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The /CD-sum-rule calculation of the pion wave function by Chernyak and Zhitnitsky (CZ) im-

plicitly assumes that the correlation length of vacuum fluctuations is large compared to the typical
hadronic scale ~ I/m~, so that one can substitute the original nonlocal objects such as (q(0)q(z))
by constant (q(0)q(0))-type values. We outline a formalism enabling one to work directly with the
nonlocal condensates, and construct a modified sum rule for the moments (( ) of the pion wave
function. The results are rather sensitive to the value of the parameter A~ = (qD q)/(qq) specifying
the average virtuality of the vacuum quarks. Varying it from the most popular value A~ = 0.4 GeV
up to the value A~ = 1.2 GeV suggested by the instanton-liquid model, we obtain (( ) = 0.25—0.20,
to be compared to the CZ value (( ) = 0.43 obtained with A~ = 0.

PACS number(s): 12.38.Bx, 11.50.Li, 12.38.Lg, 14.40.Aq

I. INTRODUCTION

The standard trick incorporated in all the approaches
based on the asymptotic freedom of QCD and factoriza-
tion is the introduction of some phenomenological func-
tions and/or numbers accumulating necessary informa-
tion about nonperturbative long-distance dynamics of
the theory. The most important examples are parton
distribution functions fzltt(z) used in the perturbative-
QCD approaches to hard inclusive processes [1],hadronic
wave functions p (z), pN(zi, z2, zs), etc. , which natu-
rally emerge in the asymptotic QCD analyses of hard
exclusive processes [2—6], and quark and gluon conden-
sates (q(0)q(0)), (G(0)G(0)), the basic parameters of the
QCD-sum-rule approach [7], describing the nonperturba-
tive nature of the QCD vacuum.

The hope is that in some future approach they all
will be calculated from the first principles of QCD with-
out any model and/or ad hoc assumptions. A less am-

bitious program is to calculate the hadronic functions

f(z), p((z)) using the QCD sum rules [7], with only the
condensate values treated as input parameters.

While the parton distribution functions can be ex-
tracted rather reliably from experimental data, the sit-
uation with the hadronic wave functions is much more
complicated. Normally, they appear only in an inte-
grated form. Furthermore, the very applicability of the
perturbative-QCD formulas at accessible energies is ques-
tionable [8, 9]. In this situation, the QCD-sum-rule ap-
proach and lattice calculations are the only reliable way
to get, information about the form of t, he hadronic wave
functions. In particular, the most popular set of hadronic
wave functions [10], due to Chernyak, A. R. Zhitnitsky,
and I. R. Zhitnitsky (CZ), was produced with the help of

QCD sum rules.
One should remember, however, that the operator-

product expansion (OPE), the starting point of any
QCD-sum-rule analysis, has different forms depending
on the situation. The presence of a large (or small) ex-
tra parameter might essentially modify the expansion.
The most well-studied example is the modification of the
OPE for the form factors at small momentum transfer q

[11,12]. In that case a simple-minded extrapolation from
the region of moderately large q is completely unjustified:
one cannot reproduce in that way even the normalization
conditions such as F (0) = 1. Our goal in the present
paper is to show that in calculating the N & 2 moments
of the pion wave function one faces another situation re-
quiring a modification of the underlying expansion. We
construct a modified sum rule and show that, for a stan-
dard choice of the condensate values, it produces a pion
wave function that strongly differs from the CZ form.

II. PION WAVE FUNCTION AND +CD SUM
RULES: CRITICISM OF THE CZ

APPROACH

The first application of the QCD sum rules to the pion
wave function p (z) was the calculation of its zero mo-
ment, i.e. , the pion decay constant f, in the pioneering
paper of Shifman, Vainshtein, and Zakharov [7]. It was
calculated there within 5% accuracy. This success in-

spired Chernyak and A. R. Zhitnitsky [13] to calculate
the whole pion wave function by reconstructing it from
the next moments ((~) (where ( = 2z —1). They ex-
tracted ((~) and ((4) from the relevant sum rule precisely
in the same way as the f value. However, the nonper-
turbative terms in their sum rule
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~."(z) = f-&(z) (2)
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n, (GG) 16 7m, (qq)
2
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have a completely different N dependence compared to
the perturbative one and, a priori, it is not clear whether
a straightforward use of the N = 0 technology can be
justified for higher N. The scale determining the mag-
nitude of all the hadronic parameters including so (the
"continuum threshold" [7]) is eventually settled by the
ratios of the condensate contributions to the perturba-
tive term. If the condensate contributions in the CZ sum

rule (1) would have the same N behavior as the pertur-
bative term, then the N dependence of ((N) would be
determined by the overall factor 3/[(N + 1)(N + 3)] and

the resulting wave function y (z) would coincide with

the "asymptotic" form [4, 6]

where P(z) = 6z(1 —z). However, the ratios of the
(qq) and (GG) corrections to the perturbative term in
Eq. (1) are growing functions of N I.n particular, in
the (qq) case, the above-mentioned ratio for N = 2 is,
by a factor 95/11, larger than that in the N = 0 case.
For N = 4 the enhancement factor is 315/11 . As a
result, the effective vacuum scales of (mass)~ dimension
are, by factors (95/11)i/s 2.1 and (315/11)i/s 3.1,
larger than that for the N = 0 case. Approximately
the same factors [5'/ 2.2 and (35/3)'/ 3.4] one
obtains also for the gluon-condensate term. Hence, the
parameters s~o

l and the combinations f2((+) straight-
forwardly extracted from the sum rule (1) must be larger
than the "asymptotic" values s+o=o 0.75 GeV~ and
fz((~) = 3f~/[(N + 1)(N + 3)] just by the factors 2
(for N = 2) and 3 (for N = 4). These are just the results
obtained in Ref. [13].

To better understand the structure of the relevant
power series it is instructive to rewrite the sum rule for
the pion wave function p (z) itself [14]:

f q (z) = M2
(1

—so/M

+ z [b(z) + b(1 —z)]+ — '
(11[b(z) + b(1 —z)]+ 2[b'(z) + b'(l. —z)]).

n, (GG) 8 acr, (qq)'
(3)

= (qD q)/(qq) = 0.4 + 0.1 GeV (4)

(here D is the covariant derivative) is not small compared
to the relevant hadronic scale

The O(1) and O(N) terms in Eq. (1) correspond to
the b(z) and b'(z) terms in Eq. (3). In its turn, the
presence of the b(z) functions in Eq. (3) is evidently in-
dicat;ing that t;he vacuum fields are treated as carrying
zero fraction of the pion momentum. This can be eas-
ily understood by observing that the operator product
expansion [underlying Eqs. (1),(3)] is, in fact, a power-
series expansion over small momenta k of vacuum quarks
and gluons. Retaining only the (qq) and (GG) terms [as
in Eqs. (1), (3)] is just equivalent to the assumption that
k is not simply small but exactly zero.

However, it is much more reasonable to expect that
the vacuum quanta have a smooth distribution with a
finite width p. In configuration space, this means that
vacuum fluctuations have a finite correlation length of
the order of I/p, so that the two-point condensates like

(q(0)q(z)) die away for ~z~ large compared to 1/p. Of
course, one can always expand (q(0)q(z)) in powers of z
starting with the constant term (q(0)q(0)) that produces
eventually the b(z) term. The question is, whether it is
reasonable to do this, since the expansion resulting from
such a Taylor series will not necessarily behave well.

According to the standard estimate [15], the average
virtuality of the vacuum quarks

Even a larger value (by a factor of 3) was obtained for

&& in the instanton-liquid model by Shuryak [16]. Thus,
the correlation length of vacuum fluctuations is not much
larger than the hadronic size, and the constant-field ap-
proximation for the vacuum fields might not work, i.e. ,

the higher-power corrections might well ruin the conclu-
sions derived from the sum rule (1).

In what follows, we outline a formalism (its prelimi-
nary version can be found in Ref. [17]) that enables one
to take into account the effects due to the k (or z) distri-
bution of vacuum fluctuations. To this end we note that
in all standard calculations of the power corrections via
the OPE one starts with some nonlocal condensales such
as (q(0)q(z)), (q(0)7A(y)q(z)), etc. (such objects have
been discussed for almost 10 years now, see, e.g. , [18]),
which are subsequently expanded over the local conden-
sates (LC) (qq), (qD q), etc. Our strategy is to avoid
such an expansion and deal directly with the nonlocal
condensates (NLC).

III. NONLOCAL CONDENSATES

The simplest bilocal condensate M(z) = (q(0)q(z)) is
just the nonperturbative part of the quark propagator.
So, it is convenient to parametrize it in the manner of
the well-known o, representation for a propagator:

so= -4m. f =07GeV . (q(o)q(z)) = (q(o)q(o)) .-'/' f, (~) dv.
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Of course, because of gauge invariance, the quark fields

q(z) are always accompanied by an appropriate Wilson-
line operator. But here and in the following we take
quark and gluon fields in the Fock-Schwinger gauge
z"A„(z) = 0 where the path-ordered exponentials are
equal to 1 and the covariant derivatives are converted
into the ordinary ones. Another comment concerning
Eq. (5) is that in deriving a QCD sum rule one can al-

ways perform a Wick rotation z0 ~ iz0 and treat all the
coordinates as Euclidean, with z ( O.

The functions such as fs(v) describe the distribution of
the vacuum fields in virtuality. Note, that the moments
of fs(v) are proportional to the vacuum matrix elements
of the local operators

(q(0)q(o)) fs(v) v dv

(q(0)7„q(z)) = iz„A e"' ~4 fi, (v) dv,

with the parameter Lv determined by the magnitude of
the condensates of dimension eight.

For the gluonic nonlocal condensate, in the Fock-
Schwinger gauge, one has

(A„(z)A'. (y)) = b" [yp" yp.-(z y)]

x MG((z —y)z, zz, yz) +

where A = —urn, (qq)2. The zeroth moment of fi (v) is
zero in the limit of massless quarks, and that is why the
b&"l(v) expansion for fi (v) starts with the b'(v) term:

fv(v) = b'(v) —L~ b"(v) +

, ,
(q(o)(D') q(o)) (6)

fs(v) = b(v) —Lsb'(v) + (7)

with Ls fixed just by the average virtuality of the vacuum
quarks [Eq. (4)]: Ls ——A /2.

There is another (vector) bilocal condensate M„
(q(0)7„q(z)), containing a 7 matrix:

with increasing number of derivatives. By analogy with
the hadronic distribution functions, one can call f(v) the
"vacuum distribution functions. "

The expansion of the condensate M(z2) over the lo-
cal condensates corresponds to that of the distribution
function fs (v) over the b&" l functions:

where the MG function depends not only on the inter-
val (z —y)~, but also on zz and y . However, since the
coeScients in front of z2 and y in the expansion

are rather small, one can start with the approximation

M~(z", y, (z —y)') = e "t' "1 fG(v) dv
0

(12)

introducing the distribution function fG(v).
There are three simplest trilocal quark-gluon conden-

sates

M»(y, z) = (q(0)T„A&(y)q(z)) = [z„y„—g»(z y)]M, + (y„y, —q»y')M, + . ",

M„„(y,z)—:(q(0)7,7sA„(y)q(z)) = ep p y~z Ms+

The functions M~ 3 can be parametrized by a triple-integral representation of the same type:

(14)

M;(z', y, (z —y) ) = n, (qq)' 1 '/ + ~y'/ + S( —V)'/ r (p (15)

The limiting case of the standard local condensates
(corresponding to A2 ~ 0) is obtained by the substitution

f;(vi) v2, vs) ~ A;b(vi)b(v2)b(vs), with A, = (—2) 2, 2}.
Incorporating the nonlocal condensates as described

above, one arrives at a modified diagram technique, with
some lines and vertices being the ordinary perturbative
ones, and some corresponding to the nonlocal conden-
sates. Increasing the number of loops, one should con-
sider the condensates containing more and more fields.
We restrict, our analysis here to the two-loop level. Then,
in addition to those already listed, one encounters the

four-quark condensate. To simplify the calculation, we

apply the vacuum-dominance hypothesis and factorize it
into a product of two bilocal ones.

IV. SUM RULE

Using the representations (4)—(7), and calculating the
coefficient functions we obtain a modified QCD sum rule,
with the b functions of Eq. (3) substituted by the func-
tionals bC&;(z) of six vacuum distribution functions:

M2 4

f p (z) = (1 —e " )4 '" (z) + 4zfi (zM ) + ) b@;(z)+bCG(z) + (z ~ z),
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where z = 1 —z, M is the Borel parameter and

7r2e~'"'(z) = 6zz j1 + Cz —'
5 ——+ 1n'

4x 3 S

is the "perturbative" contribution [free-quark loop plus
O(n, ) radiative corrections].

The simplest contribution, proportional to the fv
function taken at v = zM~, is displayed explicitly in
Eq. (16). Other contributions have a more involved form
(see Ref. [17]).

The most intriguing conclusion to be drawn from
Eq. (16) is that p (z), the longitudinal mom-entum dis-
tribution of quarts inside the pion, is directly related to

f(v), the virtuality distribution of quarks and gluons in
the vacuum. Therefore, it is very important to know the
form of the latter to estimate the moments (( ) for
N&0.

V. MODELINC f;(v)

To obtain the original sum rule (3), one should take the
first term of the 6&"& expansion for the f(v)'s. It should
be understood that this approximation is really the sim-
plest model for the distribution functions f(v) Howeve. r,
such a model (used, as a matter of fact, by CZ [13]) is
evidently too crude if the L; parameters characterizing
the width of f;(v) are comparable in magnitude to the
relevant hadronic scale. In this situation, instead of the
standard expansion over the local condensates we pro-
pose to use an expansion in which the (relatively) large
average virtuality of the vacuum fields is taken into ac-
count just in the first term. For the functions M(zz)
having finite widths of order p~, it is much more prefer-
able to use the expansion of f(v) over b&"l(v —p ). The
first term of this expansion

M(zz) = M(0)[e' " l~ + ] (17)

takes into account the main effect caused by the finite
width of the function M(zz), while subsequent terms de-
scribe effects due to the deviation of its form from the
Gaussian one.

To construct the Gaussian Ansa'tze one should know
the second term of the z"-expansion of the relevant non-

local condensates, e.g. , incorporating Eq. (4) we take
f, (~) = b(~ —a,'/2).

For M& the situation is more complicated: Ly is deter-
mined by five different LC, the values of which are poorly
known. The simplest model is to assume that all the
nonlocal distributions have the same width. So, we take
f&~ (v) = b'(v —A /2). Of course, it is more reasonable
to expect that the shift parameters L;, though all of the
same order of magnitude, are still numerically different.
Another model for L~ is to extract the part proportional
to (qDzq) (qq) from all the relevant LC of dimension eight
and neglect the remaining contributions. This gives the
value L~ ——&&A, rather close to the naive estimate.

In a similar way we construct the model for the trilocal
functions:

f;(v» vz, vs) = A;b(vi —L,. )b(vz —L, )b(v3 L; ).
(18)

One can try to determine L~~l's from the expansion of
the relevant NLC by retaining only the (qD q)(qq) part
of the coefficients in front of z2, y2 or (z —y)z, respec-
tively. This gives L~&

—
(zzss, —i&i, s)Az for the fi

function, L~& ——(,s&, sst, ig'z)Az for the fq function and

L~& ——(—sz, &&, e)Az for the fs function [17]. According
to these estimates, the trilocal condensates in some direc-
tions decrease much slower than in the others, and some-
times even increase when the distance between the quarks
increases, which is completely unrealistic. Hence, it is not
safe to neglect other LC in estimating the width para-
meters and, in the absence of a reliable model of the QCD
vacuum, we simply assume that the trilocals decrease at
the same rate in all directions and take L; = A&/2.

To model the nonlocality effects for the gluonic con-
tribution, we assume, by analogy with the quark case,
that the b'(z) terms of the O((GG)) contribution [Eq. (3)]
should be substituted by b(z —LG/M ) in Eq. (16), with
LG =

spaz,

as suggested by Eq. (11).

VI. NUMERICAL ESTIMATES

Within the simplified version of our Gaussian ("delta-
function") model for the nonlocal condensates, the pion
wave-function sum rule has the following form:

f p (z) =,(1 —e "l )4 '"'(z)+ o., (GG)b(z —~94)

+ nn, (qq) zb'(z —4) + 18 z[z+ (4 —z) ln(z)]A2 1 —h.

1 —b. I,
+ ' i" " " ")-(I-~)b(.-~)+-'(1-»)"' )~( -2~)

i'3'
8(A & z & 26) 3z 2 f' 4+2m

1 —A d g 1 —4
where 4 = A~/2M .

The main observation is that in place of the b(z)-type
contributions we have now either the 6 functions with
the shifted arguments or the functions that are smooth

at x = 0. In both cases, the moments of such terms de-
crease as N increases. Hence, for su%ciently large values
of A&, there is no dramatic increase in the ratios of the
condensate contributions to the perturbative term. Tak-
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ing A2 = 0.4 GeV '[15], we obtain for the lowest moments

(( ) = 0.25, (( ) = 0.12, (( ) = 0.07.

These values do not diAer strongly from those corre-
sponding to the asymptotic wave function. Therefore, it
is not surprising that the model wave function

8~-"(*)= -&-V'~(I - *),
(21)

~."''(~) = 6f-~(I —~)il + -', [1 —»(I —&)])

large curly brackets in Eq. (19)] which is due to the
four-quark condensate (q(0)q(z)q(y)q(z)), factorized vitt

the vacuum-dominance hypothesis to the product of the
simplest (tl(0)q(z))-type condensates. This factorization
amounts to neglecting the dependence on the distance
between the two qq pairs. If one takes this dependence
into account, then the dominant term of Eq. (19) will

produce the contributions that will decrease faster with

N, and the resulting (( ) will be even farther from the
CZ values.

VII. CONCLUSIONS

reproducing these values (20), are also close to the
asymptotic wave function. The second model corre-
sponds to the expansion over the Gegenbauer polynomi-
als C„~ (() (the eigenfunctions of the evolution equation
[4 6])

Thus, the moments of the pion wave function are rather
sensitive to the functional form of the nonlocal conden-
sates. The faster the NLC decrease with distance, the
faster is the decrease with N of the relevant contribu-
tion to the (( ) sum rule. Of course, in the A~ ~ 0
limit, Eq. (19) reduces to the original CZ sum rule (3),(1),
and one obtains large CZ values for the moments. With
Az

——0.4 GeV, the condensate terms still decrease more
slowly with X than the perturbative contribution, and
the ((~) values (20) are still larger than ((~) . To get
t, he asymptotic value for (( ), one should t, ake Jt&

—1.2
GeV . Surprisingly enough, it is this huge value of A

that is favored by a calculation within a rather realistic
QCD-vacuum model developed by Shuryak [16]. The re-
cent lattice result ((2) = 0.11 [19], is still rather far from
these values, but the disagreement might be essentially
reduced by a renormalization factor (of order of 1.5) not
included in the quoted lattice value.

Our results depend on the models we accepted for the
uoulocal condensates. However, the sun& rule is domi-

nated by a single contribution [the second term in the

Our basic idea in the present paper is that the nonper-
turbative information about the QCD vacuum structure
should be accumulated in the functions describing the
iliornentum distribution of the vacuum quark and glu-
onic fields. For the vacuum, these functions play the role
analogous to that of the parton distributions in the case
of the hadrons. Ideally, the vacuum distribution func-
tions should be calculated from the theory of the QCD
vacuum. In the absence of such a theory, one can incorpo-
rate the fact that the same vacuum distribution functions
appear in different NLC-modified QCD sum rules for
hadronic wave functions, parton distribution functions,
hadronic form factors etc. This opens a possibility of
finding the vacuum distribution functions (universal for
all the hadrons) from the experimentally known hadronic
functions.
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