocity perturbations produced by strings carrying
waves propagating in both directions will be examined in
the next section. Solutions of the form (10) are not actu-
ally valid in an expanding universe. Let y =f be the dis-
placement of the string from its equilibrium position. In
a radiation-dominated universe with

~ f '
~, ~f ~

&& 1 the
string satisfies the equation of motion [7]

(41)

and to is the present time. The other surface of interest is
the surface which has turned around and reached z =0 at
the present time. This surface is defined by
z =(1+z,„)(q,+iI', )=0. The coordinate distance to this
surface is one-half of the coordinate distance to the turn-
around surface. Therefore the surface density of the
matter that has fallen back onto the wake is
o =8.7X 10"yPpsh QOMci/Mpc.

We define the amount of matter which has accreted by
the wake to be the amount of matter contained within the
turnaround surfaces. This is an overestimate of the
amount of matter accreted by the wake. A lower bound
on the mass accreted is given by the mass which has col-
lapsed to z =0. This mass is one-half of the mass within
the turnaround surfaces. Froin (38) the coordinate thick-
ness of the wake is —2.4X10 yPp6h Mpc. We will
take the ratio of the present coordinate thickness of the
wake to the interstring separation ( —

—,
' of the horizon) at

t, as an estimate of the fraction of the matter in the
Universe that has been accreted by the wakes. Therefore
wakes formed by straight strings could have accreted
about 110pgyh Bo percent of the cold collisionless
matter in the Universe. The actual fraction of matter ac-
creted by the wakes will depend on the geometry of the
wakes and will be larger than our estimate if the wakes
form closed surfaces. To match the observed large-scale

where ~ is the conformal time defined by 7.~t' and
a(r) ~ r. This equation has the plane-wave solution

f(x,r) =—
sin[ k(x —7 ) ],A

'T
(42)

where x is a comoving coordinate and A, =2m/k is the
comoving wavelength. Thus the physical amplitude of
the wave is constant but the physical wavelength grows
with time. For particles which are well within the hor-
izon it will be a reasonable approximation to neglect the
smoothing of the string. Thus to calculate the impulse
we will use the metric for a string in flat space-time and
take f and g to be the wave forms on the string as the
string passes the particle. For this metric to be a good
approximation we also require that the particle be much
closer to the string than the horizon and that the ampli-
tude of the waves on the string be much smaller than the
horizon. To simplify the calculations we will also assume
that the amplitude of the waves is much smaller than the
coordinate distance from the string to the particles of in-
terest (i.e., particles on the turnaround surfaces). As be-
fore we will take the string to pass through the x axis at
r =0 and to have the velocity v=Pcf As in the. case of a
straight string we are interested in hv, . The z component
of the total impulse given to a particle, taken to be at
rest, is
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Bh l „ Bh
b, v, = —f dt+ —f dt .—ao r)t 2 oo 'BZ

(43)
boo= —4Gpy ln[[y(y —Pct) f—] +(z —g) ]

x [(g')'+(P —f')'], (45)
The first term is just h O3 evaluated at the end points of in-
tegration. Since ho3=(1 r —")g' the impulse given to
the particle in this coordinate system will oscillate with g'
no matter how far away the string is. But since the cur-
vature tensor behaves as [21] = 1/r we can see that this is
just a coordinate effect. Thus there will exist a coordi-
nate system (S) which in the vicinity of the particle be-
comes Minkowski when the string is far away. It is in
this coordinate system that we need to calculate hv, . In
(S) b, v, will be essentially unchanged if the amplitude of
the infinite wave train is set to zero at very large dis-
tances. For the truncated wave in the coordinate system
we have used the particle will begin and end up in a coor-
dinate system which can be made locally Minkowski by a
simple coordinate transformation. This transformation
will change the velocity by order p, which we can
neglect. Therefore to order p, hv, in the coordinates we
have used with ho3 =0 at t =+~ gives the correct im-
pulse. Therefore

where

f=f[x y—(« P—y )],

g =g[x —y(ct —py)] .
(46)

Now consider particles with x =y =0. Particles with
x%0, yAO can be considered by shifting the wave up or
down the string. As stated before we are only interested
in particles with z »f,g. b, v, then becomes

b, v, = —4Gpy z f dt.(g ')'+( — ')'

(ypct) +z
(48)

The integration constant (po) in (11) has been dropped
since it does not appear in b, v, . Substituting this into (44)
gives

4G ~ z g g +
hv, = —4Gpy

yy —ct — + z —g

(47)

Bhoo
av, =—f dt .

2 —oo ()z
(44)

The metric (11) is for a string at rest on the x axis. The
hoo component of the metric for a string with velocity vg

is given by

Now g( yct ) a—nd f( yct) can—be written as

g( yct ) =—f g„e'r'"'dk,

f( yct)= —f f„e'r'"'dk .

Substituting (49) into (48) and integrating gives

(49)

Av, = 4ny—c P.+2i f kfj, e "'~~dk ——f f kk'(gj, gz. +f1,f&.)e '"+"' ~dk dk' sgn(z) .
C p —m —m

(50)

g=a sin[ko[x —y(ct —Py)]] .

The Fourier transform of g is

(51)

gq
=—.[5(k+ko ) —5( k —ko ) ] . (52)

At x =y =0, Av, is given by
2

b, v, = —4~y p+Gp 2m a
p

X(1+e "~ ~) c sgn(z), (53)

The first term in the large parentheses is the velocity
change produced by a straight string while the last two
terms are the velocity change produced by the waves on
the string. An important property of the last term is the
dependence on 1/p. The reason for this dependence on p
is that as p gets smaller the string spends more time in
the vicinity of the particle and hence gives the particle a
larger impulse.

It will be instructive to consider hv, for a mono-
chromatic wave on the string. Consider

where A. =2m /ko. For ~z ~
& A, , hv, is essentially indepen-

dent of z. An important property of b v, to notice is that
in the limit a~0 the wave will still have an effect if
(a/A, ) remains nonzero. Therefore small-scale structure
on any scale can influence the velocity perturbations pro-
duced by the string. This could be important for predic-
tions of density perturbations which come from numeri-
cal simulations of cosmic string evolution. In these simu-
lations there is a lower limit of resolution for the small-
scale structure. Therefore if there is significant srnall-
scale structure on scales smaller than the limit of resolu-
tion the predictions of density perturbations from these
simulations will be too small. To get an idea of the effect
of the sine wave on hv, we can take the result from the
Bennet and Bouchet [9—11] simulation that in the
radiation-dominated era about 50% of the energy of the
string resides in the small-scale structure. The energy of
a moving string can be found from its rest energy and
momentum via a Lorentz transformation. Actually the
energy and momentum of a segment of string will not in
general transform as a four-vector if f is nonzero at the
end points. If we are interested in the energy of a length
b,x of string this effect will be small iff /b, x is small. The
energy of a length b,x of string with f /hx « 1 is thus
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XO+EX
E= yp bx+ f [(f') + (g') P—f ']dx (54)

where f ' and g' are the wave forms in the rest frame of
the string. For f=0 and g given by (51) we find

'2

We now consider ensembles which in addition to satisfy-

ing (59) also satisfy the requirement that (f '
& + (g' & be

independent of x ( and hence independent of t). For such
ensembles we have

E =ypAx ]+2m. (55) (E & =py(1+ (f'&+ (g'& )& (62)

for hx &)A,. Therefore the ratio of the energy in the
wave (E ) to the energy of the string is

The average energy in the waves is then

E 2m (a/A, )

1+2' (a/A. )
(56)

X(1+e " ~) c sgn(z) .

For waves whose wavelength is much smaller than the z
coordinate of interest and for E /E =

—,
' we find

Here we have defined the energy in the waves as the total
energy of the string segment minus the energy of a
straight piece of string connecting the end points of the
segment. Solving (56) for a/A, and substituting it into
(53) gives

G 1 E /E
bv, = —4ny p+—

In simulations of string network evolution
E„/E = (E & /( E & is found to be essentially time in-

dependent in both the radiation and matter-dominated
eras. But since E /E has a different value in each era it
will not be constant in the transition era. Since we are in-
terested in wakes formed near t, , E /E will not be
strictly constant at this time. But since E /E changes
from about 0.5 in the radiation-dominated era to about
0.3 in the matter-dominated era it is a reasonable approx-
imation to have E /E constant. Substituting the above
results into (60) gives

( b u, &
= —4m.

2 yc p+ — sgn(z) .
c

(64)

Au, = 4ny— p. +—c sgn(z) .Gp 1

c2
(58)

If there is significant small-scale structure on scales
smaller than the resolution limit of the simulation the
effect of the wave on the velocity perturbation will be
larger.

We now consider the average impulse generated by a
statistical ensemble of waves. The ensemble average of
f '(t) and g'( t) will be taken to satisfy

x"=[t,o,f(x, t), g(x, t. ) )

with

If'I, Ifl, Ig'I, Igl «I .

(65)

(66)

The above expression for ( b, v, & is identical to expression
(58) for b, u, if Izl &~.

Now consider solutions to the equations of motion (2)
of the form

&f '(t) &
= &g'(t) & =0 .

Taking the ensemble average of (48) gives

GP,, f- P'+(f'&+(g'&,
c —~ (yvt) +z

(59)
To linear order in f and g the equations of motion be-
come linear wave equations. Thus for f and g satisfying
(66) the general solution will be

x"= [t, cr,f„(x t)+f, (x+ t )—,g„(x t)+g, (x+ t ) ],—
(67)

where we have taken each string to have the same veloci-
ty. This gives the average velocity perturbation at some z
distance away from a given string. The energy in expres-
sion (54) is the energy of a length hx of string. If we con-
sider a length hx for each member of the ensemble the
average energy will be

where f„,f„,g„,g„are arbitrary functions of their respec-
tive arguments. This solution satisfies the equations of
motion up to second order in f and g. Hence the next-
order correction to (67) is cubic in f and g. To second or-
der in f and g the energy-momentum tensor can be writ-
ten as

xo+ b,x
(E&=ylM Ax+ f ((f' &+(g' &)dx (61)

T" =T" +T" +T" +T"(0) (u) (v) (I)

where

(68)
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1 0 0 0
0 —1 0 0

() p~y f&
0 0 0 0

T~„",=p&(y —f)5(z —g)

af„' ag„+
BQ Q

j

af„' '

ag„+
BQ BQ

af„

Nu

BQ

2

2

af„
BQ

af„
BQ

af„
BQ

Nu

BQ

'2

2

af„
BQ

af„
BQ

0

0

Bg„

BQ

Bg„

BQ

0

0

Bg

BU

af„' ag„+
BU BU

af„
aU

'2

af„
aU

ag„' af.
BU BU

2
af„
BU

af„' ag„+
BU BU

Bg„

BU

Bg„

BU

»„",=p5(y —f)5(z —g) af„
BU

&v

BU

BU

Bg

0

0

0

0

and

T~zi = —2p5(y —f)5(z —g)
T
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Thus T~~„"i and T~~,"i are the energy-momentum tensors for
the Q and U waves, respectively, and T~~ii is the interaction
energy-momentum tensor. If the waves propagating in
opposite directions have different polarizations then only

T~ii =T~ii will be nonzero. This component is not used
in the calculation of the velocity perturbation produced
by the string. Therefore if the waves propagating in op-
posite directions have different polarizations the total ve-
locity impulse, to lowest order, will be the sum of the ve-
locity perturbations produced by the individual waves.
Consider an ensemble of strings in which the waves prop-
agating in opposite directions are uncorrelated and hence
satisfy

(69)

Bg,

)
'df,

Bg„ Bg„ =0.
BQ BU

It is easy to see from (8) that for y +z »f +g (i.e.,
the particle is much further from the string than the am-
plitude of the wave) the average impulse given to the par-
ticle can be written as
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&au, ) =(b,u,'"'&+(b,u,'"'&, (70)

where (b,v,'"') is the average impulse produced by the u
wave and ( hv,'"') is the average impulse produced by the
v wave. Thus on average, to lowest order in E /E, the
impulse produced by the two waves adds linearly.

VELOCITY PERTURBATIONS 2

x(cr, t) =acra+pctf+h(cr, t), (71)

where h represents the waves propagating along the
string and a is a constant. For x(o, t) to satisfy the con-
straints (6) we must have

We now examine the velocity perturbations generated
by a string which is described in the gauge given in (6).
In this gauge we can have waves propagating in both
directions. We begin by writing the position of the string
as

f' 00 P 00JJ
(

2 2+p2 2t2+ 2)3/2

00 00 c2Ih'I2
do. dt

( a 2K 2 +p2 c 2 t 2 +z 2
)
3 /2

—[h.h] —c [h h']a 2 a

(
2 2+p2c2t2+ 2)3/2

(80)

If we require that the ensemble satisfy
(a/at)(hh)=(a/aa)(hh &=0 then (~v, ) can be
written as

(bu, )=—2, z f do fc 00 00

P'c'+-,'((h')+c'(h') )
Xdt

(a a +p c t +z

and

P +2c 'Ph +a +2ah„'+h' +c h =1

vh'+ah +h h'=0 .

(72)

(73)

(81)

We now require that ( h ) +c ( h' ) be independent of o.

and t. We then have

We now define the energy in the waves as we did previ-
ously for the traveling waves. The energy of a length ho.
of string is

E =pro. .

The length Aa corresponds to a length hx via

(bu, )=— [P +—,'(c (h )+(h' ))]sgn(z) .
apc

Taking the ensemble average of (72) gives

.-'(h'&+(h'& =(1— ' —P') .

(82}

(83)

hx =aAo+b, h (75)
( b, v, ) can then be written as

For a long segment of string with h not too large the last
term in (75) will be negligible. The energy of a straight
string with length hx is pyrex =apyho. . The energy in
the waves is therefore given by

&bv, ) = —4m. Gp
c2

E /E —~

y 2E2 /E2

1 E /E P—
E„=p(1—ay)ho .

Thus a can be written as

a=y '(1 E /E) . —

(76)

(77}

We now consider an ensemble of strings which satisfies

~h~ «z„, (h) =(h') =0, (78)

where z„ is the z coordinate of the turnaround surface.
We also take each string to have the same E /E and the
same velocity. This means that each string has the same
a. Taking the ensemble average of (33) for x =y =0
gives

&au, )=—2 "zGp
c2

(84)

This is the same as (64) to lowest order in E„/E, as ex-
pected. The reason for the difference between (64) and
(84) is that if we convert the Vachaspati traveling-wave
solutions into this gauge they violate ( h, ) = ( h„' ) =0.
Expression (84} is the velocity perturbation we will use in
subsequent calculations (expression (84) is equivalent to
the expression for the velocity perturbation derived by
Vachaspati and Vilenkin [26] ).

ACCRETION WAKES

In this section we examine the accretion wakes pro-
duced by strings with small-scale structure. We first con-
sider wakes formed at t, . To find the average distance to
the turnaround surface we would need to calculate

Pc +(h )
(a2%2+p2c 2t2+ 2)3/2

(79)

By integrating by parts twice and using the equations of
motion (5) we get

(q, ) = —1.3t, (1+z, )( v„)Qo/ (85)

where ( v„) is the average of v, evaluated not at fixed q,
but at the various q, 's of the turnaround surfaces. Let
the q, 's from the turnaround surfaces lie in the interval
[q,' '"', q,

' '"']. (u„. ) will in general be different from the
(hv, ) we have calculated unless each Av, is essentially
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independent of q, for q, C [q,' '"',q,
' '"']. For example,

b, v, for a monochromatic wave of the form (51) becomes
independent of q, for q, )A, . Consider an ensemble of
strings carrying monochromatic waves with
g~ [/min /max] lf q™nl& g(max) then ( QU ) ( U )

From (50) we expect (b,U, ) =(v„.) if the wavelengths of
the Fourier modes on the strings are less than q,

' '"'. For
ensembles which satisfy ( hv, ) = ( v„. ) the average
comoving coordinate of the turnaround surface is given
by

E /E —-'y-'E'/E'
1 E—/E P

E /E 'y—-E /E
1 —E /E p6h Mpc .1=+12X 10 y P+

(q, ) =*5.0~r„(1+z„) ", y p+Gp
C

(86)

(87)

We now take P=O. 15 and E /E =0 4(a.verage of E„/E
for radiation- and matter-dominated eras). The coordi-
nate distance to the turnaround surface is

q, =4.5X10 p6h Mpc . (88)

The physical distance to the surface is =5.7p6Qo Mpc
and the surface density contained within the turnaround
surface is

cr =6.4X10' p6h QoMO/Mpc (89)

One must be careful in applying the above results if the
turnabout surfaces get close to the horizon. Since the
coordinate interwake separation at t, is =2. 1

X10 h Ao Mpc we see that the wakes could have
accreted about

E /E —
—,'y E /E

110',,y P+
W

h Qo

percent of the matter between the wakes. The actual
fraction of matter accreted by the wakes will depend on
the geometry of the wakes and will be larger than our es-
timate if the wakes form closed surfaces. For
E /E=O 4, P=0.. 15, and hQo=0. 25 (about the largest
value of hQo consistent with the size of the large-scale
structure) we find that the wakes could have accreted
about 25p6 percent of the matter in the Universe. These
wakes produce voids with the observed densities for
P6

We now examine how the interwake separation (6),
the fraction of matter accreted by the wakes (f), and the
surface density (o ) vary with t; and h for Qo= 1. We will
initially use the approximation that the Universe is
matter dominated. Corrections to this approximation
will then be discussed. A simple calculation shows that
b, —t ~,f—t, ~, and cr - t;

'~ (this is actually an un-
derestimate of b, ,f, and cr). Therefore b —5.3(t;/

o.—6.4X10' p6(t, lt,„} ' h Mo/Mpc . If we want the
interwake separation to be Sh Mpc (observations indi-
cate that S-25—50) then b, -Sh '. This implies that
(t, /t, )' =(S/5. 3)h. Substituting this into f and cr

gives f=(120/S }p6 and o —(3.4X10' /S)iM6h. To pro-

duce structure on 25h ' Mpc (i.e., S=25) with h =
—,
'

then requires t, —13t, .. We find that f -0.20@6 and
&-6.8xloilp6M$/MPC2. For S=25 and 6=1 we
have t, —100t, , f -0.20@6, and cr —1.4X 10' iu6M~/
Mpc . Therefore as h increases the wakes required to
produce scales of order 25h ' form at later times. The
fraction of matter accreted by these wakes depends on
time only through the time dependence of S. Wakes with
S =50 only accrete -5@6 percent of the matter in the
Universe. We will assume that it is the last wakes which
accrete almost all of the matter in the Universe (i.e.,f 51) which set the size of the large-scale structure.
Since f -1/S, the interwake separation of these wakes
is not too sensitive to the actual value of f used
(0.5 ~f ~ 1). It is important to remember that the wakes
with the largest surface densities are produced before the
wakes we are considering. Here we have taken the simple
assumption that these early wakes are accreted by the
wakes we are considering. The wakes we are considering
will not generally be accreted by later wakes since these
later wakes only accrete a small fraction of the matter in
the Universe. If this assumption turns out to be incorrect
then the higher surface density wakes will probably be re-
sponsible for the large-scale structure. If this is the case
then the size of the voids ( -4h Qo ') is too small to ac-
count for the observed large-scale structure (Q = 1).
Wakes which accrete 80% of the matter (to be in agree-
ment with the CFA survey) have an interwake separation
of —12+p6h ' Mpc which compares favorably with ob-
servations, for p6-4. We also expect the string network
to produce larger voids, but with considerably smaller
underdensities since f—1/S . We now discuss the
corrections to the approximation used. For t, —10t, , f
is underestimated by a factor of =1.2 and 6 is underes-
timated by a factor of =1.3. For t, —100t, , f is un-
derestimated by a factor of =1.2 and 6 is underestimat-
ed by a factor of =1.5. We also have to correct for the
change in the energy in the small-scale structure. E„/E
changes from about =0.4 in the transition era to about
=0.3 in the matter-dominated era. The net effect of
these corrections is to increase S by a factor of about 1.3
for 10t, ~t, ~100t, . Thus the interwake spacing be-
comes —16+p6h ' which does not differ significantly
from the previous value. We also get an interwake sepa-
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ration of —12+p6h ' Mpc for wakes formed at t, if we
take h Qo so that f=0.8.

The two best bounds on Gp come from the millisecond
pulsar and from the isotropy of the cosmic microwave
background. Bouchet and Bennett [27] find that mea-
surements of the timing of the millisecond pulsar con-
strains Gp to be ~4X10 . Bouchet, Bennett, and
Stebbins [28] find that the isotropy of the cos-
mic microwave background constrains Gp to be
& 5 X 10 . We see that strings can produce cosmologi-
cally significant density perturbations for Gp near but
below the above constraints.

Recent surveys [29—32] indicate that regions of size
=45h ' Mpc may have coherent streaming velocities of
up to 10 km/s. The local group of galaxies is also
known to be moving with respect to the microwave back-
ground radiation with a velocity of =600 km/s. It is
therefore of interest to calculate the peculiar velocities
generated by cosmic strings. The peculiar velocity in the
Zel'dovich approximation for structure formed at t,„ is
given by

v~ =(1+z,q)qi=0. 25(1+z,„)'» v, Qo (90)

For E„/E =0.4 and P =0.15

vo=560p6hQo km/s . (92)

We expect these velocities to be coherent over some frac-
tion of the interwake separation. If we consider wakes
with an inter wake separation of Sh ' we find

u» -(3.4X 10 /S)12& km/s-75126 km/s (for S=45). For
an average interwake spacing of 20h ' we find vp 170p6
km/s which is close to the observed value for p6=4. But
the distance over which this velocity is coherent is small-

er than observed.
We now consider the effect of small-scale structure on

the fragmentation of a wake formed at t, . Consider a
wave pulse propagating along the string. As the wave

propagates it will form a tube if the string velocity is
nonzero (see Fig. 1). A.s we will see below, the surround-

ing rnatter will be attracted to this tube. The effect of this
wave pulse wi11 then be to generate a tubelike overdensity
within the accretion wake of the string. The x and y im-

pulse generated by a moving string (f =0) can be found
from

hv= —,
' f Vhoodt . (93)

Differentiating (45) and integrating by parts taking g =0
at t =+~ grves

for (I+z, )))1 [recall that we have used a(t) for a

universe containing both matter and radiation]. From
Eq. (84) we can expect peculiar velocities of magnitude

E /E —~

y 2E 2 /E 2

u~ = 150y P+ —p6h Qo km/s .
1 E/E„—

(91)

and

b,v„=—pyb, u (95)

Since the velocity of the wave pulse in the (x,y) plane is

(c/y, v) we see that the impulse given to the particles is
at right angles to the tube generated by the wave pulse
and is towards the tube. Thus there will exist a turn-
around surface surrounding the tube. Particles on this
surface are in the process of turning around from the
Hubble flow and heading back towards the tube. Because
of the symmetry we only need to examine the cross sec-
tion of the turnaround surface on the plane x = —pyy.
Let us denote the rectangular coordinates on this plane
by (1,z). To find the turnaround surface we look for par-
ticles whose (x,y) velocity orthogonal to the tube is equal
to zero. This condition is v =pyu„. Substituting

v=(1+z, )(q+2%) (96)

into v» =pyv„and using b v„= py b v» and q„=——
pyq»

gives

v =q +1.3t, (1+z, )Qo» bu =0 . (97)

We take the wave pulse, in the rest frame of the string, to
be the triangular wave

0, u~ —a,
a+u, —a ~u ~a,

g(u)= .
a —u, O~u ~a,
0, u ~a.

The amplitude of the wave pulse will be written as
a=adH=6. 4X10 ah Qo pc (dH is the horizon dis-

tance at time t, ). a is then the ratio of the wave ampli-

tude to the horizon at time t, . We also write

hv = —4Gpu (q, q„a,p). Equation (97) then becomes

q =38 Op6h v»(q». , q„a,P)pc . (98)

FIG. 1. The triangular tube formed by a triangular wave

pulse propagating in the positive x direction. The velocity of
the string is in the positive y direction.

pg'(z —g)+ yg'(y —ut)
» 2( t)2+( )2

(94) Transforming g(u) into a frame in which the string is

moving with a velocity P and integrating (93) gives
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&v~ = —4GiM sgn[y —py(z+x —a}] arctan
—py+y(a —z+p x )

~y
—py(z +x —a)

~

—arctan
—py —y[z —p (x —a}]

~y
—py(z —x+a ) (

—y+y z — (x+a) —y+y(z —a+ x)
+sgn[y +py(z —x —a) arctan —arctan

1y+py(z —x —a) I ~y +py(z —x —a)
~

(99)

The solutions to (98) for the triangular wave pulse form two surfaces. For a (( I (p6-1) the outer surface is the usual
turnaround surface. The inner surface can be divided into two subsurfaces. For z & 0 the velocity changes sign discon-
tinuously across the surface. This part of the surface is generated by the discontinuous change in the velocity perturba-
tion as we cross the string. For z &0 the velocity changes sign continuously. These two surfaces are shown in Fig. 2 for
p=0. 15, a=10 p6=1, h =

—,', and Qo= —,'. In the interior of the inner surface the l-component of the velocity is out-
wards. In the region between the inner and outer surfaces the l-component of the velocity is directed inwards. In the
region exterior to the outer surface the l-component of the velocity is outwards. Linear perturbation theory will break
down near the surface of discontinuity since shell crossing will have occurred if the matter is collisionless. If the matter
is collisional a shock wave will form which will prevent shell crossing. For the collisionless matter we are considering
the discontinuity in the velocity stays at the same comoving coordinates as times evolves. Numerically we find that di-
mensions of the outer turnaround surface scale as -a'~ y'~ P6~ h Qo '. This behavior can easily be seen for P=O,
~q ~

))~q, ~, a. Equation (97) becomes

q =76. 1psh sgn(y) arctan

4.9X10 ap6h 0
qy

6.4X10 ah 00 —q, q,
(100)

(101)

0

50

1W

FIG. 2. A cross section of the turnaround surfaces surrounding the tube produced by the triangular wave pulse with
P=0. 15,h =—', Qo= —', @6=1,and a=10 ' (a is the ratio of the amplitude of the pulse to the horizon at t, ). The outer turnaround

surface scales as -a' y' p6 h Qo '. The cross-sectional plane is orthogonal to the tube. In the region interior to the inner sur-
face the 1-component of the velocity is outwards. In the region between the inner and outer surfaces the 1-component of the velocity
is inwards. In the region exterior to the outer surface the 1-component of the velocity is outwards.
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which has the scaling stated above for P=O. Since the
inner surface scales as a these two surfaces will meet at
a-0. 1p6h Qo.

We also need to know how the turnaround surface
changes as the shape of the triangular wave is changed.
If we denote the height of the wave by a and its base
half-width by w, we find that the dimensions of the outer
turnaround surface increase as —(a/w)' . So as the
wave pulse becomes more peaked the turnaround surface
becomes larger. This behavior of the turnaround surface
can be seen in the following way. The impulse given to a
particle close to the triangular wave pulse, but not too
close to the kinks, will be the same as the impulse pro-
duced by an infinitely long string. This impulse is pro-
portional to Pzyz where Pz is the component of the string
velocity which is orthogonal to the string. A simple cal-
culation for the triangular wave pulse shows that the or-
thogonal velocity for the sides of the triangle is

'2

(&)'
10

3/2 3/2h —9g —3 3
P6 o Pc

The mass contained in this volume is
3/2

1010 cz

10
3/2 3/2h —1gP6 o" 0

From (70) we see that for an ensemble of strings the aver-
age of the total velocity perturbation, to lowest order in
E /E, will be the sum of the average velocity perturba-
tions produced by the oppositely propagating waves. We
have also found that the velocity perturbation produced
by oppositely polarized waves propagating in opposite
directions is, to lowest order, the sum of the perturba-
tions produced by the individual waves. We therefore ex-
pect there to be a turnaround surface surrounding the in-
tersection region which contains a coordinate volume of
order

' 3/2

w

a
(102) For

' 3/2

y3/2 3/2h —lg ) 1
10

P6 ofor w/a ((1, where P, is the velocity of the string as a
whole. Thus the impulse CCP~y~=y, (a/w). Therefore
the velocity impulse grows as a /w for particles near the
string. For P, =0 and for

~ q» ~
))a, ~ q, ~

we see from (101)
that the distance to the turnaround surface goes as the
square root of the impulse. Hence the result that the di-
mensions of the turnaround surface go as (a/w)' is not
surprising. Since we expect the majority of waves on the
string to be not too sharply peaked we will take a /w = 1

for the subsequent calculations. If we have two waves on
the string following each other too closely the velocity
perturbations between the two tubes formed by these
waves will tend to cancel and the outer turnaround sur-
face will surround the tubes produced by both waves. If
we have two wave pulses propagating in opposite direc-
tions on the string we expect the intersection of the two
tubes to be the center of a region of large mass accretion.

this is of order of the mass of a galaxy. For +=10
p6=4, y=1, and Qoh =1 the mass is 2.5X10' Mo.
Hence the intersection region of the two wave pulses can
accrete a galactic mass. Since wakes which form earlier
accrete most of the mass they may also assist in frag-
menting the rnatter accreted by later wakes.

CONCLUSION

In this paper we have examined the velocity and densi-
ty perturbations produced by a cosmic string with small-
scale structure moving through a medium of cold col-
lisionless matter. We find that the average velocity per-
turbation generated by an ensemble of strings is

(bv, ) = —4m P+Gp
C2

E /E ,'y E /E——
1 E /E —P

(103)

where E /E is the ratio of energy of the ~aves on the
strings to the tota1 energy of the strings. For
E /E=0. 4, P=0. 15 and an average interwake separa-
tion of Sh 'Mpc the wakes produced by the strings have
accreted -(2.0X 10 /S )p6 percent of the matter in the
Universe. We assume that it is the last wakes which ac-
crete almost all of the matter in the Universe (i.e., f ( 1)
which set the size of the large-scale structure. Wakes
which accrete 80% of the rnatter in the Universe have an
average interwake spacing of —16+p6h ' Mpc. We as-
sume that the distribution of luminous matter mirrors the
distribution of the cold collisionless matter so that the
wakes will contain the same fraction of luminous matter
as cold collisionless matter. A recent survey by the CFA

indicates that galaxies may lie on the surfaces of bubble-
like structures which contain voids of density -20'Fo of
the mean density. Thus for p6~ 3 strings may be able to
account for the observed large-scale structure. It has also
been observed that large regions -45h ' Mpc may be
streaming coherently with peak velocities of up to 10
km/s. Strings can produce peculiar velocities of magni-
tude v —(3.4X10 /S)p6 km/s over distances less than
-Sh '. For S=45, v -75p6 km/s which is a bit small.
For S=20, v —170p6 km/s which is close to the ob-
served value for @6=4. But the distance over which this
velocity is coherent is smaller than observed.

We also find that wave packets propagating on the
string will produce tubelike overdensities within the ac-
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CK

10
1/2 1/2p —3g —1

P6 0 PC,

where a is the ratio of the amplitude of the pulse to the
horizon at the time of formation of the wake. We also
find that the region of collision between two wave pulses
propagating in opposite directions can accrete

' 3/2

1010 a
10

3/2 3/2h —1gp6 o -O.

cretion wake of the string. For a triangular wave pulse
the coordinate cross section of this tube has dimensions

' 1/2

Thus structure on the strings can fragment the wake into
galaxy mass objects.

After the completion of this work I received a paper by
Tanmay Vachaspati and Alexander Vilenkin [26] which
also discusses the role of small-scale structure in the for-
mation of galaxies.
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