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Observations of pulsars in gravitationally bound binary systems provide a unique opportunity
for testing the strong-field regime of relativistic gravity. We present a detailed account of the
"parametrized post-Keplerian" (PPK) formalism, a general phenomenological framework designed
to extract the maximum possible information from pulsar timing and pulse-structure data. The
PPK approach allows dynamical information to be obtained from the data in a theory-independent
way, and encoded in a certain number of fitted post-Keplerian parameters. We show that as many as
19 such parameters can be measured, under favorable conditions, giving access to 15 possible tests
of relativistic gravity. We isolate and quantify the theoretical content of these tests by deriving,
within the framework of generic boost-invariant theories, expressions linking the phenomenological
parameters to the inertial masses of the pulsar and its companion, and to the polar angles of the
spin axis of the pulsar. The prospects for extracting some of these tests from observations of known
or yet-to-be-discovered binary pulsars is quantitatively assessed through numerical simulations. We
show that the recently discovered binary pulsar PSR 1534+12 should, with presently available data,
give access to two new strong-field tests of relativistic gravity, if the data are analyzed in the phe-
nomenological way emphasized in this paper. Moreover, in the long run, the first-discovered binary
pulsar, PSR 1913+16, could give access to three strong-field tests, beyond the presently obtained
~-p-Pp test. Finally, we show how, by combining the PPK approach with the predictions of a rather
generic class of tensor-biscalar theories, one can bring together tests based on observations of several
different pulsars. We illustrate how such a combination of independent tests can lead to very tight
quantitative constraints on possible strong-field deviations from the correct theory of gravity.

PACS number(s): 04.80.+z, 95.30.Sf. 97.60.Gb

I. INTRODUCTION

The discovery of binary pulsars in 1974 [1] opened up
an entirely new testing ground for relativistic gravity. Up
to their discovery, and apart from the qualitatively fasci-
nating but quantitatively poor confirmations of general
relativity coming from cosmological data, the only avail-
able testing ground for relativistic gravity was the solar
system. Starting in the late 1950s, a favorable situation
involving the availability of new technologies (including
the Mossbauer eA'ect, radar and laser ranging to solar-
system bodies, atomic clocks, . . . ), and the conception
of new tests of relativistic gravity [2—8], led to an inten-
sive period of research in experimental gravity. From a
theoretical point of view, the planning and interpretation
of experimental tests was greatly assisted by two differ-
ent but complementary approaches: on the one hand,
the existence of a specific, theoretically well-motivated,
one-parameter family of alternative theories of gravity,
originally due to Jordan [9] and Fierz [10], and further
developed by Brans and Dicke [11]; and on the other

hancl, the development of a general phenomenological
framework, tl:e pararnetrized post-Newtonian (PPN) for-
malism [12—15), able to describe with a minimum of the-
oretical assumptions the many directions in which very
generic alternative theories of gravity might diAer in their
predictions from general relativity. The main conclusion
one can draw from all the experimental results about
solar-system gravity is that, within the assumptions of
the PPN framework (notably the absence of any specific
length scale in the gravitational interaction), the limiting
regime of weak and quasistationary gravitational fields
has been fairly completely mapped out at the first post-
Newtonian level, i.e. , when taking into account fractional
corrections of order (v/c)2 GM/c2R to a Newtonian
description of gravity, and found to agree with general
relativity within a fractional accuracy of about 2 x 10
[16, 17].

In spite of the impressive quantitative value of solar-
system tests, their qualitative value seems relatively lim-
ited when one considers that studying the behavior of
the gravitational interaction in the combined weak-field-
quasistationary ("post-Newtonian" ) limit is somewhat
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similar to studying the behavior of a function, say f(z),
in a small neighborhood of one point, say z = 0. Seen
from this point of view, the general PPN expansion is
analogous to parametrizing, near z = 0, the behavior of
a general class of functions by means, say, of a parabolic
approximation, f(z) = n + Pz + 7z2 + 0(zs). Clearly
such a local parametrization of f(z) is unable to dis-
tinguish among functions which approximate each other
closely at z = 0, but behave very differently in general.
And indeed, the PPN formalism has provided several
specific examples of theories, e.g. , Rosen's bimetric the-
ory, which approximate general relativity in the post-
Newtonian regime while leading to very different pre-
dictions in the strong-field and/or rapidly-varying-field
regimes [16].

Fortunately, the continuous observational study of the
binary pulsar PSR 1913+16[18—23] has provided us with
a new laboratory for studying relativistic gravity. The
distinguishing feature of this laboratory with respect to
the solar-system one is that, since the pulsar and its com-
panion are believed to be neutron stars, i.e. , objects with
more than a solar mass of material compressed within a
radius of about 10 km, we have, for the first time, data
about a system which contains some strong gravitational-
field regions (surface fields GM/c R 0.2, as compared
to 10 s for the Sun). Moreover, the high stability of
the pulsar clock has made it possible to monitor the dy-
namics of its orbital motion down to a precision where ex-
tremely small effects, (v/c)s times smaller than the main
gravitational attraction, show up as gravitational radia-
tion damping. At present the coherent recording over six-
teen years of pulse arrival times from PSR 1913+16 has
provided data which are very well fitted by a phenomeno-
logical, i.e. , theory-independent, timing model (called be-
low BT+) comprising, in addition to the expected "Ke-
plerian" parameters (notably, the orbital period Ib, the
eccentricity e, and the projected semimajor axis of the
pulsar orbit z—:ai sin i/c), three "post-Keplerian" pa-
rameters: the secular advance of the periastron, ~, a
time dilation parameter y, and the secular change of the
orbital period, Pb.

Any. given relativistic theory of gravity makes a specific
prediction for the values of ~, p, and Pb as functions of
the 1&eplerian parameters and the (a priori unknown) in-
ertial masses rnid and rn2 of the pulsar and its companion.
In graphical terms, the phenomenological measurement
of each post-Keplerian (PK) parameter in the set u, 7,
and Pb defines (when interpreted within the frainework
of a specific theory of gravity) a curve in the mi, m2
plane. It follows that simultaneous measurement of all
three PK parameters yields one test of the theory, ac-
cording to whether the three corresponding curves meet
at one point, as they should. As first announced in 1979
[19],and confirmed with ever increasing accuracy as more
data were accumulated [20—23], general relativity passes
this ~-y-Pb test with flying colors when using as the the-
oretical prediction for Pb a formula first obtained heuris-
tically [24], and then derived more rigorously through a
study of the general-relativistic dynamics of binary sys-
tems of strongly self-gravitating bodies [25—28]. Recently,
the precision of the ~-y-Pb test in PSR 1913+16 data

has become so good that it became necessary to correct
for the small combined effect of galactic acceleration and
proper motion on the observable orbital period change

In addition to providing the first experimental evi-
dence for the existence of gravitational radiation, the
~-y-Pb test also represents our first probe of the strong-
gravitational-field regime, and therefore has some impor-
tant consequences. For example, Rosen's bimetric the-

ory, which has the same post-Newtonian limit as general
relativity, fails the test by several orders of magnitude be-
cause of the interplay between strong-field and radiative
effects [30, 16]. (As pointed out in Ref. [31], it also fails
the test because of weak-field radiative eff'ects. ) However,

the ~-y-Pb test is a mixed test which combines strong-
field and radiative effects in an indistinct way, so that one
cannot logically conclude, when the test is satisfied, that
both the specific strong-field and radiative predictions
of general relativity have been independently confirmed.
In fact, examples of theoretically well-motivated theories
have recently been constructed [32] which have the same
post-Newtonian limit as general relativity, and can pass
the ~-p-Pb test without fine-tuning, while still differing
markedly from Einstein's theory because of the strong
self-gravity effects in the pulsar and its companion. In
extreme cases the three curves defined by u, p, and Pb
can still meet within the observational precision, while
the effective gravitational constant between the pulsar
and its companion differs by as much as 35% from the
usual Newtonian value.

The mixed nature of the ~-y-Pb test in PSR 1913+16
raises the following question: Is it possible to extract
other tests of relativistic gravity from binary pulsar
measurements, specifically tests that probe the quasi-
stationary, strong-field aspects of the gravitational in-
teraction'? The answer to this question is aKrmative, at
least in principle, as has been shown by several authors
considering dift'erent aspects of pulsar data. Immediately
after the discovery of PSR 1913+16, it was pointed out
[33—35] that a spinning binary pulsar should precess be-
cause of relativistic gravitational spin-orbit coupling, and
that this effect would show up as a slow change of shape
of the electromagnetic pulse as recorded on Earth (see
Sec. III for a more complete discussion of this effect,
and additional references). More recently it has been
shown [36—39] that timing observations of binary pulsars
can provide several new tests of strong-field gravity. The
main objectives of the present paper will be to present a
full account of all the strong-field tests potentially present
in pulsar data, and of their physical significance in terms
of the correct underlying theory of gravity; and to dis-
cuss the observational practicability of these new tests,
i.e. , the measurability of the parameters entering them.
The recent discovery of two new "relativistic" binary pul-
sars with short-period, highly eccentric orbits, namely
PSR 2127+11C [40] and PSR 1534+12 [41], and the fact
that additional searches for such objects are underway,
makes it timely to discuss the prospects for extracting
such new strong-field tests.

Before coming to grips with our specific problem it
may be worthwhile to spell out our general views about
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the various ways of testing physical theories. First, it
seems clear that it is very useful to have a framework
which encompasses more than one specific theory. Even
in the early days of the confrontation between relativis-
tic gravity and experiment, it was fruitful to compare
and contrast general relativity with previous gravitation
theories- =specially the nonrelativistic theory of New-

ton, but also, for instance, the relativistic scalar the-
ory of Nordstrom. Starting in the late 1960s, the util-
ity of having wide classes of alternative theories was
made clear by the theoretical discovery of several new
post-Newtonian effects that are absent in general rela-
tivity, and had therefore been generally overlooked, but
are present in alternative theories [5—8]. In some in-
stances what helped in uncovering new effects was the
contrast between general relativity and a specific class
of theories, in particular the theoretically well-motivated
Jordan-Fierz-Brans-Dicke tensor-scalar theory. In other
cases it was the existence of a general phenomenologi-
cal approach to weak-field gravity, the PPN formalism.
In the present study we have again found useful both
types of approaches: a phenomenological approach to
the analysis of pulsar timing data that we shall call, fol-
lowing Ref. [37], the parametrized post-Keplerian (PPK)
formalism; and a theory-dependent approach which will

contrast general relativity with a specific class of tensor-
biscalar theories.

The plan of our paper is as follows. We expose the PPK
formalism in full generality in Sec. II, and the potential
theoretical significance of its phenomenological parame-
ters in Sec. III. Section IV discusses the present and fore-
seeable measurability of the PK parameters, primarily by
means of numerical simulations based on observational
experience with PSR's 1913+16 and 1534+12 [22, 41].
In Sec. V we shift to a theory-dependent approach and
show how a fit of timing data to a two-parameter class
of tensor-biscalar theories, say T(P', P"), can constrain
the values of the parameters p' and p" [defined so that
T(0, 0) reduces to Einstein's theory]. Section VI sum-
marizes our conclusions and the observational prospects
for getting new tests of strong-field gravity. Finally, for
convenience of the reader we have included an appendix
which gathers together the most important symbolic no-
tation, especially those which might lead to confusion.
Explicit applications of our methods to real observations
of PSR's 1913+16 and 1534+12 have already been car-
ried out, and will be published separately [42].

II. THE PARAMETRIZED POST—KEPLERIAN
FORMALISM

A. Phenomenological analysis of timing data

Soon after the discovery of PSR 1913+16, Blandford
and Teukolsky [43] derived a timing model, to be fitted to
a sequence of pulse arrival times on Earth, which assumed
that the pulsar and its companion obeyed the Keplerian
kinematical laws. At this level the "Keplerian param-
eters" entering the timing model are the orbital period
Pb, the epoch of periastron passage Tp, the eccentricity e,
the longitude of periastron ~, and the projected semima-

jor axis of the pulsar orbit (in time units), z = ai sin i/c
(where ai is the semimajor axis of the pulsar orbit, and i
the inclination between the orbital plane and the plane of
the sky). They completed their model by incorporating
the largest short-period relativistic efFect, a combination
of gravitational redshift and special-relativistic time dila-
tion, quantified by one extra parameter called p, and by
allowing for secular drifts of the main orbital parameters:
Pb = Pgp+Pg(t —fp), e = ep+e(t —tp), M: Mp+ci)( t —t'p),
and z = zp + z(t —tp). Although Blandford and Teukol-
sky (BT) had in mind only to describe within some ap-
proximation the general-relativistic dynamics of a two
body system, later work [16, 44] showed that the "BT"
model was equally able to describe the timing data in
a very wide class of alternative relativistic gravity the-
ories. What changes, when the theory changes, are the
mathematical expressions linking the phenomenological
parameters of the BT model (notably Pi„e, z, ~, y,
and Pb) to the inertial masses of the two neutron stars
(mi = rnpuisar& mg = mcompanion). As discussed in the
Introduction, this fact made it possible, by combining
the measurements of the Keplerian parameters Pb, e, z,
and the three post-Keplerian parameters ~, p, and Pb,
to get one deep test of a large class of alternative gravity
theories.

The situation changed when Epstein [45], and later
Haugan [46], set themselves to complete the BT model
by deriving, within general relativity, the O(v2/c2) frac-
tional contributions to the timing formula arising both
from the relativistic "Shapiro time delay" in the gravi-
tational potential of the companion, and from O(vz/c2)
relativistic post-Keplerian effects in the orbital motion.
Their model departed from the attractive phenomeno-
logical approach of BT in two ways. First, it was de-
rived within a specific theory of gravity (Einstein s the-

ory), and second, it was so intricate that there seemed
to be no clear way of parametrizing the various effects
it contained. This led Epstein to abandon the theory-
independent features of the BT model and to propose
correlating by force all the independent O(v2/c2) timing
effects by using explicitly the general relativistic expres-
sions linking y to the masses and the Keplerian param-
eters. The resulting model has been used to show [21,
22] that the timing data of PSR 1913+16were accurate
enough to require including relativistic effects not part of
the original BT model. But the physical significance of
these observational findings is unclear, even within the
point of view of the Epstein —Haugan model.

Damour and Deruelle [36,47] proved that it is possible
to describe all of the independent O(u /c ) timing effects
in a simple mathematical way common to a wide class of
alternative theories. This made it possible to revert to
a theory-independent analysis of timing data, and led to
the possibility of working within a strong-field analogue
of the PPN formalism, the so-called [37] "parametrized
post-Keplerian" approach. The part of the Damour-
Deruelle (DD) phenomenological timing model describ-
ing orbital effects reads

(2.1a)

where t& denotes the solar-system barycentric (infinite-
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frequency) arrival time, T the pulsar proper time (cor-
rected for aberration; see below),

(p ) = (P]„To,eo, ~o, zo)

is the set of Keplerian parameters,

(p ) = (k, 7, P]„r,s, b]], e, i ) (2.1c)

b, ~ = zsinu[cosu —e(1+ b„)]

+z[1 —e (1+ be) ] ~ c os' sinu, (2.2b)

A~ —
y sin u, (2.2c)

b,s —— 2r ln(1 ——e cos u —s[ sinu(cos u —e)

+(1 —e ) ~ cosa sinu]),
(2.2d)

6g = A(sin[a + A, (u)] + e sin u)
+B(cos[]d + A, (u)] + e cosa),

where

z = zp+i(T —Tp),
e = ep+ e(T —Tp),

(2.2e)

(2.3a)
(2.3b)

the set of separately measurable post-Keplerian parame-
ters, and

(qpK) = (b„,A, B,D)
the set of not separately measurable post-Keplerian pa-
rameters. The right-hand side of Eq. (2.1a) is given by

F(T) = D '[T+-AR(T)+b&(T)+b&(T)+b&(T)],
(2.2a)

tion ~BT = ~p+~(T —Tp). After these replacements the
DD parameter k can be simply identified with the BT
parameter &iP],/27r .More complete descriptions of the
DD timing model are given in Refs. [22, 36].

Although the splitting of F(T) into the various contri-
butions (2.2b)—(2.2e) is a coordinate-dependent concept,
it is convenient to refer to AR, the time of flight across
the orbit, as the "Roemer time delay, " to A~ as the "Ein-
stein time delay, " to Es as the "Shapiro time delay,

" and
to AA as the "aberration delay, " or difference between
the actual proper time of emission and the correspond-
ing time if the pulsar mechanism had been, say, a radial
pulsation instead of a rotating beacon. In this language
b„and bs quantify relativistic [O(vz/cz)] deformations
of the orbit, It; describes both the secular precession and
the short-period "nutation" of the argument of the peri-
astron, r and s = sini measure the "range" and "shape"
of the Shapiro delay, and A and B parametrize the ef-

fects of aberration on pulse timing. For a brief summary
of our notation, see also the Appendix below.

As shown in Ref. [36], parameters in the set (2.1d)
cannot be measured separately from those in the sets
(2.1b), (2.1c) because they can be completely absorbed
into suitable redefinitions of the other parameters. The
parameter D, a Doppler factor characterizing the center-
of-mass motion of the binary pulsar system with respect
to the solar-system barycenter (see Eq. (5) of Ref. [36]),
can be absorbed in a rescaling of the units of time, length
and mass by a factor D. More explicitly, if the observed
values of the parameters (2.1b), (2.1c) have been deter-
mined by assuming D = 1 during the fitting process, they
are related to the intrinsic values by

]./2

A, (u) = 2arctan
1 —8

utan-
&

and where A, (u) and u are the functions of u,

(2.3c)

~obs ~-1 ~intrinsic

obs D-1 intrinsic
)

obs intrinsic

(2.4a)

(2.4b)

(2.4c)

~ = ~p+ kA, (u), (2.3d)

and u is the function of T defined by solving the Kepler
equation

f T —Tp] 1 t T —Tp]
u —esinu = 2s

P], ) 2 P],

(2.3e)

Note that P], is by definition a constant (the orbital pe-
riod at epoch Tp), and that the factor (—1/2) in the last
term of Eq. (2.3e) comes from integrating the instanta-
neous orbital frequency [P], + P],(T —Tp)] to obtain
the orbital phase. We call attention also to the fact that
Eqs. (2.2) and (2.3) represent the "direct timing formula"
t], ——F(T) derived in Sec. 2.6 of Ref. [36]. In actual prac-
tice, when analyzing binary pulsar data one uses the "in-
verse timing formula" T = G(t], ) in which solar-system
barycentric time is the independent variable (see Sec. 2.7
of Ref. [36] and Sec. IV A below).

The DD model reduces to the BT one after setting
b„= b]] ——r = A = B = 0, D = 1, and replacing uDD(T),
defined by Eqs. (2.3c)—(2.3e), by the simple linear func-

obs

obs

gobs
8

gobs
r

(I + )
intrinsic

(I + & )eintrinsic

gintrinsic
&A

gintrinsic —3A )

(2.5a)
(2.5b)
(2.5c)
(2.5d)

If D were exactly constant in time, the renormalizations
(2.4) would drop completely out of any test of gravity
theories involving only G and c as dimensioned con-
stants [36]. However, if D has a secular drift, it will
induce apparent changes in all of the dimensioned ob-
servables, notably jn P&

' and ~ '. And, indeed, for
PSR 1913+16it has been shown recently [29] that both
proper motion of the pulsar and accelerations of the solar
system and binary pulsar system in the Galactic gravi-
tational field contribute measurably to a secular drift of
D = 1 —n (vsn]sr vpn]s~)/c+0(v~/c2), and hence to a
secular change of the observed orbital period beyond any
intrinsic changes. The corresponding apparent changes
in the other timing parameters, notably z, Eq. (2.4b),
turn out to be negligible.

The aberration parameters A and B can be absorbed
exactly into redefinitions of Tp, z, e, b„and be (see
Sec. 3.2 of Ref. [36]). In particular, we have [in addi-
tion to the renormalizations (2.4)]
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where

A Pp 1 sin g
&A = —=—

z P& sin i(1 —e2)~/2 sin A
(2 6)

will differ markedly because of the strong-field effects
linked with the pulsar and its companion (recall that
Gm/c 8 0.2 for a 1.4Mo neutron star). In Sec. III B
we present explicit formulas allowing one to compute the
functions f ' "" in a wide class of theories. We also
treat in detail in Sec. V A a family of alternative theories
in which one can explicitly see the strong-field effects at
work.

Our discussion has made it clear that measurement
of the Keplerian plus n post-Keplerian parameters will
determine n curves in the two-dimensional mass plane
whose shape and position depend strongly on the theory
of gravity being used. If the theory is "correct" (and if the
binary system is "clean, " i.e., accurately represented by
a simple theoretical model), the n curves should all meet
at one point. Thus, the measurement of n post-Keplerian
timing parameters yields n —2 tests of relativistic gravity,
and, more generally, of the other ingredients of the theo-
retical model of the system. We therefore conclude that

In Eq. (2.6), derived from the expression given below for
A, the quantity P& denotes the spin period of the pulsar,
while A and g are the polar angles of the spin axis, as
defined below. The most interesting physical effect, s as-
sociated with the aberration-induced changes (2.5), (2.6)
are the apparent secular changes of z ' and e ' asso-
ciated with spin-orbit precession of the pulsar spin axis.
Let us finally mention that, as discussed in Sec. 3.7 of
Ref. [36], b„can be reabsorbed in a change of the spin
phase of the pulsar, thereby inducing small changes in
the observed values of the pulsar rotational parameters
which need not concern us here.

Summarizing the results up to now, we see that by fit-
ting the arrival times of a binary pulsar to the DD model
(2.1)—(2.3), in which one sets the parameters (2.1d) to
some fiducial values (b„"a, A"d, B"d, D"d = I), one can,
in principle, measure the Keplerian parameters (2.1b)
and eight post-Keplerian parameters (2.1c). The im-
portant point is that the eight PK parameters can be
measured in a phenomenological manner, independently
of the choice of a specific theory of gravity. Within the
framework of any relativistic theory, each of the eight
PK parameters will be expressible as a theory-dependent
function of the dynamical Keplerian parameters Pb, eo,
and zo, the two unknown inertial masses, mq and m2,
and in some cases the polar angles A and g. (The prob-
lems posed by the latter dependence will be treated be-
low, after discussion of the pulse-structure parameters. )
In alternative theories one will also have to assume an
equation of state for the neutron-star matter. Such an
assumption is unnecessary for most of the parameters
in general relativity, because of its effacement properties
[27]. One expects that, in different theories of gravity,
the functions

p; = f;"' ""(mq, mz, Pb, eo, zo, equation of state)

(2.7)

in the most favorable circumstances, binary pulsar tim-
ing data can provide up to 8 —2 = 6 tests of relativistic
gravity.

Note that to get a useful test one needs to combine the
measurement of at least three PK parameters, and that
each such test will probe indiscriminately all theoretical
effects determining their values. For PSR 1913+16 it
has been possible to measure only three PK parameters
in such a phenomenological way, namely, ir = 2+k/PI„p,
and Pb. These measurements yield, as emphasized in the
Introduction, one combined radiative (Pb) plus strong-
field (u, 7) test of relativistic gravity. The mixed nature
of the test makes it very desirable to measure additional
PK parameters, in order to probe strong-field effects in-
dependently of radiative effects. Before describing the
theoretical significance of these extra tests in more detail,
we now turn our attention to the information extractable
from pulse shape and polarization data.

B. Phenomenological analysis of pulse structure

Q(T)/27K: vpT + —vpT + —vpT
2 " 6" (2.8)

where v„= 1/Pp Actually th. ere is only one place in
the timing model (2.1)—(2.3) that requires the assump-
tion that p measures a physical rotation of the pulsar
around an axis (rather than, say, the phase of a spher-
ically symmetric pulsation). This is in the addition of
the "aberration" timing contribution A~, Eq. (2.2e) (see

The structure of pulsar signals (intensity, pulse shape,
linear polarization, . . . ) and its variation with time pro-
vides a wealth of information about physical conditions in

pulsar magnetospheres and the nature of the radio emis-
sion mechanism. For binary pulsars, pulse-structure data
can also contain information about gravitational physics,
because of interplays between the orbital motion and the
gyroscopic nature of the observed periodicity. In the lat-
ter category one example that was recognized rather early
was the possibility of detecting, through a secular change
of pulse shape, the relativistic precession of the spin axis
of PSR 1913+16 because of spin-orbit coupling [33, 34,
48]. Another source of potentially measurable effects on
pulse structure is the aberration caused by orbital mo-

tion of the pulsar, which offers the possibility of mea-

suring several otherwise inaccessible parameters [49, 36].
In the present section we shall generalize previous work
on these topics and at, tempt to specify all the gravita-
tional information potentially available through a careful
monitoring of pulse-structure data.

We assumed in Sec. IIA that the observed periodic
modulation of pulsar signals is caused by rotation of a
neutron star about some axis. This assumption made it
possible to represent the effects of orbital motion on tim-
ing data, in a manner independent of any specific emission
model. Mathematically, the assumption amounts to link-
ing the pulsar proper time T, used in Eqs. (2.1)—(2.3) to
parametrize the orbital effects, to the rotational "phase"
of the pulsar, the angle P describing the direction in lon-
gitude of the emitted beam, according to the equation
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Ref. [36]).
On the other hand, when it comes to discussing the

effects of the orbital motion on the pulse-structure data,
one needs to specify at least some general features of the
radio emission. The orbital motion of the pulsar around
the center of mass of the binary system produces three
different effects: it modulates the flux density received at
each frequency by a. fixed observer, it Doppler shifts the
frequency, and it causes the observer to receive light from
a direction, say n, which differs because of aberration
from the direction, say N, in which it was emitted in the
pulsar comoving frame. If 8 denotes the blueshift factor
experienced by the light, B—:v b, /v, ~;ii,g, the three
effects are summarized in the equation

l(vob„n, T) = B L(v,~;ii~d, N, T), (2 9)

w here X denotes the directional spectral luminosity

[d(energy) /d(time) d(frequency) d(solid angle)), in the ob-
server's frame, of radiation emitted at the pulsar proper
time T, and L denotes the same quantity in the pulsar
comoving frame. For our purpose it is sufBcient to work
to first order in v/e, so that

&obs

&emitted
= 1+n P+O(P ),

N = [1+(n P)]n —P+O(P ),
(2.10a)

(2.10b)

where P = vi/c, vi denoting the velocity of the pulsar
with respect the center of mass of the binary system [50].

At this point, let us state precisely our conventions
for the various directional quantities entering the analy-
sis of binary pulsar systems (see Fig. 1). The instanta-
neous position and orientation of the plane of the orbit
with respect to a reference right-handed triad (Ip, Jp, Kp)
(denoted (ex„e~, , ez, ) in Ref. [36]), where

Kp ———n (2.11)

is the direction from the Earth to the pulsar and (Ip, Jp)
are reference directions in the plane of the sky, is defined
by two angles: the longitude of the ascending node 0
(0 & 0 & 2ir) and the inclination i (0 & i & z'). More
precisely, one passes from the reference triad (Ip, Jp, Kp)
to an "orbital" (right-handed) triad (i,j, k) (denoted
(e, ez, e, ) in Ref. [36]) by two successive rotations: first,
a rotation of 0 around Kp which yields

I = cos QIp + sin OJp

J = —sin QIp + cos 0Jp,
K = Kp,

(2.12a)

(2.12b)

(2.12c)

and second, a rotation of i around the direction of the
ascending node I = i,

j = cosiJ + siniK,
k= —siniJ+ cosiK .

(2.13a)
(2.13b)
(2.13c)

The orbital motion takes place in the plane (i, j), which
intersects the plane of the sky along the direction of the
ascending node I = i, and is oriented in the positive
direction (so that k = i x j is the unit vector in the direc-

tion of the orbital angular momentum). For simplicity
we define

C(u):—cos[u + A, (u)] + e cos ur,

S(u)—:sin[a + A, (u)] + e sinu,

Pi = nz(1 —e )

(2.14a)

(2.14b)

(2.14c)

where n = 2x/Pg is the orbital mean motion and
z = ai sini/c the Keplerian timing parameter (projected
semimajor axis) introduced above. The orbital velocity
of the pulsar is then given, to first order, by

[-S(u) i+ C(u) j]
v 1 pl
c sini

(2.15)

S,b, (v,b„T) = (1+3ri P) F„[(1—n P)v,b„N b(T)],
(2.16)

where

n P = —PiC(u), (2.17)
N b(T) = cosn cos(p + sinn sin(p cos(P —Pp),

(2.18)
(2.19)(p = C+ bAC

b~( = . .[—cos gS(u) + cosi sin i7C(u)] . (2.20)
sini

Let @ denote the linear polarization angle, defined
modulo x and measured positively in the clockwise di-
rection in the plane of the sky, as seen from the Earth.
[Beware that this sign convention is opposite to the usual
observers practice; it is dictated by the sense of orien-
tation induced in the plane (Ip, Jp) by righthandedness
of the triad (Ip, Jp, Kp), which is counterclockwise when

For any emission model of the pulsar, i.e., any
specific form of the comoving luminosity L(v, N, T),
the formulas (2.9)—(2.15) specify explicitly the influ-

ence of orbital motion on the flux density [d(energy)/
d(time) d(frequency) d(area)] observable at the solar-

system barycenter, S(v~b, ) = E(v~b„n)/d, where d is the
distance between the barycenter and the pulsar. To give
an example of the information obtainable from the inter-
play between orbital motion and pulse-structure data, let
us consider the rotating magnetic pole model [51]. In this
model, which is supported by many pulsar observations,
see, e.g. , Ref. [52], both the intensity and polarization
features of pulsar emission can be described in simple ge-
ometrical terms by considering the emission to be due to
curvature radiation along the field lines of a dipolar mag-
netic field rotating rigidly in space. This means, in the
simplest version of the model, that the directional lumi-
nosity in the proper pulsar frame is a function only of the
angle between the emission direction N and a rotating
unit vector b(T) pointing along the magnetic axis, while
the radiation is polarized (at emission) along the vector
tangent, at N, to the great circle joining N to b(T) on
the sphere of unit vectors (see Fig. 10-4 of Ref. [52]). An
explicit expression of the effects of aberration on pulse
intensity in this model can then be obtained by combin-
ing Eqs. (2.9)—(2.15) with the usual expressions for the
rotating vector model [52]. It reads
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seen from "above, " but clockwise when seen from below,
i.e. , by the observer; see Fig. 1(a).] The variation of g
with pulsar phase is given by

P0P —ti'0 + ~All'0 (2.22)

tt'0 —~ + 9 + tt'Faraday (2.23)

cot A
&Ago

———pi . . [sin t7S(u) + cosi cos r)C(u)] . (2.24)
sini

In Eqs. (2.16)—(2.24) Fz(v, cos |t) is a fixed function giv-
ing the intrinsic luminosity of the pulsar, in its proper
frame, at frequency v and in a direction making an angle
0 with the instantaneous magnetic axis, while n is the
fixed angle (0 & n & x) between the pulsar spin axis, say
si ——Si/~Si (, and the rotating magnetic axis b(T) [ori-
ented so as to be closest to the direction of the observer
at the time of emission of the main pulse, see Fig. 1(b)],
so that cos n = si b(T). The direction of si with respect
to the triad (I,J, K) of Eqs. (2.12) is coded in the two
polar angles (A, r)), or equivalently ((, r)) (with 0 & A & ir,
0 & t,

' & x, 0 & t7 & 2x), such that

si ——sin A cos tl I + sin A sin tl J + cos A K, (2.25a)

t,
'—:x —A . (2.25b)

It is useful to keep in mind that in the case of perfect

-[~(~)-~..) =
cos cr sin(p —sin n cos(p cos(P —Pti)

'

(2.21)

parallel (rather than antiparallel) alignment of spin and
orbital angular momenta, i.e. si —+k (where the plus
sign has its physical origin in the fact that the observed
pulsar is thought to have been spun up by the orbital an-
gular momentum), the two polar angles become, without
ambiguity, A = i and tl = —7r/2. A priori, we expect real
situations to diA'er only by a small or moderate amount
from this aligned case [see Eqs. (3.36) and end of Sec
IV D for further discussion of "misaligned" cases].

The angles A and g, with A being the angle between s~
and K = Ko, appear naturally in the analysis of timing
data, while the supplementary angle t,

" appears naturally
in the analysis of pulse structure data as the angle be-
tween s~ and the direction from the pulsar to the Earth,
n = —K (see Fig 1). The orbital-phase-dependent angle
t,"p appearing in Eq. (2.18) is the angle between si and the
instantaneous observer's direction N, as seen in the pul-
sar frame. The direction n is viewed in the center-of-mass
frame and is fixed, while N undergoes periodic changes
because of aberration [see Eq. (2.10b)]. Hence, the angle

(p varies during one orbital period by an amount given
by Eq. (2.20), while ( (or A) and t) vary only over the
much longer time scale of variation of sq with respect to
a locally inertial frame attached to the center of mass of
the binary system ("spin-orbit" precession, see Sec. III).
The direction N varies because of aberration both in lat-
itude (bAt,') and in longitude (bAgti). However, the longi-
tude change is equivalent to a change in the phase of the
pulsar, and has already been incorporated in the observ-
able phase P by including the aberration term Ag in the
timing model (2.1)—(2.3) (see Sec. 2.4 of Ref. [36]). As
a consequence, the angle Po in Eqs. (2.18) and (2.21) is

just a constant oAset.

(a) Ko——K

Sg (b)

Orbi
of

FIG. 1. Angles and orientation conventions relating both the orbit (a) and the spinning pulsar (b) to the observer's
coordinate system and the line of sight. The orbital plane is inclined at angle i with respect to the plane of the sky; directions
of the pulsar s spin and orbital angular momenta and its magnetic axis are si, k, and b(T), respectively. (Vectors are denoted
with boldface in the text, but with overarrows in this figure. ) See text. for definitions of other angles.
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(P }= (A, A, ~, iI;, |T, o, gp, ~', i ', a ', o' j, (2.26)

where we have used A—:z —( (cosh = si K) instead of
I

The orbital-phase-dependent polarization offset Qpp

appearing in Eq. (2.21) results from applying the boost

P (and the effect of the interstellar medium) onto the
direction, as seen in the pulsar frame, of the electric vec-
tor of the signal emitted at the center of the main pulse:
E oc si —N(N. si). Hence, the angle Qpp changes, like (p,
on an orbital time scale because of the aberration contri-
bution (2.24), as well as on the much longer time scale of
variation of si. In Eq. (2.23) 0 denotes the longitude of
the ascending node, as defined in Eqs. (2.12); it provides
one of the necessary links between the orbit-based coordi-
nate system and the observer's system [see Fig 1(a)]. The
last term in (2.23) represents the effect of Faraday rota-
tion along the path of signal propagation, which must be

measured and subtracted in order to gain access to the

interesting information contained in the other causes of
variation of happ.

By analogy with the discussion in Sec. II A concerning

timing data, the main question we wish to address here
is: How many new parameters can, in principle, be ex-
tracted from pulse-structure data? Let us first emphasize
that all formulas used in the present subsection are inde-

pendent of the choice of a specific relativistic theory of
gravity. They depend only on special-relativistic effects
and on the lowest-order Keplerian kinematics of a binary
system. However, they do depend on the choice of the
rotating-pole model of pulsar emission, and this model
dependence should be kept in mind if tests issuing from
pulse-structure parameters are ever found to conflict with
tests issuing from timing parameters.

Because the time-dependent blueshift factor B = 1+
ri P + 0(P ) is known from the Keplerian-level timing
data, all its effects in Eq. (2.16) can be computed rather
than fitted for. This leaves the following new set of pa-
rameters available from pulse-structure data, thanks to
the interplay of spin and orbital effects: n, (, cos g/sini,
coti sing, cot% coti cosg, cot%sing/sini, Qp, and Pp.
Monitoring of the pulse shape and polarization over sev-
eral years can also give access to secular drifts of these
parameters (as expected for ( and g because of spin-orbit
precession of the pulsar axis). Among these parameters,
three contain no gravitational information: Pp and gp
depend on arbitrary choices of origins for angles, and o. ,

although astrophysically interesting, is not coupled to the
binary system dynamics. Finally, under the assumptions
of the rotating magnetic pole model, we have the follow-

ing new set of "post-Keplerian" parameters, extractable
in principle from pulse-structure data:

( (cos( = si n), and we have introduced the notation

e = (sin i) cos g,
o = coti sing,
z' = cot A cot i cos g,
o.' = cot A (sin i) sin g,

(2.27a)

(2.27b)
(2.28a)

(2.28b)

for the parameters appearing directly in the measurable
effects. We note in passing that even in cases where sin i
is known from the timing data, cosi is determined only

up to a sign, so that the simultaneous measurement of,
e.g. , 8 —= sin i, e, and cr determines i and g only modulo
the residual ambiguity i ~ m —i, g ~ —g.

III. THEORETICAL CONTENT
OF POST—KEPLERIAN PARAMETERS

In the previous section we have shown that one can, in

principle, extract two sets of post-Keplerian parameters
from pulsar data in a theory-independent way: 8 "tim-
ing" parameters (2.1c), and 11 "pulse-structure" ones

(2.26). In order to exhibit the theoretical importance of
measuring these parameters, in particular for providing
tests of the strong-field aspects of relativistic gravity, we

shall use the framework of a very general class of rela-

tivistic gravity theories. Then, within such a framework,
we shall derive the expressions linking these parameters
to the I&eplerian ones and to the inertial masses of the
pulsar and its companion, i.e. , the functions (2.7). (As
we shall see explicitly, some of these depend also on the
polar angles of the spin axis. ) The theory dependence of
the functions (2.7) will then allow us to assess the the-
oretical content of experimental measurements of each
phenomenological parameter.

A. A generic class of relativistic gravity theories

Let us consider the class of theories which generalize to
the strong-field regime the Eddington p-7 parametrized
post-Newtonian metric, i.e. , theories in which the ef-
fective gravitational interaction between compact bod-
ies is fully conservative and has neither preferred-frame
nor preferred-location effects. We shall consider only
Lagrangian-based theories, and we take "fully conserva-
tive" to mean that the Lagrangian is invariant (modulo a
total time derivative) under the Poincare group. Under
these assumptions, Will [16] has shown (see also [53, 54])
that the general form of the Lagrangian describing the or-
bital dynamics of N compact bodies (with positions ZA

and velocities vA, A = 1, . . . , N) can be written, when

keeping only terms of order (v/c) beyond an effective
Newtonian interaction, as

2 1
LQ(ZA, vA) = —) IriAC 1 — v A

A

1

A]

2 (1+2zAB)(vA. vB)
2c

1 1 GBCIAIB&CA

2 g (&AB' vA)(riAB' vB)
~ ) ) )

BgA CgA AB AC
(3 1)
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Lso (zA, VA aA) —) 2 S~ v~Q~
(T)

A' (3.2)

where S~:—c'&~S& is the spin vector of body A and a~-
dv~/dt its acceleration. Equation (3.2) is independent
of the source of physical interaction between the bodies
and is the manifesta, tion, within the Lorentz-invariant
Lagrangian formalism, of the famous Thomas precession
(which enters all spin-orbit effects, whether linked with
electromagnetic or gravitational interactions).

The remaining part of the spin-orbit Lagrangian of
Ref. [26] depends on the specific gravity theory chosen
(general relativity in that case) and one may expect it
to be modified by strong-field effects in generic theories.
As this second piece is separately boost invariant, it is

In this equation i~B = ~z~(&) —zz(&)~, nzz = (zA—
zgy)/r ~@, the m~ 's denote the inertial masses of the bod-
ies (including gravitational binding energy), and GA~
denotes the effective Newtonian constant for the gravita-
tional interaction between compact bodies labeled A and
B. We assume here that strong-field effects associated
with the self-gravity of each compact body are treated ex-
actly, but we expand in the small parameter (vo"b" /c)~
G~~m~/7'~rye wl'lich characterizes the weak relativistic
gravitational coupling between two well-separated com-
pact bodies. This means that even at the "Keplerian
level, " where one keeps only the G~~m~m~/r~~ in-
teraction between two bodies, the effective gravitational
constant G~B will in general differ by strong-field effects
from the usual Newtonian constant G. Section VA con-
tains some explicit examples of such effects in tensor-
biscalar theories.

Similarly, the quantities in the Lagrangian (3.1) asso-
ciated with O(v /c ) orbital efFects, namely, s~~ (associ-
ated with velocity-dependent or "magnetic" effects) and

G&& (associated with nonlinear relativistic gravitational
couplings) will differ by strong-field effects from their val-
ues in the weak-field limit, respectively, z~~ ——2p+1 and

G&& ——(2P —l)G, in terms of the usual Eddington pa-
rameters P and y. General relativity differs from generic
theories of gravity in that all strong-field effects are "ef-
faced" in relativity: once lumped into the observable in-
ertial masses, self-gravity effects are renormalized away.
Explicitly, in general relativity one has (G~B)GR = G,
(s&B) = 3, and (G+&c) = G, both for ordinary
and compact; bodies. We thereby see that any measur-
able parameter whose interpretation within the frame-
work of Eq. (3.1) depends on either G~~, sg~, or G&&
is of potential interest, as a test of strong-field gravity.

In order to discuss all potentially observable parame-
ters in binary pulsar systems, we need to complete the
orbital Lagrangian (3.1) by adding the general form of
relativistic spin-orbit effects. In keeping with the as-
sumptions made above, we shall require invariance un-
der Poincare transformations and notably under Lorentz
boosts. As first discussed explicitly by Damour [26],
this implies that the spin-orbit Lagrangian depends not
only on positions and velocities but also on accelera-
tions. Actually, the acceleration-dependent piece of the
Lagrangian obtained in Ref. [26] is just

Lso(zA, vA, &A) = ) .—,S„*'
~ 2v~u&+ ) .

x(vA —v~)(z'„—z~) l
.

(3.3)

The possible influence of strong-field effects in spin-orbit
phenomena shows up in the appearance of the coupling
function I'&, which is simply equal to 20 in general rel-
ativity [55, M, 26], but which is expected to be modified
by self-gravity contributions in other theories. One al-
ready knows that I'g = (p+ 1)G in the PPN framework
[57], which suggests that in general I'g may be equal to
&(spa + 1)Gg~. In absence of a theory of the motion of
spinning compact bodies in a generic theory of gravity,
we shall keep I'& as a free strong-field parameter, and
assume nothing about its symmetry under exchange of
the labels A and B.

The orbital dynamics of a binary pulsar system is ob-
tainable from the total orbital Lagrangian

Io '(z~, v~, a~) = Lo + Lso (3.4)

in which the spin vectors play the role of given, slowly
evolving, external fields (see Sec. III B for a discussion of
the eff'ect on the spins of the spin-orbit interaction). As
recently pointed out [29, 39], one cannot simply limit the
summations in Eqs. (3.1) and (3.3) to the two labels, say
1 and 2, corresponding to the pulsar and its companion,
because the influence of the Galaxy can be important
enough to lead to measurable effects. However, for sim-
plicity's sake we shall first consider the binary orbital
eff'ects by themselves, and later add the (strong-field-
modified) Galactic effects. Actually, the work of Ref. [39]
shows that, for pulsars of the type we shall consider here,
quasiperiodic timing effects linked to violation of the
strong equivalence principle [b, —:(Gis —G2s)/G g 0,
where the label 3 corresponds to the Galaxy] are negligi-
bly small, and their contributions to i and e are smaller
than the effects of gravitational-wave damping (in gen-
eral relativity) as long as ~b,

~
( 0.18. The present work

and a sequel paper [42] will show that existing timing
data already restrict such violations of the strong equiv-
alence principle enough to allow us to neglect such effects
in advance. As for the other, more standard, Galactic ef-
fects discussed in [29] within the general relativistic con-

text, we will discuss their contribution to Pp separately
in Sec. III B.

Considering then the Lagrangian (3.4) for an iso-
lated binary system (A, B = 1, 2), we can take advan-
tage of its Poincare invariance to go to the center-of-
mass frame of the binary system. Moreover, follow-
ing the work of Damour and Shafer [38] we can elimi-
nate the accelerations by means of the coordinate shift

= z& + S& v&/(2m~c ). Finally we obtain the follow-
ing Lagrangian for the relative motion (R—:ri —r2, V—:

easy to generalize it to an arbitrary boost-invariant the-
ory. This leads us to write the following general form of
the spin-orbit interaction term within our general class
of theories:
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Vl —Vg

L (R,, V) =/ILo+Lso, (3.5a)

2

Lso —) ~ASA L/R .
A=1

(3.5c)

In Eqs. (3.5) L denotes the orbital angular momentum in
the center-of-mass frame [/IR x V + O(c 2)], N denotes
(here and only here) the unit vector R/R, and the SA's
are the same spin vectors as used above. We have used
the shorthand notation M:—mi + m2, /I—:mim2/M,
v = /I/M (with 0 & v & 1/4), g—:G» («ective gravita-
tional constant between the pulsar and its companion),
g = pig, and

Lo(R, V) = —V- + + 2 (1 —3v) V
8c

CgM ( 2 2 /MAL+ ~ (s+ v)V + v(N V)2Rc2( Ry
(3.5b)

Xi = mi/M and X2 = m2/M

low the method of Ref. [36] to derive the explicit timing
formula in a generic gravity theory. The only modifica-
tions, brought by a new gravity theory, to the derivation
in [36] are (see Ref. [16]) (i) the need to take into account
the Keplerian mass (which enters gpp) of the companion
in the gravitational redshift of the pulsar clock, (ii) the
possible addition of a contribution arising from orbital
modulation of the pulsar's moment of inertia (written,
following Refs. [16,44], as AII/II ——+~r/'m2/Rc where
z = —Bin II/0ln G'I ', and where I/' measures the in-

fluence of the proximity of the companion on the value

of the gravitational constant at the location of the pul-

sar, Gii c ' = G(l —I/'m2/Rc2)), and (iii) the need to
take into account both the I&eplerian mass (iil gpp) and
the "space curvature" one (in gi&) when computing the
Shapiro time delay.

To express conveniently the final results, which replace
Eqs. (33)—(37) of Ref. [36] in a generic boost-invariant rel-

ativistic gravity, let us introduce the dimensionless vari-

ables

( = (mlG» + m2G22)M

oA ——c '[r„+(r„——2'GATI)(m&/ )],

(3.6a)
(with Xi + X2 = 1, XiX2 ——v),

(A = 1, 2; B g A) . (3.6b)

The possible difFerences between a generic theory of grav-
ity and general relativity lie in the quantities g, s, (, tri

and 0'p, which in Einstein's theory are, respectively, equal
toG, 3, 1, and

Po
—= (gMn/c ) /

b = n7/e .

(3.8a)

(3.8b)

(3.8c)

(3.7)
Then, using the form taken by Kepler's third law in a
generic theory of gravity, namely,

2/3

B. Post —Keplerian parameters
in generic gravity theories

Let us first consider the pure orbital dynamics re-
sulting from the Lagrangian L, Eq. (3.5b). Follow-
ing the method of Damour and Deruelle [47], one can
write the solution for the relative orbital motion, includ-
ing O(v2/c2) contributions, in a simple quasi-Newtonian
form. The influence of strong-field efFects in a generic
theory appears in modifications of the general relativis-
tic Eqs. (2.17) of Ref. [47] for the coefficients therein
called A, B, G, D, H, and I [these denote the coeffi-
cients of the various powers of R that appear when
one expresses (dR/dt)2 and dg/dt in terms of R and
the relative orbital energy and angular momentum, E
and J]. Subsequent relations involving these quantities,
and particularly Eqs. (3.3)—(3.5), (4.11), and (4.12) of
Ref. [47], which define the post-Newtonian motion in a
binary system to order (v/c) 2, require no further changes.
Moreover, one can show that the only modification in
the relativistic center-of-mass integral (associated with
the boost invariance of the Lagrangian) is to replace G
by Q in Eq. (2.3b) of Ref. [47]. This substitution prop-
agates to Eqs. (2.4) and (6.1)—(6.3) therein, and allows
us to get simple expressions for the relativistic motion of
the pulsar around the center of mass. We can then fol-

p2
(s lg+ 1) 0 (3.10)

b = X2 (Gp2 + X2g + Icr/')

hintrinsic
( + 1 X2) p2

bllltrlnslc
( + 1 1 X2) p2

1,Gp2(1+ sp2)m2,4c3
nz

poX2
'

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

po X2
21rv„(1 —e2) '/'

poX2
2n. vp(1 —e2)'/2

sin g
sinA '

cos 1 cos g
sin A

(3.16)

(3.17)

(3.9)

where aR denotes the semimajor axis of the relative or-
bit, we can express the phenomenological parameters
of the DD model coming from the O(v /c2) —accurate
orbital dynamics in terms of the Keplerian parameters
(n = 2n/PI„z, and e) and of the two masses mi and m2

[see Eq. (2.7)]:
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gobs pintrinsic
(& (3.18)

with sg = A/z and sge = A0/z.
In addition to the post-I&eplerian timing parameters

(3.10)—(3.17), linked to the orbital Lagrangian at or-
der (v/c)2 and to aberration effects, there are further
timing parameters linked either to spin-orbit effects or
to higher-order relativistic effects, notably gravitational-
wave damping of the system. Both types will contribute
to intrinsic secular changes of the Keplerian parameters;
for example, we expect changes in z = a1 sini/c because
the orbit shrinks under gravitational-wave damping, and
also because the inclination changes via spin-orbit effects.
Moreover, as discussed above, if we fix the unmeasurable
parameters A, B, and D to some fiducial values, the spin-
orbit coupling and the varying Doppler effect between
the pulsar system and the solar system will introduce
further apparent changes in the observable parameters
P& ', z ', and e '. Finally, we can write

obs

k t)
~Py~ D

i') D' (3.19)

In these equations Q = G12, s—:F12, and ( have been
defined above [Eq. (3.6a)]; G02 denotes the effective grav-
itational constant between the (compact) companion m2
and any noncompact test particle (m0 ~ 0); similarly,
802 —&AB for ~A —~o + 0, ~B = &~2. Note that al-
though the parameter s denotes simply sini, the elimina-
tion of a1 = X2aR =—cz / sin i in terms of the masses and
the orbital period introduces a theory dependence be-
cause of I&epler's third law (3.9). AVe have expressed the
aberration parameters (given in any theory by Eqs. (38)
and (39) of Ref. [36]) in terms of the masses, the orbital
period, and the polar angles of the spin vector introduced
in Eq. (2.25a). [However, we left cosi in Eq. (3.17) with-
out replacing it in terms of s = sini because its sign
is a priori unknown. ] Moreover, one should remember
from Eqs. (2.5) above that be given by Eq. (3.13) is the
intrinsic value of this parameter, but that when the (un-
measurable) aberration parameter A is replaced by some
fiducial value, say Ao, the observed value of b~ will be

D 1 VzK' (apsr system asolar system) +c cd

(3.22)

where the acceleration a,o~zp syst;e~ is given by the stan-
dard Galactic acceleration at the solar location, g, ~ „
but where the acceleration of gravitational free fall of the
pulsar system is modified, in a generic gravity theory, to

—1
aper system —G (+1t-r01 + +2G02) Qpsr (3.23)

where gp, „ is the Galactic acceleration at the location of
the pulsar system. In Eq. (3.22) v2 denotes the velocity
of the pulsar system transverse to the line of sight, and
d the distance between the solar system and the pulsar
system. The effect of varying aberration reads

dh~ P„1 d sin t7 l
dt Pt sini(1 —e ) &2 dt

sining

To make explicit Eqs. (3.19)—(3.21), we therefore need
to know the values of the changes of the inclination, and
of the polar angles of the spin of the pulsar, predicted by
a generic theory of gravity. Both effects arise from cou-
pling between the orbital and spin degrees of freedom,
and they are therefore contained in the spin-orbit interac-
tion Lagrangian (3.5c). The effects of spin-orbit coupling
on secular evolution of the orbit have been worked out
in general relativity in [56] and [38]. To generalize them
to the present case it is sufFicient to replace everywhere
the combination (o~)GR of Eq. (3.7) by the more gen-
eral one, o.~ of Eq. (3.6b). Hence, we conclude that the
orbit will rigidly precess in space with average vectorial
velocity

(I-Iorbit) (~orbit) + (~orbit) (3.25)

where (Oo" ") = knk is the effect of the orbital La-
grangian (3.1), and where the effect of the spin-orbit in-
teraction reads

The contribution of the varying Doppler shift reads
[29]

(~orbit) ) (~orbit) (3.26a)

(
obs p. ~

GW
p

d. ~
SO

+ I
cott —

I +
5 a1) 5 dt) dt

D

(3.20)

A=1

(A~ ")= 3 ( [s~ —3(k s~)k] . (3.26b)
R

(e e) dt
(3.21)

where s~ = A/z as above. lVe shall not attempt here to
give precise expressions for the gravitational-wave damp-
ing contributions in Eqs. (3.19)—(3.21). Indeed, such
high-order, mixed radiative and strong-field eftects de-
pend in a complicated way on the structure of a. gravity
theory and are not as easy to describe in terms of a small
number of arbitrary functions as was possible for the PK
parameters (3.10)—(3.17). See, however, Il,ef. [32] for the
derivation of Pb in the general class of tensor-multiscalar
theories.

2
OQSQ

dt ~ a3 (1 e2)3/2
A 1 R

(3.27)

where i—:I:—K0 x k/~K0 x k~ is the direction of the
ascending node, introduced in Eq. (2.13a). Note that the
projection of the pulsar s spin on the nodal direction can

In these equations k is the orbital precession parameter,
Eq. (3.10), k—:L/~L~ is the direction of the orbital an-
gular momentum [introduced in Eq. (2.13) as the third
vector of the orbital triad], S~ is the magnitude of the
spin of body A, and s~ = S~/S~ the direction of its spin
axis. These equations imply that the orbital inclination
will undergo the secular variation
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be expressed in terms of the polar angles A and g as

s~-i = s~ l = sin% cosy, (3.28)

Lso = —) .&'A"" SA
A

(3.29)

as is familiar for the interaction of a magnetic dipole
with an external magnetic field. By a general mechanical
argument [61], the derivative of Lso with respect to a
vectorial rotation acting only on the rotational degrees of
freedom of body A yields the mechanical torque acting
on A:

KA ——BL'so/BQA = +O'A~'" x SA . (3.30)

Hence the evolution of the spin of body A is given by

dSA ~spin S
dh A (3.31)

while the similar quantity for the contribution of the spin
of the companion introduces new angles that had not yet
entered our discussion, as well as the (unknown) magni-
tude of the spin of the companion. Fortunately, in the
case of PSR 1913+16,and plausibly in many other cases,
one can argue indirectly that the contribution of the spin
of the companion S2 is much smaller than that of Sl,
because of the expected slowing down of a normal (non-
recycled) pulsar (see the discussion following Eq. (5.27)
of Ref. [38], as further confirmed by the discussion be-
tween Eqs. (4.4)—(4.11) of Ref. [29]).

The final task that we need to address concerns the
time evolution of the spin polar angles A and g, which
enter the timing parameters i ' and i ' indirectly
through Eq. (3.24), and the pulse-structure parameters
(2.26) directly. In other words, we wish now to discuss
the effect of spin-orbit coupling on secular evolution of
the pulsar spin. This evolution was derived within gen-
eral relativity soon after the discovery of PSR 1913+16
[35, 56, 58—60). To generalize these results to our generic
theoretical framework, it is sufhcient to remark that the
spin-orbit Lagrangian (3.5c) couples the spin degrees of
freedom to the orbital ones in the same linear way,

with

spin %1P(gM) P c Kl Po
( )u5i'2(1 e2) M g 1 —e2

Of particular interest is the time evolution of the com-
bination sin rl/sin A appearing in the aberration effect
(3.24). It is given by

d t'sin gl Qi~'"
( sin i cos A sin 2iI

dt i, sin A j sin

+ cosi sin% cosiI) . (3.35)

We find it useful to remember that in general relativity
the ratio of 0&

'" to the periastron precession ~ = I"n
is 7/24 ( 0.29) in the equal-mass case. Note also that
an aligned rotator with s~ ——+k corresponds to A = i
and rI = —3/2, for which values the right-hand sides of
Eqs. (3.33) and (3.35) vanish. Furthermore, if we denote
by b (0 & 6 & x) the "misalignment, " i.e. , the angle be-
tween sl and k (k sl ——cos b), and by /so the longitude
of sl during its precession motion around k (counted in
the sense of motion from the meridian defined by —J),
we have

cos A = cos b cos i —sin b sin i cos /so,
cos i7 = sin 6 sin /so/ sin A,

(3.36a)
(3.36b)

in which 6 is fixed in time while /so = +Bi '"t + const.
Although the direction of sq can be equivalently de-
scribed by (b, /so) instead of (A, g), we shall use the latter
pair of angles because they are more directly related to
measurable quantities.

In addition to providing expressions for the values of
e ' and i b', the results (3.33) allow one to derive ex-
plicit equations for the secular-drift pulse parameters A,
ic, 0, ic', 0', and go in the set (2.26). When computing
these it is useful to keep track of their order of magni-
tude in terms of two basic small parameters: the ratio
v"b""/c, which can be approximated by Po, Eq. (3.8b),
and a corresponding ratio for the equatorial spin velocity
of the pulsar, say Ps ——cS/Gm2 [38]. Then we have

where

~spin
A

O.A L
R3

(&spiny
A I us (1 e2)3/2

(3.32a)

(3.32b)

~/n - n' '"/n - po,

fatso "/n - PoPs

(dsA/dh)/n PoPs ',
[gGW/ ]GR p5

(3.37a)

(3.37b)

(3.37c)

(3.37d)
the latter equation giving the time average of the former
one. From this Lagrangian derivation it is clear a priori
that the total angular momentum (L+ ZSA) of the sys-
tem will be conserved. (Indeed, the non-time-averaged
precession of L is dL/dt = E aA SA x L/R, see Ref. [38]).
Working out the meaning of Eq. (3.31) in terms of the
polar angles A and g of Sq leads to

For the pulsars PSR 1913+16and PSR 1534+12 one has
roughly Po P~ 2 x 10,which shows that the indi-
rect spin-orbit contributions to i ' and i ' should be
appreciably greater than the gravitational-wave damping
contributions.

spin

Ch
= —0 p sini cos g

—= + Qi (sin i cot A sin i1 + cos i),~9 spin

(3.33a)

(3.33b)

C. Post-Keplerian parameters and tests
of relativistic gravity

To simplify the following discussion we shall assume
that, beyond the Keplerian parameters, one has already
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extracted from some pulsar data both the secular perias-
tron advance parameter, ~ = I"n, and the time dilation
parameter, y—:eb/n. From Eqs. (3.8)—(3.11) it is clear
that, in each theory of gravity, these two measurements
will constrain the two unknown masses to lie at the in-
tersection of two curves in the m~, rn~ plane. The shape
and position of the curves will depend on the strong-field
effects contained in Q = Gq2, e = s&2, and ( defined by
Eq. (3.6a), as well as on the parameter rj" measuring the
sensitivity of the local value of the (test-particle) gravi-
tational coupling constant to some external gravitational
potential. Although, in general, we need to measure at
least three PK parameters to have a sharp test of gravity
theories, the measurement of even two of them, e.g. , ~
and p, can still provide interesting limits on how far a the-
ory can deviate from the correct theory through the sim-
ple requirement that the corresponding two curves in the
mass plane must intersect. We shall see below that this
requirement provides nontrivial limits on the free param-
eters of a rather general class of tensor-biscalar theories.
Assuming henceforth that the intersection requirement is
satisfied, we can now discuss what the measurement of
any further PK parameters, beyond u and p, can teach
us about gravity.

allax (z = 1/d), either from timing data or by other
means.

8. Shapiro delay parameters, r and s

Equations (3.14) and (3.15) show that measurements
of r and s can provide two clean tests of the strong-
field effects entering the pure orbital, O(v2/cz)-accurate
Lagrangian, Eq. (3.1).

8. Orbital shape correction, bq

Equations (3.13) and (3.18) show that measurement of
bp provides a test of gravity only if we know, from some
other evidence, the direction sq of the spin axis of the pul-
sar. Such evidence is already available for PSR 1913+16:
studies of secular evolution of its pulse structure [63, 64]
indicate that s~ is probably aligned with k to within a
few degrees, so that A i and rl —z/2. Alternatively, a
measurement of b~ can provide a handle on the direction
in space of s~, which can be of interest for the spin-orbit
tests discussed below.

Derivative of orbital eccentricity, e

Orbital period derivative, Pb

Equations (3.10)—(3.17) help to clarify what was em-
phasized in the Introduction: that combining a measure-
ment of Pg (which in a clean binary system is predomi-
nantly determined by gravitational-wave damping) with
measurements of ~ and p gives access to a mixed test
wherein both radiative and quasistatic strong-field effects
play important roles. As recently shown by Damour and
Esposito-Farese [32], this mixing of effects allows theories
that differ significantly from general relativity to pass
the test just as satisfactorily as relativity itself. More-
over, Eqs. (3.19), (3.22) and the recent work of Damour
and Taylor [29] show that the D contribution to P~ can
ultimately limit the precision of the tests of relativistic
gravity deducible from P& (or, alternatively, the precision
with which one can phenomenologically constrain the
time variation of Newton's gravitational constant G [62]).
In particular, the relatively poor accuracy with which
one knows the basic Galactic quantities vp and Rp (with
g, ~, = vpz /Rp) will within a few years dominate the over-
all uncertainty in interpreting P~ for PSR 1913+16,at a
level of about 0.2%%up of the total observed effect.

Fortunately, the Galactic source of uncertainty is con-
siderably reduced for relatively nearby binary pulsars
such as PSR 1855+09 and PSR 1534+12. Here we as-
sume that G (XyGpy + X2Gp2) 1 in Eq. (3.23), so
that for d (( Ro one gets mainly the differential Galactic
acceleration g&,„—g,. ~„. oc d, see Eq. (2.8) of Ref. [29].
On the other hand, one must still worry about subtract-
ing the transverse-velocity effect vT/cd, which might then
become the major source of uncertainty. These issues call
attention to the desirability of planning observations of
nearby pulsars so as to facilitate direct measurement of
both the proper motion (p = vT/d) and the annual nar-

From Eqs. (3.21) and (3.24), and assuming for simplic-
ity that the gravitational-wave contribution to e can be
neglected, we see that a measurement of e can provide a
significant test of the precession of sy due to spin-orbit
interaction.

5. Derivative of projected semimaj or axis, x

From Eqs. (3.20), (3.24), and (3.27), and assuming also
for simplicity Eqs. (3.37), we see that a measurement of z
is a test of the combined inAuence of spin-orbit coupling
on the spin, Eqs. (3.24) and (3.35), as well as on the
orbit, Eq. (3.27) [38].

6. Pulse —structure parameters

Among the pulse-structure paiameters, those most
likely to be measurable are n, A—:z —(, and tPp. Here
we assume the favorable circumstances in which polar-
ization and pulse-shape information are available over a
wide range of pulsar phase; otherwise it may be possible
to measure only the angular distance between the mag-
netic axis and the line of sight, i.e., the "impact parame-
ter" g —o. [52, 65]. Knowledge of A is very useful, because
~A

—i
~

provides a lower limit for the angle between sq and
k and therefore a lower limit on the amplitude of spin-
orbit precession in the system. (Recall, however, that i is

generally known only modulo the ambiguity i ~ z —i.)
More information is needed to determine g, the other
polar angle of sq. As indicated by Eq. (2.23), even the
precise removal of Faraday rotation from the observed
central polarization angle @p is not sufficient, because of
the a.dded contribution of the unknown longitude of the
ascending node 0 (which does not otherwise enter the



45 STRONG-FIELD TESTS OF RELATIVISTIC GRAVITY AND. . . 1853

relations between PK parameters, although it does play
an important role in some relativistic orbital properties
of binary pulsar systems in presence of a violation of the
strong equivalence principle [39]).This dependence illus-
trates the importance of trying to extract more parame-
ters from pulse-structure observations.

As first pointed out by Smarr and Blandford [49],
the parameters e and a of Eqs. (2.27), which enter the
aberration-induced periodic shift of (,

bA( = Pi[—~S(u) + aC(u)], (3.38)

IV. MEASURABILITY OF POST—KEPLERIAN
PARAMETERS

A. General concept of measurability

Before exhibiting specific examples of how well (or how
poorly) some parameters can be measured starting from
pulsar data, let us briefly discuss our general approach
to the issue of measurability of fitted parameters. The
two basic elements of the problem under discussion are

give access in a single orbit to the angle q [modulo the
ambiguity indicated following Eqs. (2.28)]. Moreover, as
we pointed out in Sec. II B above, polarization measure-
ments can, in principle, determine the parameters e' and
0' entering the aberration-induced shift of $0, Eqs. (2.24)
and (2.28). These parameters would give access to both
A and g (modulo some discrete ambiguities), and re-
peated observations of pulse structure over many years
could in principle give access to the secular drifts A, gs,
ic, rr, i','and O'. Such redundant measurements would
provide (at least within the assumptions of the rotating
pole model) several tests of the relativistic precession of
a spinning neutron star in an arbitrary theory of gravity
[Eqs. (3.33)], thereby complementing and going beyond
weak-field tests of gravitomagnetic effects.

Note that even if aberration effects are too small to
give access to z and 0 (or z' and 0') and their drifts,
the combined measurements of A, gs, A and Qs, if com-
plemented by an accurate removal of Faraday rotation,
could yield (modulo some sign ambiguities) values for g
and 0& '", and thereby a test of relativistic gravity. In-
deed, as seen from Eqs. (3.37) above and Eq. (5.11b)
of Ref. [38], the dQ/dt contribution to $0 is negligible
compared to the drI/dt one. Therefore we would know
at once A, A, and drj/dt, and we could use Eqs. (3.33)
to determine both g and 0',~'" (modulo some discrete
ambiguities). More precisely, let us consider as an exam-
ple the case where the misalignment angle b is small but
nonzero. Since (—sing) = cos(g+ z/2) = 1+O(b ), we
can consistently approximate sing by (—1) on the right-
hand side of Eq. (3.33b), providing the value of Qi~m in
terms of drI/dt, A, and i. Equation (3.33a) can then be
used to determine rI. This example (which is probably
relevant to many real cases) shows that monitoring the
secular evolution of $0 is physically important because
it can lead, in contrast with the measurement of A, to a
direct measurement of 0& '", and therefore to a test of
relativistic gravity.

(1) a finite sequence of observed arrival times on Earth,
t, ', i = 1, . . . , N, each endowed with a one-0 observa-
tional "error bar" 0 b', and (2) a theoretical model, i.e.
an explicit mathematical function, say F, of one inte-
ger n and a set of parameters (p }which predicts that,
in absence of noise, and for the actual values of the
parameters, p, the nth pulse should arrive on Earth
at time t~b' "(n) = F(n; p ").As a particular example
we note that the actual data set for PSR 1913+16 has
N = 4926 measured pulse arrival times as of Decem-
ber 1990, and that most of the 3713 recorded since 1981
have o',. ' ~ 15ps. Approximately 20 parameters p~ are
required in fitting these observations to the theoretical
model [22].

Because of noise in the observations, there would not
be perfect agreement between observed and theoretical
arrival times even if we knew in advance the actual values
of the p 's. Moreover, we do not know the actual values
of the p 's; the best we can do is to choose a definite
algorithm allowing us to compute from the set of noisy
data (tombs, orbs} a set of estimated parameters (p },say

est E (tobs obs) (4.1)

Note that the choice of pointwise estimators E is partly
arbitrary, though restricted by the basic consistency re-
quirement that p' should converge, in probability, to
p~" when the number of observations tends to infinity or
the variances to zero. (See, e.g. , Levine [66] for a thor-
ough discussion of the various other requirements that
one may wish to impose on statistical estimates. ) Hav-
ing chosen the estimators E, it is important to keep in
mind that the parameter values p"', defined by Eq. (4.1)
are random variables that inherit their probabilistic char-
acteristics (distribution function in the space of the p s)
from the ones of the noisy data t, ', supposed to be an
arbitrary sample selected from a random process with
known statistical characteristics. In the following we
shall assume that the noise in t~b' is uncorrelated (for
different values of i) Gaussian noise, with standard devi-
ations cr

Given the observations, their noise characteristics, and
some estimators E~, we can describe quantitatively the
measurability of each parameter p by the size of suitable
confidence intervals of its corresponding random variable
p ",defined by Eq. (4.1). We then state that p is "mea-
surable" from the data (t, b', O,.b'} if, say, a 90%%uo confi-
dence interval of p ' is contained within some physically
interesting target interval. The absolute and/or frac-
tional size of the interval will depend not only on the con-
sidered parameter, but also on the theoretical framework
within which one chooses to interpret it. Usually, the tar-
get interval for a nonzero parameter could be something
like [zpi'"sd, 2pi' d], or sometimes [—2pi'", +2pi'"d],
where pi'"~ is a "predicted" value for p, given previous
measurements of other, more easily measurable, param-
eters in the set (p~} and some standard physical the-
ory hnking the p 's among themselves. (This would, for
example, be the case for the parameter r, given previ-
ous measurements of u and p and working within the
standard general relativistic framework. ) However, if the
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standard theory predicts a zero or unobservably small
value for some parameter p~, but a nonstandard the-
ory predicts a relatively large value, the choice of a cor-
respondingly large target interval will still entitle us to
make a significant measurement of this parameter, lead-
ing to a solid test of the nonstandard theory.

In the following discussion we shall use least-squares es-
timators, defined by taking for p" the (generally unique)
values of parameters that, for given data (t, ', a,.b'),
minimize the quantity

o'
i=1

In this expression n; denotes the number of the pulse
observed at time t, ', defined as the integer which mini-
mizes the difference ~t,

' —F(n;; p ) ~. (In the actual im-
plementation of the least-squares algorithm, it is conve-
nient to approximate the differences t,,

b' —F(n;; p ) by
Pz[G(t, b'; p ) —n;], where G is the inverse of function
F, i.e. , F[G(t, p~); p ] = t; see Ref. [22].) In addition to
its consistency and other good statistical properties, the
least-squares procedure has the advantage of leading, at
least in favorable cases, to a simple description for the
statistical properties of the estimated parameters. In-
deed, when the noise in t; ' is Gaussian with standard
deviation o; ', and when N is sufficiently large, the level
contours in the space of fitted parameters of the function

&X'(p ) =—X'(p ) —inf X'(p ) = X'(p ) —X'(p'.")

(4 3)

correspond to known confidence levels which depend only
on the number of fitted parameters one is concentrat-
ing upon. For example, if one is interested in the sep-
arate measurability of one particular parameter, say p&,
the condition Ag ( 1 defines a 68% confidence interval
containing pi", while Ag2 ( 4 defines a 95%%u&'& confidence
interval. For the joint measurability of two parameters,
pi and p2, 68% and 95'%%uo confidence regions are enclosed
by the level contours Ly = 2.3 and Ay = 6.2, respec-
tively. This simple description is valid when N is large
enough, or the o s small enough, that the shape of the
Ay (po) function around its minimum is parabolic in all

relevant directions of parameter space. When this is not
the case for some directions, which means that some pa-
rameters are not well measurable, it is still convenient
to use the successive Ay contours to define confidence
regions and to quote the corresponding standard proba-
bilities as nominal confidence levels.

diFiculty. For example, we know a priori that the BT
model was conceived so as to contain, beyond the basic
Ikeplerian orbit, only the largest post-Keplerian effects
present in timing data, namely those associated with a
secular advance of the periastron u and time dilation p,
in addition to various other possible secular drifts of Kep-
lerian parameters (Pi„e, i) By contrast, the DD model
was designed to complete the BT model by including
all conceivable (within a large class of theories) secular
and periodic relativistic timing effects at the fractional
level (v 'b'r/c)z beyond the Keplerian ones, neglecting
only (v "b"/c)s effects (expected to contribute only at
the negligible 30ns level for v 'b" /c ( 3 x 10 s). A sim-
ple way of estimating in advance whet;her or not the new
(separately measurable) parameters appearing in the DD
model (namely r, s, bs) will be measurable, is to compare
the quality of the fit of some given data to the BT and
DD models. A first, global, measure of the goodness
of fit is simply the minimum value of y, say g;„, after
all fitted parameters have been optimized. We know that
when the number of measurements N is sufficiently large,
g„„.„can be approximated by a Gaussian random vari-
able of mean value N —v and variance 2(N —v), where v
denotes the total number of fitted parameters and N —v
the number of degrees of freedom. Table I exhibits the
values of X —v and y;„ for fits of actual timing data to
the BT and DD models [22, 23, 42]. The numbers show
that the DD model is a significantly better fit to the
data than the BT one, which would seem to imply that
some of the new parameters appearing in DD must be
readily measurable. [Note that it is mostly the difference

ym;„(BT) —gz;„(DD) that is significant; the fact that

gz;„(DD) exceeds N —v by about twice +2(N —v) is
a consequence of imprecise estimates of the experimental
uncertainties in the data. ]

However, this conclusion regarding measurability is not
quite correct for the following reason. The DD model
differs from the BT one in two ways: it introduces new
parameters corresponding to effects not included in BT,
but it also associates more effects with "old" parameters
than BT does. Such is notably the case for the parame-
ter associated with the periastron advance, denoted u in
BT and k in DD (with u = nk = 2nk/Py) In the B.T
model, u takes into account only the secular drift of the
longitude of periastron, uBT = no+a(f —to), whereas in
the DD model k describes both the secular drift and the
quasiperiodic motion according to aDD: 4fp + kA (u).
(See Secs. 3.6 and 3.9 of [36] for a full discussion of this
issue. ) This situation suggests defining an improved ver-
sion of the BT model, say BT+, which does not con-

B. Preliminary analysis

As a first way of gauging the measurability of some
parameters, it is convenient to use simple approaches
before studying the full variation in parameter space of
the y (p ) function (4.2). One simple approach consists
of fitting the data (t,; ', o, ') to models differing in the
presence of parameters known to correspond to small ef-
fects, a,nd therefore expected to be measurable only with

Model

BT
BT+
DD

Degrees of
freedom (N —v)

3697
3697
3697

2
dmin

3969.5
3890.2
3878.9

TABLE I. Values N —v and y~;„ for observations of PSR
1913+16fitted to three different timing models.
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tain more parameters than BT, but which associates with

the full secular-plus-periodic effects of periastron ad-

vance by using everywhere ~DD instead of ~B~. One sees
in Table I that the BT+ model fits the PSR 1913+16
data nearly as well as does the DD model. This result
shows that previous reports ([21], and especially Fig. 6

of [22]) of a significant measurement of a "post-BT" pa-
rameter (respectively (sin i)EH and (sin i)Hss in Refs. [21,
22]) were mainly consistency checks that the periastron
advance contains, as predicted by all relativistic theories
of gravity, both secular and quasiperiodic effects as de-

scribed by Eqs. (2.3).
Beyond realizing from comparison of the values of yz, „

in the BT+ and DD models that the global measurabil-

ity of the new post-Keplerian parameters contained in

DD is much smaller than one might think, one can try to
exhibit more explicitly the actual magnitude of the tim-

ing effects contained in DD but not in BT+. This can
be done by numerical simulation in the following way.

One first generates mock timing observations by adding
(pseudo-)random Gaussian noise to a sequence of the-
oretical arrival times computed within the DD model,
using general relativistic predictions for the unmeasured
PK parameters. Then one fits the fake data to the BT+
model and plots the residuals as functions of the orbital
phase.

For illustrative purposes, we plot such residual differ-

ence curves in Fig. 2(a) for both "DD—BT" and "DD-
BT+", using the current orbital parameters of the PSR
1913+16 system. Although the DD—BT curve [dashed
line in Fig. 2(a)] has a maximum amplitude ) 5 ps, most
of it arises from the nutation in the periastron advance.
After this effect is accounted for, the DD—BT+ curve

(solid line) shows that in general relativity the post-BT+
parameters produce a "useful signal" currently amount-
ing to only 0.4 ps. The useful signal strength turns out
to vary with the mean value of uo in the data set. For
PSR 1913+16 it was much larger some years ago, ap-
proximately 2 ps in 1975, when ~0 ——180', it will reach
a minimum of less than 0.1 ps in 1996, when ~0 = 270',
before increasing again. Since the current observational
precision for PSR 1913+16 is about 15ps, the prospects
for measuring new PK parameters from its timing data
are not very good, at least on a short time scale. (Never-
theless, we shall see in Sec. V that PSR 1913+16can still
provide significant new constraints on specific classes of
alternative relativistic gravity theories. )

For comparison, Fig. 2(b) exhibits the residual differ-
ences DD—BT and DD—BT+ for data simulating the re-
cently discovered binary pulsar PSR 1534+12. In this
case the two residual difference curves are nearly identi-
cal, which implies that for this set of orbital parameters
the new effects contained in the DD model produce an
observable signal associated mainly with the extra pa-
rameters t, s, and be rather than with the "nutation"
uDD —~n~ in the periastron advance. (The main phys-
ical difference between the parameters of PSR 1534+12
and those of PSR 1913+16responsible for this improve-
ment is a much greater inclination of the orbital plane,
sin i 0.96 as opposed to 0.73, which amplifies and ren-
ders more recognizable the Shapiro time delay. ) Most
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FIG. 2. Post-fit residual differences between the DD and

BT models (dashed lines), and the DD and BT+ models (solid

lines), obtained by using the orbital parameters of (a) PSR
1913+16 aud (b) PSR 1534+12. Mock data were generated

using equations of the DD model and the currently observed

parameters of each pulsar; the data were then fitted to the
BT and BT+ models by adjusting the Keplerian orbital pa-
rameters, and the residuals were connected with straight line

segments.

importantly, Fig. 2(b) shows that for PSR 1534+12 the
useful signal associated with the new set of PK param-
eters {r,s, bs) is about 8 ps in general relativity, appre-
ciably greater than the precision of the timing observa-
tions (currently around 3 ps for 5-min observations, with

good prospects for further improvement). From this sim-

ple preliminary analysis we conclude that it should al-

ready be possible to extract some yet unmeasured post-
I&eplerian parameters among the set (r, s, bs), using ex-
isting timing data for PSR 1534+12. These parameters
will immediately provide qualitatively new tests of rel-

ativistic gravity: in particular, tests specifically of the
gravitational interaction in the quasistationary strong-
field regime.

C. Measurability of timing parameters

As a consequence of the general approach outlined in
Sec. IV A, the question of measurability of the PK pa-
rameters from timing data boils down to mapping out
the shape of the y~(p ) surface around its global mini-
mum, y;„. Such a mapping was carried out for the two
PK parameters r and s, for PSR 1913+16,by Taylor and
Weisberg (see Fig. 7 of [22]). Their analysis confirms the
intuitive conclusion reached by studying the residual dif-
ference DD—BT+, namely, that the useful signal associ-
ated with r and s is so small as to render these parameters
not separately measurable for this pulsar at present. In
order to explore this issue further, and to extend our un-
derstanding of parameter measurability to other binary
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pulsars, including ones yet to be discovered, we carried
out a series of numerical simulations with mock pulsar
data. The simulations include cases specifically designed
to show what might be learned from improved and ex-
tended observations of PSR's 1913+16and 1534+12, as
well as results for "generic" binary pulsars with a wide
range of orbital parameters.

The simulations for PSR 1913+16were carried out by
generating fake data using the DD timing model and
the measured parameters of this pulsar, plus general-
relativistic predictions for the unmeasured PK parame-
ters. The basic data set extended over 10 years, with one
2-h "observing session" per month; each session provided
24 values of t, b', to which we added Gaussian noise with
1 ps root-mean-square amplitude. We carried out least-
squares solutions in the same way as for real observations,
and recorded the estimated fractional uncertainties of the
PK parameters corresponding to the Ay~ ( 1 multipa-
rameter confidence region. Figure 3 illustrates the results
plotted as a function of ~0, the assumed longitude of pe-
riastron near the midpoint of the 10-yr data span. In this
simulation 20 parameters were estimated, and among the
separately measurable PK parameters (2.1c) only i was
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FIG. 3. Fractional uncertainties of seven post-Keplerian
parameters, estimated from simulated observations of PSR
1913+16 in which 20 parameters were fitted. The generated
data contained 1 ps of random noise, and included 24 con-
secutive five-minute "observations" taken once per month for
10 yr, for a total of 2880 pulse arrival times. The target value
of each parameter was taken to be its computed (or plausi-
ble) value in general relativity, based on the measurements
of [22, 23]. In particular, we used (he)' 's" = 6 x 10 and
(')& "s t 2 x 10

fixed (to zero) after previous simulations had shown the
diKculty of measuring it with interesting accuracy. Note
that all parameter uncertainties scale linearly with the
uncertainties in the data, and note also that the standard
1 ps noise for 5-min integrations used in the simulations
is considerably smaller than the experimental accuracies
currently being achieved for PSR 1913+16. (FIowever,
the planned upgrading of the Arecibo telescope might
make such accuracies achievable within a few years. )

Since the PSR 1913+16system had uo 226' in 1986,
Fig. 3 "predicts" that the available real observations,
which include 10 years of measurements starting in 1981
with cr,

' 15ps, should yield very good measurements
of u, p, and Py in addition to fractional uncertainties
around 1.0 and 0.3 for r and s, respectively. These predic-
tions are borne out by the experimental results of Taylor
and Weisberg [22]. One may also infer from Fig. 3 that r
and s could become separately measurable, in the future,
if improved techniques reduce the observational uncer-
tainties by an appreciable factor. With higher precision
and longer data spans, even the parameter bg might be-
come measurable. Because pulse-structure obser vations
indicate that the spin axis of PSR 1913+16 is nearly
aligned with the orbital angular momentum [63, 64], one
already knows reasonably well the angles entering the un-
measurable aberration parameters A and B [Eqs. (3.16)
and (3.17)], namely A i, rl —s'/2. Therefore even a
coarse measurement of bg would constitute a new strong-
field test of relativistic gravity, complementing the two
others potentially available through more precise mea-
surements of r and s.

We explored the dependence of PK-parameter mea-
surability on the total span T of the observations (when
keeping fixed the data-acquisition rate). Three of the
PK parameters measure signals whose amplitudes grow
linearly (u, e) or quadratically (Pg) with time, so one
expects these parameters to become progressively eas-
ier to measure with larger T. Furthermore, y and bg

become reasonably orthogonal to the rest of the model
only on the time scale of orbital precession, 27rj~ 85 yr
for PSR 1913+16, so their measurability also improves
rapidly with time. On the other hand r and s, like the
Keplerian orbital parameters, are in principle measurable
with data from a single orbit; for these parameters, addi-
tional observations are advantageous only insofar as they
help to average down the noise. In general we find that
for intervals T well below the orbital precession period,
uncertainties in the PK parameters scale approximately
as T, with the exponents a listed in columns 2 and 3 of
Table II. These scaling rules can be used together with
the results in Fig. 3 to estimate, for example, that 20
more years of 15—ps data for PSR 1913+16(in addition
to the 10 years already in hand) should provide a 22%
measurement of bg.

We now turn our attention to the newly discovered
binary pulsar PSR 1534+12. The exploratory analysis
of Sec. IV B clearly illustrated this object's potential for
yielding good measurements of two new PK parameters,
r and s. With our appetites whetted, we carried out a.

series of numerical simulations for this pulsar, obtaining
the results summarized in Fig. 4. Again the simulations
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TABLE II. Dependence of fractional parameter uncer-
tainties on T and (Pb), computed by numerical simulations
and by analytical approximations.

Param-
eter Numerical Analytical Numerical Analytical

y.

Pb

—1.3
—1.5
—2.3
—0.5
—0.5
—2.3

—3/2
—3/2
—5/2
-1/2
-1/2
-5/2

1.1
1.4
3.0
0.0
0.0
3.2

1
4/3

3
0
0

10/3

assumed 10 years of once-per-month observations with
timing accuracies of 1 ps in 5 min, and i was fixed to zero.
Figure 4 and Table II show that at the present ~p 264',
simultaneous measurements of r and 8, in addition to ~
and y, should already be possible by using the available
one year of 3—5 ps data [41,42]: we can predict fractional
accuracies of order or, /s 10 ~, rr„/r 10 os. Thus,
observations of PSR 1534+12 can already give access to
two important tests of strong-field gravity.

Figure 4 and Table II also show that within a few years
P~ will be measurable at the general relativistic target
level, PbGR —1.92 x 10 is. As emphasized in Sec. III C
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FIG. 4. Fractional uncertainties of seven post-Keplerian
parameters, estimated from simulated observations of PSR
1534+12. The simulation procedure was similar to that
used for PSR 1913+16 (see caption of Fig. 3), and the as-
sumed orbital parameters were those given in Ref. [41]. We
used general-relativistic target values (bs)' 's" = 5 x 10
(s)&arset 2 10—17 —1

above, a clear interpretation of the Pb measurement will

also require reliable measurements of the proper motion

p and annual parallax ir. Our simulations suggest that
within several years p could be determined to a few per-
cent, and ir to perhaps 20% accuracy. On the other hand,
even after 10 years of 1-ps data, bp will be measurable
for PSR 1534+12 only to within a factor 3, probably too
coarse to be of interest. Observations over 30 yr with
I-ps accuracy might permit bs to be determined to 20%,
and e to a level of 2 x 10 s, the general-relativistic
target level for reaching a timing-data measurement of
cos r) according to Eqs. (3.21), (3.24), and (3.35).

In order to permit rapid evaluation of the relativis-
tic implications of future binary pulsar discoveries, we
also carried out simulations for a wide range of "generic"
orbital parameters. To cut down on the number of sim-
ulations we assumed pulsar and companion star masses
rnj ——rn2 ——1.4Mo, close to the values observed in the
PSR 1913+16,2127+11C, and 1534+12 systems, and a
fixed data-acquisition rate with 2-h mock "observing ses-
sions" carried out once per month. We determined that
the dependence of parameter measurabilities on orbital
period P~ can be approximately factored out as a power
(Pb), similarly to the scalings T' discussed above. The
scaling laws were established both analytically and by
means of numerical tests using 10-yr data spans and or-
bital periods in octave steps from 2 to 256 h. The expo-
nents a and b expressing the scalings of the fractional un-
certainties in the parameters ~, y, Py, t., s, and bg when
T and Pb change are displayed in Table II. (Note that
the scaling laws may be inaccurate for short data spans
if the orbital orientation is close to ufo ——0 or 180'.) Us-
ing a fixed orbital period of 10 h and a three-dimensional
grid of other parameter values defined by

~p ——0, 15', . . . , 360', (4.4a)
e = 0.1, 0.2, . . . , 0.9, (4.4b)c:—gl —s2 = 0.05, 0.15, . . . , 0.95, (4.4c)

we then carried out 2250 simulated solutions and
recorded the estimated uncertainties of the PK param-
eters for each one. [Note that our choice of a uniform
sampling in the values of c—:

~
cosi

~
is motivated by the

fact that the a priori probability of observing an incli-
nation in the interval (i, i+ di) is 2 sini di.]

Results of the generic simulations are summarized in
Figs. 5—7, which together serve to illustrate the most sig-
nificant functional dependences on the orbital parame-
ters. Solid lines in these figures represent the median un-
certainties observed when ranging over parameter values
o/her than the one used as abscissa in a particular graph,
while dashed lines indicate the corresponding 10th and
90th percentiles of the distributions. In other words, the
dashed-solid-dashed-line triplets illustrate the most prob-
able fractional uncertainties and their ranges for 80% of
the binary pulsar systems simulated. Labels on some of
the curves identify some parameter values responsible for
especially favorable or unfavorable measurement circum-
stances.

Figure 5 shows that the measurabilities of ~ and p
depend periodically on cup, as we have already seen for
PSR's 1913+16and 1534+12 in Figs. 3 and 4. The sharp
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FIG. 6. Fractional uncertainties of the orbital period
derivative, I&, estimated for generic binary pulsars and plot-
ted as a function of orbital eccentricity e. See caption of Fig. 5
for further details.

FIG. 5. Fractional uncertainties of the PK parameters u
and p, estimated for generic binary pulsars with 10-h orbital
periods and a wide range of orbital eccentricities e and in-
clinations i, and plotted as a function of ~o. Solid curves
represent median uncertainties over all of the sampled values
of e and c—:~cosi~; dashed curves represent the 10th and
90th percentiles of the observed distributions. Like those il-

lustrated in Figs. 3 and 4, these simulations assume 10 years
of 2-hours-per-month observations with timing accuracies of
1 ps in 5 minutes.

FIG, 7. Fractional uncertainties for the PK parameters
r and 8, estimated for generic binary pulsars and plotted as
a, function of c—:~cosi~. See caption of Fig. 5 for further
details.

decrease in measurability of a, p [and bs, see Figs. 3 and
4] when u/u 0' or 180' can be understood analytically
by following the methods of [43] and [36]. Short-term fits
to a DD model give access to X = g(1 —e&)~I

cosset

+ p
and Y = @sinn, and the secular change of u causes
the point (X,Y) to trace out an ellipse of eccentricity
es = e(1+bs) centered around the point (y, 0). It is easy
to see geometrically why the values ~ = 0' or 180' ren-
der more dificult the problem of determining the center
of the ellipse from a small span of data. An analytical in-

vestigation of this problem (for u/u g 0, u/u g 180') leads
to the scaling laws listed in columns 3 and 5 of Table II.

Several other features of the curves in Figs. 5—7 are
easily recognized and readily understood. For example,
we see in Fig. 5 that u is especially diHicult to measure
if e ( 0.5 and t." & 0.7, and that measuring y becomes
progressively more diKcult for small values of e. Figure 6
shows that the measurability of Pp is strongly dependent
on e and nearly independent of other parameters, unless
c is close to 1 (and t, hus s close to 0). Finally, Fig. 7 shows
that r and s are most easily measured when s is large,
because the Shapiro time delay is strongest and most eas-
ily recognizable when the orbit is viewed edge-on. These
parameters become particularly diHicult to measure if s
is small, especially if e = s and ur 270' [this feature can
be understood analytically from a study of the function
As(u), Eq. (2.2d)]. In general, the fractional parameter
uncertainties depend on our viewing angles of the orbit
in both longitude and inclination, on covariances among
the parameters, and on the size of the associated post-
Keplerian eAects, which are often enhanced if e and s are
large.

D. Measurability of' pulse-s tructure parameters

Until now we have discussed only the measurability of
the PK parameters accessible through timing observa-
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tions. The best hope for gaining access to the remaining
parameters is through careful measurements of the pulse
shape (i.e., the phase-resolved intensity curve, modulo an
overall scale factor) and details of the radio polarization.
As a definite example, let us consider the favorable case
where the magnetic axis of a spinning neutron star passes
close to the line of sight, i.e. , the case where one observes
the "core emission" of the pulsar. (This case does not ap-
ply to PSR 1913+16,where the line of sight cuts across a
hollow cone around the magnetic axis [63], but we argue
below that it probably does apply to PSR 1534+12.) For
simplicity we assume circular symmetry of the emission
pattern around the magnetic axis b. The received inten-
sity is then a function only of the angle 8 (cos8 = N b,
as in Sec. II B), and for small angles around b we have
approximately

$0], and thereby compute G(4) by means of Eq. (4.7c).
The measurability of aberration-induced changes in the
pulse shape then depends on the magnitude of Kc and
on the shape and maximum value of the function G(4).

As an example of this procedure, we computed the
function G, reexpressed as a function of P, for the main
pulse of the millisecond pulsar PSR 1937+21 (for which
we had detailed, digitized pulse-shape information avail-

able). It turns out to be positive valued and consists
of two humps, of height G ~„= 0.20, attaining their
maximum values at P „=+1.06/i~2 [where Pi~2 de-
notes the half-width of the pulse at half-maximum, i.e. ,

F($2i&2) = 0.5]. More precisely, we found that on

the interval [—2/i~2, +2pi~2] the pulse shape of PSR
1937+21 is well approximated by a simple "generalized
Lorentzian" curve, namely, the function

g2 p2 p2

sin a sin a sin n
(4.5) (4 8)

where n again represents the angle between the pulsar
axis and the magnetic axis; P—:P —Po is the longitude
of b about the pulsar axis, i.e., the rotational phase of
the pulsar, with its origin at Po, the center of the pulse;
P = t,

' —n denotes the "impact parameter" of the line
of sight with respect to the magnetic pole; and we in-
troduce the shorthand notation e = P2, to be used in
the following discussion. [Do not confuse the present
use of the notation P with the notations P:—vi/c,
Pi ——nz(1 —e2) i~2, used earlier. ) Under the specified
assumptions the pulse shape, i.e., the normalized pulse
intensity S(P) = S(P)/S($0) [assuming that we have cor-
rected for the effects of the blueshift factor 1+n P in
Eq. (2.16)], will be some fixed function of 4+ P2/sin n.
In other words, each value of the impact parameter P
corresponds to a "cut" of a fixed emission pattern, and
the assumed radial symmetry of this pattern permits one
to reconstruct the two-dimensional beam shape from the
observed one-dimensional cut.

For binary pulsars, the observed cut will vary with
orbital phase because of aberration. Let us denote by
F(4) the central cut corresponding to P = ( —n, where
|,' denotes, as in Eq. (2.19), the fixed (over an orbital pe-
riod) angle between si and n [one should keep in mind
Eq. (2.10b), which says that N oscillates during an or-
bital period around its average value (N) = n]. We find
that the pulse shape varies with aberration as

S(P) = F(4)+ I~sG(4),

where

(4.6)

2PbAP 2PbAj
sin n sin o.

I~ = —F'(0),
G(C ) = F(C ) —F'(4)/F'(0),

(4.7a)

(4.7b)
(4.7c)

in which 6Ag is the aberration effect given by Eq. (2.20)
and the primed quantities are derivatives with respect to
the convenient intermediate variable 4 = P . Starting
from the observed average pulse shape, one can compute
the normalized function F(4), F(0) = 1 [checking in the
process that, indeed, S(P) is nearly even around some

for a value p 1.5. (One would need a smaller value of p
to fit the wings of the main pulse, ~p~ ) 2$&~2, where the
falloff in intensity becomes more gradual. ) Such a simple
representation allows one to compute G(4) analytically,
and by doing so one easily recovers the two-hump fea-
tures quoted above, including the numerical values. It
is tempting to suggest that such a simple power law is

a generic feature of pulsar core emission in cases where
the line of sight is known to pass near a magnetic pole,
and that it may contain useful hints about the pulsar
emission mechanism.

For the time being, the best binary pulsar candidate
in which to detect aberration-induced changes of pulse
shape seems to be PSR 1534+12. We therefore esti-
mated in advance the probable values of some impor-
tant parameters for this pulsar, using the following line
of reasoning. First, we note that published data for this
pulsar [41] show the existence of an interpulse. Assum-
ing that beams from the two magnetic poles have equal
intrinsic emission strength, we interpret the weaker ob-
served intensity of the interpulse as due to a larger im-
pact parameter, P;&, than the one for the main pulse,

P~&. We transform this qualitative fact into a quantita-
tive statement by noting that the published data show
that the interpulse maximum intensity is reached, on the
main pulse, at a longitude P, 16'. Using our assump-
tion of circular symmetry, S(P) oc F($2 + P2/sin n),
near each pole we obtain P2 = sin nP„+ P &. We ex-

pect the value of ~P &~ to be comparable to the main
pulse half-width at half-maximum, which is 2(450 ps),
i.e. , pi~2

——2.14' (see Ref. [41]). Using our generalized
Lorentzian shape for the central part of the main pulse,
i.e. , an intensity proportional to (1+ 0 /o ) &, so that
the quantity a appearing in Eq. (4.8) is (P +o )/sin n,
we can quantitatively relate the observed Pi~2 to P
and the "intrinsic" width parameter cr. For p 1.5 this
yields (P + o'2)i~ = 2.8'. Barring the unlikely cases
where either P z «o or P ~ )) cr, we therefore estimate
that ~P &~

2'. The above reasonings tell us that n is
within 9' of 90', )P &[ 2', and ~P;&~ 16'.

Information about the signs of the two impact param-
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eters P & and P;& is contained in polarimetry measure-
ments. Differentiating Eq. (2.21) yields

(dg/dP) „=sin o./ sin P (4.9)

for the slopes of the polarization-angle curves at the cen-
ter of the main pulse or interpulse [52]. From a pri-
vate communication with A. Wolszczan, and after Gip-

ping the sign of the polarization angle to pass from the
usual observers' convention to our theoretically preferred
convention for measuring g, we learned that the slope

(de/dP)~& ( 0, while (dg /de);& ) 0. Thus the signs of
the main-pulse and interpulse impact parameters are-
and +, respectively. Finally, using the equations

=-, +-,(p„p,)-,

1-
&= 2+2(Pv+P v)

1-
A = ——-(P;, +P,),

2 2

(4.10a)

(4.10b)

(4.10c)

we can determine most of the angles we need. Our final
estimates based on this simplified model are

Pmp = -2',

P;p
—+16',

o —99O

( = 97',
A = 83'.

(4.11a)

(4.11b)

(4.11c)
(4.11d)
(4.11e)

We call special at tention to two consequences of
Eq. (4.11e). The first is that the timing data give only
access to sin i [41,42], so there is a twofold ambiguity in i:
either i = i~ 75', or i = i2 ——x —i~ 105'. But we ex-
pect, especially in PSR 1534+12 which has a moderate
orbital eccentricity, to have only a small misalignment
6 between si and k (see end of Sec. III B above). In
other words, we expect A i. This selects the solution
ii 75' as the more probable, because it requires only
6 & ~A

—ii~ = 8, while iz requires b ) ~A
—i2~ = 22'.

Finally, there still remains one unestimated angle in the
problem, the longitude Psp of si on its precession cone
around k, such that A —i = b cosPso in the small mis-
alignment approximation of Eqs. (3.36) above. This miss-
ing information affects mainly g, the second polar angle
of s~, given in the small misalignment approximation by
il + ir/2 = csin esp/sin A. From ~A

—i~ = 8' we expect
(statistically) 6 & 16' and therefore ~rI + 7r/2~ + 16'.

Using the published data on PSR 1534+12, as well
as the various estimates described above, we can now
calculate the expected effect of aberration on the angle

j, namely,

6Ag = bAP = —[1.0C(u) + 4.0cosgS(u)] x 0.01'.
(4.12)

We note that
~
cos il~ is expected to be smaller than about

sin 16' 0.28; from Eqs. (4.12), (4.6), and our results on
the measurability of pulse-shape changes, we conclude
that even if cosrj = 0, pulse-shape changes should exist
at the level ~bAS~ 1.7 x 10 '. Moreover, Eqs. (4.9)

and (4.12) show that if our estimate ~P z~
2' is con-

firmed by detailed polarization observations, the maxi-
mum slope of the polarization swing in the main pulse
should vary by at least one percent over the orbital pe-
riod. With special care in measurements and calibra-
tions, such a change might be detectable in the future.

We conclude that it is important to perform high-
time-resolution polarimetry of PSR 1534+12 to test our
indirect estimates for P~& and P;&, and then to plan
a sequence of high-quality pulse-shape and polarimetry
observations looking for the aberration effects discussed
above. Such measurements would be able to (1) confirm
the sign of cos i that we selected on plausibility grounds;

(2) confirm our estimate for A, the first polar angle of si,
and (3) give access, in a redundant way, to the second po-
lar angle il. As we have already emphasized, knowledge

of g (obtainable on a short-time scale by the method just
emphasized) is a necessary prerequisite for being able to
use any observation of a slow change of A, through secu-

lar variations of either the pulse shape or the polarizatioil

angles, as evidence for spin-orbit precession and thus an

important test of relativistic gravity. One should also re-

call that an alternative route for measuring g is to mon-

itor the intrinsic secular variation of go, as discussed at
the end of Sec. III.

V. STRONC-FIELD TESTS
OF TENSOR-BISCALAR THEORIES

A. Timing predictions of tensor-biscalar theories

In previous sections we have described a purely phe-
nomenological, theory-independent procedure for analyz-
ing binary pulsar timing observations. We now wish to
select a specific class of gravity theories, containing gen-
eral relativity as a special case, and discuss the extent
to which binary pulsar data could constrain them. The
theories to be considered belong to the general class of
tensor-multiscalar theories recently studied by Damour
and Esposito —Farese [32]. They arise naturally in current
attempts toward unifying gravity with the other funda-
mental interactions, and/or at quantizing gravity. They
are also the most natural generalizations of the well-

known tensor-scalar Jordan —Fierz —Brans —Dicke theory.
The latter theory has played a useful role in suggesting
new tests of relativistic gravity that could be seen only
when contrasting general relativity with an alternative
theory. This is notably the case for tests which use as
an essential ingredient the violation of the equivalence
principle by self-gravity effects [5, 44]. However, present
constraints on this theory from solar-system data are so
tight, and the structure of the theory so rigid (only one
free parameter), that it is virtually indistinguishable from
general relativity in its predictions, even in the strong-
field regime. By contrast, recent discussion of more gen-
eral tensor-multiscalar theories [32] has shown that under
some conditions [67] these theories can pass all existing
solar-system tests, while still differing significantly from
general relativity in the strong-field regime, and notably
in their predictions for the orbital dynamics and timing
behavior of binary pulsars.
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VVe consider here a specific two-parameter subclass of
tensor-multiscalar theories. This subclass is defined by
having two scalar fields Pi and Pz mediating the effective

gravitational interaction in addition to a tensor field g„„.
The action defining this class of tensor-biscalar theories
reads

S, , =S,.+Sp+S
c ~go g R~

4+G, c 4

Sy = — d z g„ l9pfi8„Qg
c ~g.

4mG, c
S =S [g, g„„],
g&. =—exp[2a(di, 02)]g„*. ,

where

(5.1a)

(5.1b)

(5.1c)

(5.1d)

(5.1e)

a(di, 42) = 4~ I-4i+ l

——I
~ 4i

(5.2)

and P' and P" are the two free parameters of the theory.
The quantities A and 8 appearing in Eq. (5.2) are the
pure numbers

A= —
~

1+ — dz
i

= 2.1569176,4 t' 2 sinsz
3 ( & o z )

8 = —
i

2 + — dz
i

= 1.026 152 9,4 ( 1 sin z
9 ( z o z )

(5.3a)

(5.3b)

and should not be confused with the aberration parame-
ters of Eqs. (3.16) and (3.17).

Equation (5.1d) represents the action for the mat-
ter, with g denoting generically some material vari-

ables. It shows that we are within the framework of
metric theories; the weak equivalence principle is auto-
matically satisfied, as all non-self-gravitating test masses
fall along geodesics of the "physical" metric g&„defined
by Eq. (5.1e). However, the strong equivalence principle
is not satisfied in this theory: strongly self-gravitating
("compact") bodies do not fall in the same way as ordi-
nary bodies. Violations of the strong equivalence princi-
ple depend on the two free parameters of the theory, P'
and P", and on the compactness of the considered body,
as measured by the quantity

GgB = G.[1+(nAnB)], (5.5a)

3 —(n~nB)
1+ (ngnB)

(5.5b)

formed at the location of, but in absence of, the compact
body). It is given by G = G, [I+20ia02a] exp(2a), where

Bi = 8/Ogi, etc. , and where a denotes the local value of

a(pi, p2), Eq. (5.2), as determined by the externally gen-

erated scalar fields Pi and P2 without the contribution
of body A. At spatial infinity the scalar fields tend to
zero and the locally measured value of G tends to the
constant G, appearing in the action (5.1), which we can

identify with the usual Newtonian constant G.
Let us refer to the gravity theory defined by Eqs. (5.1)—

(5.3) as T(P', P").When both P' and P" tend to zero, the

predictions of the theory tend smoothly to those of gen-

eral relativity, as will be apparent in the explicit formulas

given below. Damour and Esposito-Farese have worked

out the consequences of generic tensor-multiscalar the-
ories, and have shown that the special two-parameter
subclass T(P', P") has the following particular proper-
ties: (1) its post-Newtonian limit coincides with that of
general relativity, so that it passes all solar-system tests;
(2) the dipole gravitational radiation carried away by the
scalar fields in a neutron-star —white-dwarf binary system
is exactly canceled at order (v 'b'~/c)s, so that it passes
the "4U1820—30 test" [68]; and (3) the ~ 7 Py tes-t -for
PSR 1913+16 can be satisfied for theories that are very
diferent from general relativity. Moreover, the T(P', P")
theory has some useful features of generality: the most
general tensor-biscalar theory satisfying the above crite-
ria will diR'er from it only in powers of the compactnesses
(5.4) of higher order than those included in T(p', p"). As
c~ is typically 0.3, higher powers of c~ become quickly
very small, and one can expect more general tensor-scalar
theories to be practically indistinguishable from T(P', P")
with respect to binary pulsar data.

The Lagrangian describing the orbital dynamics of N
compact bodies has been derived in Ref. [32], and has
the form of Eq. (3.1) above. The values of the strong-
field-modified coefficients appearing in this Lagrangian
are given by

Bln m~
CA =

clln G
(5.4)

GBc = G, ([I+(nAnB)][1+ (nAnc)] + (nBPAnc)}

(5.5c)

In Eq. (5.4) A is a label for the considered body, m~
its inertial mass, and Q denotes the local value, at
the position of the compact body, of the gravitational
constant (as measured by a Cavendish experiment per-

I

where the intermediate quantities (n~nB) and
(nBP~nc) take the following explicit form, when one
uses the convenient approximate approach to the higher-
order compactness parameters advocated in Ref. [32]:

(5.6a)(ngnB) =
2

P'8 (c~ + cB)

(na pBnc) = p'[—cB —28(c~ + cC) + (A —38)cB —(A —B)cB(c&+ cc) + 2(2A —7AB + 58 )cB(c& + cc)]
+P' 8 [ 3cB + cB(c& + cc)—+ cB + 2 cBc&cc + AcB c&cc] + 2

P"BcB

It is clear from Eqs. (5.5) and (5.6) that P' parametrizes
(5.6b)

deviations from general relativity that start at order
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(compactness) in G~ir and s~ir, and (compactness) in (n~P@nc), while P" enters only in (n~P~n(:) at order
(compactness)2. Inserting Eqs. (5.5) and (5.6) into the results of Sec. III leads to explicit expressions, within the
theory T(P', P"), for the post-Keplerian timing parameters as functions of the two inertial masses. Let us write down
explicitly the most important parameters:

( )2/3 ( 1 (ala2)/3 1 Xl(alp2el) + X2(n2pla2)
)1 —ez (, [1+(nin2)]i/ 6 [1+(nin2)] /3

7 = —(nTOM)
e - 2]3 X2
n [1+(nin2))'/3

{I+ Xz [1+(n, n2)] + (non2)),

0my,
I

(TOM)i/s Xq[1+ (ning)]i/s

(5.7a)

(5.7b)

(5.7c)

(5.7d)

be ]
~~

—(nTC)M) [1+ (nin2)] —XiX2 ——Xi —pX2 — + ~~, .1+ (nin2)
(5.7e)

In Eqs. (5.7) a caret over the masses, e.g. , M
m~ + m2, means that they are expressed in solar-mass
units; we have also introduced a shorthand for the solar
mass in time units, To = GMoc = 4.925490947 /rs.
The extra contribution Kr/" in Eq. (3.11) does not ap-
pear in Eq. (5.7b) because r/' turns out to be zero in

T(P', P"). In Eq. (5.7e) we have assumed for definiteness
that the pulsar spin axis was aligned with the angular
momentum ("parallel case," hence the subscript II). The
quantity p is an abbreviation for the dimensionless ratio
of I&eplerian parameters, p = P), Pp/[47r z2(1 —e2) /2],

and sA, denotes, as in Eq. (3.18) above, some fiducial
value of the aberration parameter (usually chosen as the
value expected in general relativity computed from the
observed values of ~ and 7, assuming the parallel case).
Also note that in Eq. (5.7e) p represents the entire right-
hand side of Eq. (5.7b). Conspicuously absent from the
list (5.7) of important parameters is the theoretical pre-

diction within T(/3', P") for Pt, . It has been worked out
in Ref. [32], and we shall use their results in drawing cg ——0.21 m~, (5 8)

Figs. 8(b) and 9 below.
The spin-orbit coupling coef%cients I'&+ have not been

worked out in tensor-multiscalar theories, but their val-
ues will not be needed for the eR'ects discussed below.
We will, however, need to know how the compactness
of body A, Eq. (5.4), varies with its inertial mass m&.
This variation depends on the equation of state of the
nuclear rnatter comprising the neutron star. In view of
the rather large uncertainties concerning this equation of
state, we shall follow Ref. [32] and adopt a simplified ap-
proach in which c~ is proportional to m~. (It was shown
in Ref. [32] that this relation provides surprisingly good
fits to the numerical results obtained when using a broad
sample of equations of state. ) The remaining dependence
on the nuclear equation of state is entirely contained in
the slope c~ jm~, for which we shall adopt the median
value among the fits in Ref. [32] to a sample of four rep-
resentative equations of state. This means that we shall
take

I I ( I

I

I I I

'i

0
0

m, (M,)
3 0

I I I I I I I I I I I I

m, (M,)

1FIG. 8. Theoretical curves in the mq-m2 plane corresponding to the same set of six mock "observed" pK parameters )

analyzed w&t»n th«ramework of two different theories. In (a) the general-relativistic formulas were used; convergence of the
»x curves a«ne p~int was guaranteed by having chosen PK parameter values consistent (within general relativity) with the
values « ~, 7, and the Keplerian parameters observed for the PSR 1913+16system [23, 33]. In (b) the same par~~~t~, „alues
were analyzed within the tensor-biscalar theory T(3, 7). Note that although most of the curves are subsfantjgly modifie
(b), tho se for ~, 7, and P(, still pass (almost) through a single point. In both (a) and (b) we used eA —4 9@3 ~ 1Q s w} e
constructing the be curves.
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By contrast, Fig. 8(b) shows the curves defined by
Eqs. (5.7) when analyzing the same set of phenomeno-
logical parameters within the framework of a diR'erent

theory of gravity, namely the particular tensor-biscalar
theory T(3, 7). Of particular interest is the fact that the
three curves defined by u, p, and Py, although apprecia-
bly displaced by strong-field eA'ects from their positions in
Fig. 8(a), still meet approximately at one point (within
one standard deviation) while the other curves do not
(see Ref. [32] for further discussion). This phenomenon
illustrates the importance of completing the presently
available ~-p-Pb test by new strong-field tests based on
measurements of r, s, and bp.

B. Binary pulsar tests of tensor —biscalar theories

—20
0

FIG. 9. Combined theory-dependent analysis of published
observations of the binary pulsars PSR 1913+16 and PSR
1953+29, and simulated observations of PSR 1534+12, within
the framework of a two-parameter family of tensor-biscalar
theories T(P', P"). Values of P' and P" lying above curve

(a) are ruled out because they are inconsistent with the ob-
served values of u, 7, and the Keplerian parameters for PSR
1913+16. Contour (b) illustrates the 90% confidence region

for y (P', P"), based on observations of PSR 1913+16 taken
through December 1990. Vertical dashed lines (c) represent
boundaries of the 90'%%uo confidence region defined by lack of ev-
idence for violation of the strong equivalence principle in the
orbital data for PSR 1953+29. Finally, contour (d) illustrates
a hypothetical 90% con%dence region based on simulated ob-
servations of PSR 1534+12 (3 years of 2-hours-per-month ob-
servations with 1 ps accuracy in 5 minutes). The available
parameter space for viable theories is the intersection of all
the allowed regions [recaH, howevertha, t the contour (d) is
presently hypothetical]. The central dot at p' = p" = 0 cor-
responds to general relativity.

where m~ is the mass my in solar units.
With the help of Eqs. (5.6)—(5.8), we can now give an

explicit illustration of the type of test made possible by
measurements of many PK parameters. Let us consider
a mock set of PK parameters consisting of the values of
ir and 7 actually measured in the PSR 1913+16system,
and the values of PI„r, s, and bg expected to be observed
if general relativity is correct (i.e. , computed from ~, 7,
and the measured Keplerian parameters by using general-
relativistic formulas). Then, by construction, these mock
parameters and the theory T(0, 0) (i.e. , general relativity)
define a set of curves in the mass plane which necessar-
ily meet at one point, as illustrated in Fig. 8(a). This
graph may be compared with Fig. 9 of Ref. [22], which
was based on real measurements of PK parameters. For
clarity, in Fig. 8 we have not included any indication of
experimental uncertainties, which for r, s, and bg would
be quite large with the presently available data quality.

Analyzing pulsar data in a theory-dependent man-
ner, rather than in the purely phenomenological way de-
scribed above, can be interesting for two reasons. First,
when precise measurements have determined a set of phe-
nomenological parameters, a theory-dependent approach
helps to elucidate the physical meaning of these measure-
ments and to transform them into explicit quantitative
limits on possible strong-field deviations from the cor-
rect theory of gravity. Second, it provides a common
ground for intercomparing the quality and strength of
tests performed by measuring diR'erent PK parameters in
data coming from different pulsars. Another interest of
a theory-dependent approach will be illustrated in a sub-
sequent paper [42], and consists of trading, in favorable
cases, some weak constraints on a manifold of generic the-
ories for stronger constraints on a more restricted class
of theories.

In the present paper we shall illustrate the utility
of complementing the phenomenological PPK approach
with a theory-dependent one by analyzing published or
numerically simulated data for three diA'erent pulsars,
using the framework of a specific two-parameter theory,
T(P', P"). The use of a family of theories parametrized by
several real parameters plays an important role: it pro-
vides a continuous (in our case two-dimensional) space
of possible theories, within which experimental data can
provide quantitative constraints in the form of visualiz-
able "allowed regions. " In the familiar weak-field PPN
framework, the parameters P, p, . . . , played dual roles as
both phenomenological parameters and theory param-
eters. In our present work these two roles have been
separated: the PK parameters provide a means for phe-
nomenological analysis of the experimental data, while
the theory parameters P' and P" acquire their own dis-
tinct identities.

There are tivo straightforward ways in which one can
pass from the phenomenological to the theory-based ap-
proach. The simplest method starts with the set of ob-
served PI& parameters (po ') and their standard devia-
tions (0.„'). Assuming for simplicity that among this
set two parameters, say ~ and y, have been measured
with much higher precision than the others, one can use
the theoretical predictions for these two, say Eqs. (5.7a)
and (5.7b), to compute the masses mi and m2 in terms
of the measured values of u, p, and assumed values for
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the theory parameters P' and P". This first step already
allows one to eliminate as nonviable any region(s) of the-
ory space for which the two equations (5.7a) and (5.7b)
cannot be satisfied simultaneously for any positive values
of the masses. The solutions for mi and mz in terms of P'
and P" are then substituted into the theoretical expres-
sions for each additional measured PK parameter, say
Eqs. (5.7c)—(5.7d). The phenomenologically measured
parameter values and standard deviations then define al-
lowed strips in the two-dimensional theory space. [In
the general case of an n-dimensional theory space, each
further PK parameter measurement (p b', orb') would
define a thickened hypersurface, instead of a strip. ]

Such a procedure is simple to implement and easy to
understand (see, e.g. , [32] for several uses of it), but it
is only approximate because it neglects all correlations
between the measured parameters. This deficiency leads
us to seek a second, more satisfactory way of passing from
a phenomenological to a theory-based analysis.

In terms of the general approach to measurability de-
scribed in Sec. IV above, the best way to compare ob-
servational data with the predictions of some theory is
to study the variation of the goodness-of-fit statistic y~,
Eq. (4.2). For given (real or simulated) observations
and a given theory, say T(P', P"), the quantity y is,
on using Eqs. (5.6)—(5.8) and the corresponding theo-
retical prediction for Py from [32], a function of the
masses mi and m2, the theory parameters P' and P",
and the Keplerian parameters. Since we wish to obtain
limits on the theory parameters, we first minimize y
by adjusting the masses and the Keplerian parameters,
and then study the variation of the resulting minimum

y (P', P") wlien P' and P" are varied. Level contours of
&g (P', P") = g (P', P")—y~;„(where y2, „ is the global
minimum of yz) then define "allowed regions" of theory
space with well determined confidence limits. For exam-
ple, the contour b,gz = 4.61 encloses a 90'%%uo confidence
region for P' and P".

The advantages of such an analysis are several. First,
it rigorously and automatically accounts for any correla;
tions between the experimentally measured parameters.
Our simulations described above show this to be partic-
ularly important for present attempts to measure r and
8 for PSR 1534+12: with existing data quality, these P K
parameters are not expected to be separately measur-
able with small error bars. Nevertheless, a multiparame-
ter y analysis should still provide strong constraints on
the possible values of the pair (r, s), and therefore also
on the theory parameters P', P". A second advantage of
the y2(P', P") approach is that theory-based conclusions
based on observations of different pulsars can be readily
combined by representing in the common theory space
(here the P', P" plane) the rigorous 90% confidence re-
gions corresponding to each test. The correct theory of
gravity [if it belongs to the class T(P', P")] will necessar-
ily belong t,o the intersection of all such allowed regions.

Such a combination of different real and potential con-
straints on gravitation theories is illustrated in Fig. 9,
bringing together analyses of real or simulated observa;
tions of three binary pulsars. The heavy line labeled
('a) in the figure represents the "self-consistency" con-

straint discussed above: for the PSR 1913+16data set,
values of P' and P" above and to the left of this curve
are prohibited. A reanalysis of published observations of
PSR 1913+16,following the prescription just described,
produced the 90% confidence closed-contour region la-
beled (b). The vertical strip labeled (c) corresponds to
90% confidence bounds on P' derived from orbital data

[69] on the "nonrelativistic" binary pulsar PSR 1953+29,
based on its failure to violate the strong equivalence prin-
ciple [39]. Finally, our simulated observations of PSR
1534+12 (in this case using just 3 years of 2-hours-per-
month observing with timing uncertainties of 1 ps in 5
minutes) yield the the 90'%%uo confidence region labeled (d)
in Fig. 9, and help to illustrate the real constraints that
should be possible within a few years. Note that the
limit (c) is somewhat different in nature from the others:
as emphasized in Ref. [39], it contains some extra prob-
abilistic assumptions, and moreover it was obtained by
using the first, simple-minded, way indicated above for
a theory-based analysis. In a subsequent paper [42] we

shall discuss the actual limits on tensor-biscalar theories
already obtainable from combining real timing observa-
tions of PSR 1534+12 with updated observations of PSR
1913+16.

VI. CONCLUSIONS AND PROSPECTS

The main aim of this paper has been to discuss
how binary pulsar data can be used for experimen-
tal tests of the strong-field regime of relativistic grav-
ity. We first presented (in Sec. II) a full account of
the parametrized post-Keplerian formalism, a proce-
dure for purely phenomenological analysis of binary pul-
sar data. Our analysis showed that in principle one
can extract from pulsar data, in a theory-independent
way, as many as 19 post-Keplerian parameters car-
rying dynamical information about the orbit and the
spin of a neutron star and their evolution. Eight of
these PK parameters, (k, 7, Py„r, s, b'8, e, i), are con-
tained in pulsar timing data, while the other eleven,
(A, A, v, ic, o', o', go, r', o', r', o'), are contained in pulse
structure data. To elucidate the theoretical content of
the PK parameters, in Sec. III we used the framework
of generic boost-invariant gravity theories to derive ex-
pressions linking these parameters to the easily measured
Keplerian parameters, z, e, and Pg, the inertial masses
mi, m2 of the pulsar and its companion, and the two po-
lar angles defining the direction of the pulsar spin axis, A

and g. These formulas show explicitly that in a generic
theory the functions p,. = f,

'"' " (p, m.i, mz, &, g) «n-
tain strong-gravitational-field effects. The main conclu-
sion of this analysis is therefore that, in principle, binary
pulsar data can give access to 19—4 = 15 tests of strong-
field gravity (the subtraction of 4 corresponding to the
four unknown physical parameters mi, m2, A, and g).
At present just one such test has been performed, com-
bining ~, y, and Pg as determined from observations of
PSR 1913+16. While this test is an extremely impor-
tant one, we have emphasized that it inextricably mixes
strong-field and radiative effects, and therefore could, in
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principle, be satisfied by an incorrect theory that has
(from a general-relativistic point of view) perversely com-
pensating behavior in these two regimes.

We then explored in a quantitative way, in Sec. IV, the
practical prospects for extracting more of the 15 possible
tests from pulsar data. We evaluated the measurabil-

ity of timing PK parameters by using numerically simu-
lated observations covering a wide variety of possible bi-
nary pulsar systems. Some of the simulations mimicked
known pulsars with improved, probably achievable, tim-
ing accuracies, while others were designed to mimic bi-
nary pulsars that might be discovered in the future. Our
most important conclusion from the simulations is that
with the present level of timing accuracy, the recently
discovered binary pulsar PSR 1534+12 should already
give access to two new tests of relativistic gravity if the
observations are analyzed in the way emphasized in this
paper. The new tests are obtainable by combining phe-
nomenological measurements of the parameters u, p, r,
and 8 —and they probe quasistationary strong-field ef-
fects without mixing of radiative effects. We emphasize
the importance of trying to measure enough parameters,
through timing or pulse-structure observations, to gain
access to the longitude g in the plane of the sky of the
pulsar spin axis with respect to the ascending node. In
absence of such knowledge, a conclusive test of relativis-
tic precession of the pulsar spin will not be possible. An-
other conclusion is that PSR 1913+16could give access
to three further tests, beyond the presently obtained ~-y-
Pb test, through measurements of r, s, and bs. Separated
measurements of r and s would become possible with in-
teresting accuracy if a suitable upgrading of observing
techniques improved the timing accuracy by about a fac-
tor of 10, and bg will be measurable within 20 years even
without improvement in timing accuracy.

In Sec. V we shifted from a phenomenological to a
theory-dependent analysis of binary pulsar data. For this
purpose we used a two-parameter class of tensor-biscalar
gravity theories. We showed how such an analysis pro-
vides a common ground for interpreting and intercom-
paring tests coming from observations of diA'erent pul-
sars. In particular, we illustrated how such a combination
of independent tests can lead to very tight quantitative
constraints on possible strong-field deviations from the
correct theory of gravity.
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APPENDIX: GLOSSARY OF FREQUENTLY
USED NOTATION

GR

A, B

A, B,C

A, B

A, (u)

Semimajor axis of pulsar orbit about the cen-
ter of mass (index 1 refers to the pulsar, index
2 to the companion star)

Semimajor axis of the relative orbit

Subscript used to denote an effect of aberra-
tion, as in 6~, b~(, 6~$0

Coefficients of the aberration term EA in the
timing formula [Eqs. (2.2), (3.16), (3.17)]

Labels for members of a gravitationally in-
teracting system of N bodies [A, J3 = 1, 2 if
N = 2, as in Eq. (3.6b)]

Pure numbers A = 2.156 9. . ., B = 1.0261. . .,
defined in Eqs. (5.3)

True anomaly of a pulsar's orbital motion,
Eq. (2.3c)

Rotating unit vector directed along a pulsar's
magnetic axis

Blueshift factor used in Sec. II B and defined
in Eq. (2.10a)

c Velocity of light in formulas such as (3.8b),
(3.14), and (3.34)

c Shorthand for
~
cosi

~

= gl —s2, used in
Sec. IV and Figs. 5—7

Compactness of body A, Eqs. (5.4) and (5.8)

Function defined in Eq. (2.14a), used in spec-
ifying a pulsar's orbital velocity

Doppler factor used in Secs. II A and III B

e Eccentricity of a pulsar's orbital motion, as
defined in a relativistic timing model

Newton's gravitational constant

Strong-field modified gravitational constant
for interaction between a pulsar and its com-
panion

Inclination between orbital plane and plane of
sky (i = 90' for edge-on view)

Unit vector pointing toward ascending node of
orbit (see Fig. 1)

Fractional periastron advance during one or-
bit, k = ~Pb/2z.

Unit vector in direction of orbital angular mo-
mentum (see Fig. 1)

cially those liable to be confused with one another. For
definitions and conventions concerning angular quanti-
ties, see also Fig. 1.

For the convenience of the reader we gather below some
of the notations used most frequently in the text, espe-

Unit vector pointing from Earth toward pulsar
system (see Fig. 1)
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mg) mg

Pg

Masses of a pulsar-and its companion, respec-
tively

Total mass of binary pulsar system, M = m~+
m]

Orbital frequency or "mean motion, " n

2'/Pb

Unit vector in fixed direction frorii pulsar to-
ward Earth, n = —K

Unit vector in direction of emission, in the pul-
sar comoving frame, of radio waves received at
Earth; differs slightly from n because of aber-
ration, Eq. (2.10b)

Orbital period of binary system (periastron to
periastron, at epoch Tp)

Eq. (2.2c)

Shorthand notation used in Sec. IIIB, 6

n7/e

Misalignment angle between pulsar spin axis
and orbital angular momentum

Dimensionless parameters quantifying rela-
tivistic deformations of orbit

Strong-field-modified coef5cient in the generic
boost-invariant Lagrangian, Eq. (3.5b)

Dimensionless aberration parameters
A/z, sA, = Ap/z

Angle between a pulsar's spin axis and direc-
tion from pulsar to Earth, (—:n —A [see
Figs. 1(a), 1(b)]

Pp Pulsar period

r Range of Shapiro time delay As, Eq. (2.2d)
Longitude of pulsar spin axis in plane of sky,
measured from ascending node (see Fig. 1)

8 = sini

Sy) Sg

Shape of Shapiro time delay b,s, Eq. (2.2d)

Unit vectors along the spin angular momenta
of the pulsar and its companion, respectively

Function defined in Eq. (2.14b), used in spec-
ifying a pulsar's orbital velocity

K) K Post-Keplerian parameters related to pulse
structure, Eqs. (2.27a), (2.28a)

Angle between a pulsar's spin axis and line of
sight from Earth to pulsar, A = 7r —( [see
Figs. 1(a), 1(b)]

Time measured in proper reference frame of a
pulsar, Sec. II A

Total time spanned by a set of pulsar timing
observations, Sec. IV C

Projected semimajor axis of a pulsar's orbit in

time ulllts, Z = Ql sill 1/C

Reduced mass, p = mlm2/M

Shorthand notation used in Sec. III, v

p/M = XlX2 —mimz/M

v Frequency of radio waves, used in some formu-
las of Sec. II B

Pulsar frequency, vz
——I/Pz

Xg, X2

o'A) PA

po

pl p)/

Mass fractions ml/M and mz/M, respectively

Fixed angle between a pulsar's spin axis s~ and
its rotating magnetic axis, b(T)

Subscript used to denote quantities that vary
because of aberration, e.g. , (p in Eq. (2.19)

Tensor-multiscalar theoretical quantities ap-

pearing in the orbital Lagrangian, [Eqs. (5.5),
(5.6)]

Dimensionless orbital velocity of a pulsar, P =
Vy C

Orbital velocity parameter pl —— nz(1
ez) l~z, as defined in Eq. (2.14c)

Dimensionless relative orbital velocity, defined

in Eq. (3.8b)

Angular impact parameter of line of sight with
respect to rotating magnetic axis, p—:( —n

Free parameters in tensor-biscalar theories

Parameter measuring time dilation effects,

&A) &1) &2

obs

~spin
1

Strong-field-modified coefficient in the generic
boost-invariant Lagrangian, Eq. (3.6a)

Post-Keplerian parameters related to pulse
structure, Eqs. (2.27b), (2.28b)

Coefficients in the spin-orbit Lagrangian,
Eqs. (3.5)—(3.7)

Observational uncertainty of ith arrival time
measurement

Pulsar phase (= Pp at center of main pulse)

Linear polarization angle (= gp at center of
main pulse)

Argument of periastron, i.e. , angle between as-
cending node and direction of periastron

Secular advance of periastron, u = nj"

Longitude of ascending node in plane of sky
(see Fig. 1)

Precession of pulsar spin axis caused by spin-
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orbit coupling; note that Qt
'" = ~At

'"
~
» a»o

used

0 ' " Vectorial angular velocity of the entire orbit
1

caused by spin-orbit coupling

0& ' Vectorial angular velocity of the entire orbit
caused by relativistic orbital effects
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