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It is interesting to ask whether the weak-isospin gauge group SU(2)l, is embedded in a larger
symmetry group. From a model-building perspective there are usually too many ppssible answers to
this question, because extensions invariably introduce new gauge anomalies. New fermions then have
to be postulated, usually in an ad hoc manner, to cancel these anomalies. However, the quark-lepton
symmetric models of Foot and Lew allow one to extend the weak-isospin group in a disciplined way,
because the new anomalies can now cancel between quarks and generalized leptons. The basics of a
model with gauge group G = SU(3) are presented in this paper. We find that, through left-right
symmetry, a partial unification of the gauge coupling constants of the theory naturally suggests
itself. We also find that the symmetries of the model can impose restrictions on fermion masses and
mixing angles at the tree level, which renormalization effects and mixing phenomena may modify in
a predictive manner.
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I. INTRODUCTION

Much rests on determining the theoretical status of
the standard model (SM). The overwhelming majority
of people who have thought much about it agree that it
must be a "low-energy" effective field theory derivable
from some more satisfactory construction. The reason
for this strong feeling is, of course, a desire for greater
understanding and predictivity rather than because of a
phenomenological cr isis.

Opinion appears, however, to be divided on whether we
are likely to be able to figure out just what this "more
satisfactory construction" is without, an attendant phe-
nomenological crisis to guide our impoverished imagina-
tions. We hold the view that it is worth expending the
eA'ort to fathom out possibilities for physics beyond the
SM. A major argument in favor of this stance is that, al-
though almost certainly incomplete, the SM nonetheless
embodies a great deal of systematic knowledge gained
about particle physics in a theoretically consistent way.
It imposes a discipline on the model builder by pro-
viding well-defined tools (local gauge invariance, spon-
taneous symmetry breaking, and so on) with which to
work. In other words, it is quite likely that the next ef-
fective field theory approximation to be phenomenologi-
cally sanctioned will be built from similar components to
the SM, components we may well be able to assemble at
our desks before the experiments are performed.

There is another motivation for studying extensions of
the SM: by doing so we also learn about the structure of
the SM itself. In particular, we discover which aspects
of the SM are robust, and which can be easily replaced
by some sort of generalization (we will call such aspects
"fragile" ) .

An important area of the SM to look at, from both
of these points of view, is its gauge group GsM where
GsM = SU(3), S SU(2)L, 8 U(1)i . In this article, we
wish to address one aspect of the problem of whether, and
how, it is desirable to extend GsM. Of course, several cel-

ebrated extensions of the SM gauge group have already
been extensively studied in the literature. These include
the left-right symmetric model [1], the color SU(5) sce-
nario [2], Pati-Salam partial-unification theory (PUT) [3]
and grand-unified theories (GUT's) [4]. More recently, a
novel extension of GsM called the "quark-lepton sym-
metric model" was proposed by Foot and Lew [5] as a
way of introducing an exact discrete symmetry between
quarks and (generalized) leptons. We will use both left-
right symmetry and quark-lepton symmetry extensively
in this paper.

There are two main reasons why left-right symmetry
is an interesting idea. First, the standard quark-lepton
spectrum is much more elegantly described in left-right
symmetric models than in the minimal SM. Under the
gauge group GLR = SU(3),SU(2)L, CISU(2)RU(l)tr
the fermion spectrum is

q~ - (3, 2, 1)(1/3),
Et, (1, 2, 1)(—1),

qR - (3 1 2)(1/3)
ER (1, 1, 2)(—1)

This spectrum clearly has fewer arbitrary features than
the SM spectrum. The second reason for being inter-
ested in left-right symmetry is that it is compatible with
a parity-invariant Lagrangian.

The most pertinent observation to make from our point
of view about the left-right symmetric gauge group is that
it is an extension of only the U(l)i factor of GsM. In
fact, U(1)i is a subgroup of SU(2)R U(1)R r. . Weak
hypercharge is therefore fragile, because it can be easily
extended. The resulting theory is elegant, because gauge
anomaly cancellation is achieved without the introduc-
tion of any ad hoe exotic fermion states. (Of course,
one has to add a right-handed neutrino to the spectrum.
However, this particle is necessary in order to define
fermion representations under GL,~. Its introduction is
therefore extremely well motivated. )

The standard way to perform GL,~ symmetry breaking
is through nonzero vacuum expectation values (VEV's)
for a Higgs bidoublet P (1,2, 2)(0) together with a
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are added to the theory, an interesting scenario for
charged-fermion masses results, which goes by the name
of the "universal seesaw mechanism [6]." These vectorlike
exotic fermions can couple to ordinary fermions through

pL & and they can also have bare masses. We will assume
that these bare masses are much larger than (p& &). Since
the normal Dirac mass terms for the standard fermions
are absent due to the absence of P, seesaw forms are
generated for the charged-fermion mass matrices. Thus
a qualitative understanding of why fermion masses are
much smaller than the weak scale is achieved. (The top
quark is a special case. See Davidson and Wali in the
second paper of Ref. [6] for a discussion. ) If one does not
wish to use the universal seesaw mechansim, then one
may introduce the bidoublet P together with p& &. If the
fermions in Eq. (3) are also introduced, then these will
still mix with the ordinary quarks and leptons through
nonzero VEV's for pL &. Analogues of the fermions Nl, ~
and DI. ~ will be used later on in this paper.

It has recently been shown that the color group SU(3),
is also fragile. The SM can be elegantly extended to
the gauge group SU(5), SU(2)L, U(1)y [2]. Again,
from an anomaly-cancellation perspective this extension
is smooth, because no exotic fermions beyond those nec-
essary to define representations of the gauge group need
be introduced.

So, by exhibiting two examples, we have shown that
both U(1)y and SU(3), can be extended very eas-
ily. The fermion spectra are either just as complicated
color SU(5), or simpler (left-right symmetry), than the

SM. Anomalies cancel within a family, just as for the SM,
and all exotic fermions are very well motivated given the
gauge group extension employed. Furthermore, the left-
right symmetric model has as a bonus the prospect of a
par ity-invariant Lagrangian. We therefore describe both
U(1)y and SU(3), as fragile; they can be easily enlarged.
(Needless to say, both of these extensions have an accept-
able, and even interesting, phenomenology. )

The weak-isospin group SU(2)1. is quite a contrast.
Suppose we wish to embed it in a larger group SU(3)L, .

Let us consider the group G,zz, m&z ——SU(3), SU(3)I. 8
U(1)y . A candidate fermion spectrum might be

QL (3, 3)(Vq), us& —(3 1)(u-)

d~ - (3, 1)(u~), v~ —(3 I)(v&),

FL —(1,3)(yF), eIz —(1, 1)(y, ),

fa (1, 1)(zip ).

(4)

pair of left-right symmetric Higgs triplets. In this paper,
however, we will be led to using the alternative (minimal)
set of Higgs multiplets given by

pL - (1»)(1) p~ —(1 1 2)(—1)

(2)
These multiplets are usually not used because they can-
not couple to quarks and leptons at tree level. However,
if the exotic fermions

EL ~ (1, 1, 1)(—2),

Gqz ——SU(3)z SU(3)q SU(2)L, U(1)»,

under which the fermions form the spectrum,

Ql. (1,3, 2)(1/3), ziR (1, 3, 1)(4/3),

dlz (1,3, 1)(—2/3), FI. (3, 1, 2)(—1/3),

ER —(3, 1, 1)(—4/3), NR —(3, 1, 1)(2/3).

(5)

The group SU(3)z is just tbe usual color group given
a different label, while SU(3)q is leptonic color. Stan-
dard hypercharge is given by Y = X + Tr/3 where
T~ = diag( —2, 1, 1) in SU(3)~ space. Thus the basic

One could also try variations on this pattern, by mak-
ing the quarks a 3 of SU(3)L and/or introducing right-
handed neutrinos. At any rate, it is certainly possible
to choose the Y" quantum numbers so that the stan-
dard hypercharge generator is a linear combination of
Y" and rl. , where Tl. = diag( —2, 1, 1) is a diagonal gen-
erator of SU(3)L, . One again finds that exotic fermions
have to be introduced in order to fill out the representa-
tions of weak isospin. However, the crucial observation
is that no matter how hard one tries, one cannot ever
cancel anomalies within a. fermion family. Cancellation
cannot occur between left- and right-handed sectors, be-
cause SU(3)L, has to be chiral. Cancellation also cannot
occur between quarks and leptons, because of the mis-
match in degrees of freedom: quarks are colored but lep-
tons are not. Remember that, [SU(2)L,] anomalies are
always zero because SU(2) only has real representations.
The trouble with SU(3)1. is that [SU(3)r, ] anomalies are
not automatically zero. A similar problem would occur
with most other extensions of weak isospin one might
contemplate [7].

Since we have good reason to believe that anomalous
gauge theories are sick, we now need to introduce exotic
fermions for the sole purpose of cancelling this inevitable
gauge anomaly. This of course is a technically acceptable
course of action [8]. Unfortunately, there are always an
infinite number of exotic fermion spectra that will do the
job. So unless one has some other consideration that
would allow the choice of fermion representations to be
considerably reduced [9], one is led to either making an
ad hoc selection, or to living with an ill-defined sector in
one's theory.

One might call the above theory an attempt at con-
structing an extension of SU(2)L, which was "once re-
moved" from the SM. This at tempt essentially fails;
SU(2)L, is robust. However, the quark-lepton symmetric
models referred to earlier provide a framework for con-
structing a sensible extension of weak isospin which is
"twice removed" from the SM. This possibility arises be-
cause the gauge group in quark-lepton symmetric models
forces the number of leptonic degrees of freedom to equal
the number of quark degrees of freedom. The barrier to
nontrivial anomaly cancellation is destroyed.

We refer readers to the original papers on quark-lepton
symmetry [5] for a complete description of this idea. We
present only a quick sketch below.

The basic model has gauge group G&g where
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quark-lepton symmetric model is an extension of U(1)&,
just like the left-right symmetric model ~ In order to de-
fine a representation of leptonic color, t,he number of lep-
tonic degrees of freedom have been tripled. Also, a gen-
eralized right-handed neutrino multiplet (NR) has been
added so that there is an exact correspondence between
quark and lepton degrees of freedom. An exact inter-
change symmetry can now be defined [10]:

QL, FI. , uR ~ EIr, d~ ~ NIr,

G~ -G,", W~ - W~, C~--C~,
where G"

&, W", and C" are gauge fields for SU(3)& r,
SU(2)L, , and U(1)x, respectively. Gauge anomaly can-
cellation is manifest for each fermion family.

The first stage of symmetry breaking leads to

will have some value in the continuing struggle to un-

derstand quark and lepton masses. Note also that these
mass relations may be avoided by complicating the Higgs
sector. If, for instance, a second Higgs doublet is intro-
duced then a successful fermion mass spectrum can be
arranged at the expense of predictivity. This shows that
it is not inevitable for quark-lepton symmetry to yield
mass relations, although the fact that it can is poten-
tially very important.

The extended weak-isospin model we will introduce
shortly will actually be based on the combination of
quark-lepton and left-right symmetry. The gauge group
for this combined theory is G&rL~ = SU(3)r SU(3)&
SU(2)L, SU(2)~ U(1)v, under which the fermions
transform as

QL, (1,3, 2, 1)(1/3), Q~ (1,3, 1, 2)(1/3),

Gqr ~ SU(2) 13 SU(3)q 8 SU(2)L, U(1)~ (8) FI. —(3, 1, 2, 1)(—1/3), Fjr (3, 1, 1, 2)(—1/3).

where SU(2)' is an unbroken subgroup of leptonic color.
The generalized lepton multiplets decompose into the
standard leptons together with very heavy charge +1/2
SU(2)' doublet fermions called "liptons. " These exotic
states are confined into heavy unstable integrally charged
bound states by the asymptotically free SU(2)' interac-
tion [11].

Electroweak symmetry breaking proceeds through a
standard Higgs doublet P (1, 1, 2)(1) which transforms
into its charge-conjugate field g' under the quark-lepton
discrete symmetry. The field P couples in the usual way
to the fermions:

l:v„k —hi (FL ERp + QL uRQ')

+h2(FI. Nrrp' + Qr dRQ) + H.c.

Note, however, that quark-lepton syrnrnetry has imposed
relations that are not present in the SM between the
Yukawa coupling constants.

The standard leptons and the quarks gain tree-level
mass matrices given by

Symmetry breaking is achieved through generalizations
of the Higgs multiplets used in the minimal quark-lepton
symmetric model described above.

In this paper we will present an outline for a theory
of extended weak isospin, predicated upon the quark-
lepton symmetry idea. We will concentrate on the left-
right symmetric version of this scheme, because its gauge
group and fermion spectrum turn out to be quite elegant.
As a bonus we will discover that a reduction in the num-
ber of independent gauge coupling constants from three
to two naturally suggests itself; that is, the theory will ex-
hibit partial unification, although in a different way from
the model of Pati and Salam [3]. We will discuss possible
patterns of symmetry breakdown, and consequent effects
on fermion mass generation, although a rigorous analysis
of the Higgs potential and other more complex issues that
will arise will be beyond the scope of this introductory
article.

The remaining two sections of this paper decribe the
extended weak-isospin model, and furnish concluding re-
marks.

m„= m, = hi(P) and mg = m„= hz(P). (10) II. EXTENDED WEAK ISOSPIN
These mass relations obviously require further comment.
As in GUT's or the Pati-Salam PUT, these tree-level
results are due to the raison d' etre of the theory: a re-
lationship between quarks and leptons. As such they are
to be welcomed, because after all we ultimately do want
to understand how fermion masses are interrelated (as-
suming there is a solution to this problem). The hard
work is to find a theory in which untenable but sugges-
tive tree-level relations are renormalized into predictive
and correct results. The basic quark-lepton symmetric
model probably fails to do this [12], particularly if the
quark-lepton symmetry breaking scale is relatively low
(as it can be phenomenologically). Therefore, one should
view the fermion mass sector of a theory such as this
as a starting point for constructing a more satisfactory
scheme. Indeed, the extended weak-isospin theory we
will introduce in the next section will have more vari-
eties of physics in the fermion mass generation sector,
and we hope the qualitative observations we will make

A. Introduction

We are now ready to present our model [13].The gauge
group is G where

QL, - (1,3, 3, 1),

F, - (3, 1, 3, 1),

Qn - (1,3, 1, 3),

Fn —(3, 1, 1, 3).
(13)

We impose two discrete symmetries on the Lagrangian.
First there is quark-lepton symmetry, which is defined by
the interchanges [14]

Qn Fa,

w," --w,", WR —W~'.
(14)

G = SU(3)r S SU(3)q SU(3)L, Is SU(3)~. (12)

The generalized quark and lepton spectrum is
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Second, t, here is left-right, symmetry given by

QL QR, FL ~ FR)

B. First stage of symmetry breaking

The first stage of symmetry breaking proceeds through
the analogue of the y Higgs bosons of quark-lepton sym-
metric models [5]. There are four multiplets which are all
interrelated through the two discrete symmetries. They
are introduced through the Yukawa Lagrang&an l:&„k

(~)

where

~Yuk ~[ (FL) ~LX1L + (FR) FRX1R

QP ~ QP
q q )

The existence of these two discrete symmetries means
there are only two independent coupling constants in
the theory, thus making it a model of partial unifica-
tion. Later on we will analyze the implications of this
through the renormalization-group evolution of the gauge
coupling constants.

As promised, we have used quark-lepton symmetry to
cancel [SU(3)L R] gauge anomalies between quarks and
leptons. The fermion spectrum contains a number of
nonstandard states, but all of these have to be there to
define representations of the gauge group. None of these
fermions have been introduced for the sole purpose of
cancelling gauge anomalies.

Observe that there are no U(1) factors in the gauge
group G. That the weak hypercharge generator of the
SM can be embedded in the non-Abelian group arising
from the desire to extend weak isospin is a rather sur-
prising and pleasing result. We find the gauge group
structure and the fermion spectrum of this model to be
very symmetric and aesthetically satisfying. We want
to emphasize this here, because the details of symmetry
breaking and fermion mass generation in this model will
t, urn out to be a little complicated. However, the low-

energy debris should not detract from the elegance of
the fully symmetric Lagrangian. After all, ultimately we

have a rather complicated low-energy world to explain.

where B —L is defined to be the generator left unbroken
by these VEV's. It is given by

18 —L = —(Tg —TL —TR) .
3

(19)

The branching rules for the fermion representations verify
that this quantity is indeed B —I. Under SU(2)' GL,R
the lepton multiplets break up as follows:

FL —(2, 1, 2, 1)(0) (1, 1, 2, 1)(—1) (2, 1, 1, 1)(1)
p(l, 1, 1, 1)(0), (2o)

EL fL(PEL+kLNL, (21)

FR ~ (2, 1, 1, 2)(0) g (1, 1, 1, 2)(—1) g (2, 1, 1, l)(l)
(1, 1, 1, 1)(0), (22)

y's are nevertheless a direct generalization of the old y's
because the weak-isospin singlet in Eq. (16) is antisym-
metric in both cases. When nonzero VEV's develop for

both quark-lepton symmetry and extended weak
isospin break down at the same scale. Whether par-
ity also breaks down at this scale depends on whether

(X1L) = (X1R) or not. This question can only be an-
swered by examining the Higgs potential in detail, which
is beyond the scope of this paper. The complexities inher-
ent in fermion mass generation in this model will render
uncertain the optimal form of the Higgs-boson spectrum.
Given this we prefer in this introductory article to adopt
an open-minded position on the exact mode of symmetry
breaking; we will confine ourselves to some general ob-
servations, which we think are interesting in themselves.
Therefore, the reader should keep in mind that after the
first stage of symmetry breaking, parity may or may not
be spontaneously broken.

We postulate that the T~ ——TL,
———2 component of

y&L, and the Tg —TR ———2 component of y&& develop
nonzero VEV's. This breaks G down to SU(2)' t3 GLR:

(X11., R)G:SU(2)'SU(3) q SU(2)L SU(2)RSU(1)B

+(QL)'QLX. I+(QR, )'Q.RX.R] + H c (16) fR P &R g I-R g ~VR (23)

The quantum numbers of the y fields are

X1I. (3, 1, 3, 1),

X~L - (1 3 3, 1)

»R-(3» 13)

(1313).
(17)

The transformation laws for these fields under the dis-
crete symmetries are completely obvious, so we will not
display them. It is clearly also possible to introduce more
than one copy of the multiplets in Eq. (17). How many
copies will ultimately be necessary to make our model
fully realistic will remain an open question.

Note that the y fields transform under both the color
and the weak-isospin parts of the gauge group, unlike
their simpler cousins in the basic left-right symmetric ver-

sion of the quark-lepton symmetric model [5]. The new

QL ~ (1,3, 2, l)(1/3) (1, 3, 1, 1)(—2/3),

QL-VL&L

QR ~ (1, 3, 1, 2)(1/3) (1, 3, 1, 1)(—2/3),

QR

(24)

(25)

(26)

(27)

The line following the branching rule establishes the
nomenclature we will use for the fermions. The multi-

plets fL R are the liptons of the quark-lepton symmetric
model; SI. ~ are the standard leptons; kg R are charge
+1/2 fermions which are the extended weak-isospin part-
ners of the liptons, while NL ~ are neutral fermion part-
ners of the standard leptons. The quark fields are given

by
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where qL R are the standard quarks and DL R are their
charge —I/O extended weak-isospin partners. As one can
see, Eq. (19) does indeed define B —L

Since the y fields have the same quantum numbers
under G as the fermions we also know how they break
up under SU(2)' GL,R. We will denote the various

components by XH, xH, xH, XH, xH, and x where,f r k N 0 D

0 = L, R in an obvious notation. The fields XH are the
ones which develop nonzero VEV's.

The Yukawa Lagrangian Eq. (16) in terms of these
fields is

&v".k = &( (fl. )'fr. xl. + 2I(&I )'fl xr. + (I'r. )'fr x~1.

+(fr.)'Nr. xl, + (I:r.)'&l, xr, ]

+(~I.)'n, xr. + 2(DL, )'n, xL,

+(L R)) + H.c. (28)

unbroken [15]. The symmetry U(l)R is an extended

We see from this that only the liptons pick up mass at
tree level from (xpR) g 0. An interesting question at
this point is whether the vectorlike fermions k, N, and
D pick up mass through radiative corrections or are kept
exactly massless by a chiral symmetry. We need to know
this, because if there is a chiral symmetry keeping these
particles massless, then they may be given controllably
small masses once this chiral symmetry is broken in some
manner. This is important from a phenomenological per-
spective because (relatively) light exotic k, N, and D
fermions would be interest, ing things to look for in the
100 GeV to 1 TeV region in collider experiments. Also,
we may want N and D to play a role in quark and lep-
ton mass generation through mixing, so they should not
be too massive. In addition, the mass spectrum of the
fermions aA'ects the renormalization group analysis to be
performed shortly.

In fact it is easy to show that there is a global chiral
symmetry which maintains the masslessness of I, N and
D to all orders. An analysis of the global synunetries of
the theory (as so far constructed) shows that there are
four unbroken U(1) invariances.

We notice first of all that there are three global sym-
metries in the Lagrangian, given by

U(1)C, ' FL, e' FL„XiL, e Xir,

(29)

QR e' QR, x2R e "
x2R,

U(1)c FR - e' FR, xiR - &
'* xiR,

(30)
QR —e

*
QR, XgR

&'* X2R,

U(1)R . QL„R e' QI. , R x2R & x2R .

(31)

(There are three rather than four independent global
symmetries because of the Higgs potential term

XiL XiRX21 XzR.) Nonzero VEV's for XL R leave the gen-,N

erators

TR —CR, and B'

baryon number, while the other two unbroken global
symmetries are completely new invariances associated
with the exotic fermions. (Note that no physical Gold-
stone bosons are generated from this spontaneous sym-
metry breaking, because the CL R charges are propor-
tional to TL R for the Higgs fields which actually develop
the nonzero VEV's. Because the latter generators are
coupled to gauge fields, the would-be Goldstone bosons
are eaten. The reader may recall that the same principle
applies to the usual left-right symmetric model, where
the putative Majoron is eaten by the B—L gauge field. )

If we add to the generators of Eq. (32) the unbroken
purely gauge generator B —L then four unbroken global
symmetries emerge. By taking appropriate linear combi-
nations, we may write the action of these symmetries on
the SU(2)' g Gr. R multiplets in a simple manner. Two
of these are the vectorlike extended baryon and extended
lepton number groups given by

~LR e ~LR OLR e DLR,ia/3 i or/3

q, D —2ia/3 q, D
XL', R e XL,R

' (33)

&L,R —e'
&L„,R, &L,R e' &L,R,

f k ip f k
&L„R (34)

There is another vector-like symmetry U(1)~ which acts
only on the exotic fermions. Explicitly, it is given by

kLR ~ e '~kL R,
f,e,~ f,e

~L, R ~L,R

~LR ~LR

NL R e '~NL, R,

L,R~e" (35)

Finally, there is the axial analogue A of P acting on the
exotic fermions:

~LR e ~LR

DL,R~e '
DL,R

Rib
XL,R e XL,R

NL R ~ e+' NL, R,
f

&L,R e &L,R

,q gib, q
&L,R . (36)

Clearly, U (1)A maintains k, N, and D as massless
fermions. Note that we have not yet completed speci-
fying the Higgs fields in the theory. It will turn out that
this global axial symmetry is explicitly broken in the full
theory. Nevertheless, it is useful to introduce it because
we can discuss k, N, and D mass generation in terms of
how it is broken. Another relevant observation is that
exact U(1)~, toget, her of course with SU(2)L, SU(2)R
weak isospin, prevents d Dand v-N mixi-ng (note also
that this mixing is allowed by both L' and B')

Before introducing the next stage of symmetry break-
ing, we have to comment on the role of the yL R Higgs
fields. The reader will note that they have the quan-
tuna numbers of the minimal left-right symmetric Higgs
bosons which can perform SU(2)R and left-right symme-
try breaking. Also, the D and N fields have the correct
quantum numbers to be the exotic fermions necessary for
mixing with d quarks and neutrinos, respectively. How-
ever, we prefer not to use yL R for this role. There are
two reasons far this. First, for reasons af phenamena-
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C. Second stage of symmetry breaking

We have two more symmetry breaking transitions to
induce: SU(2)R and electroweak symmetry breaking. To
this end we introduce either one copy or several of the ex-
tended weak-isospin generalization of the standard Higgs
bidoublet 4 of left-right symmetric models. The Yukawa

Lagrangian is 2&„k where(2)

LY„k ——h( FI,F~4+ FJt F1.4' + Qi QR4'

+QRQL, 4) + H. c.

Note that quark-lepton symmetry imposes equality of
quark and lepton Yukawa coupling constants. Under G,
C transforms like,

Ci —(1, 1, 3, 3), (38)

while under the subgroup SU(2)' GsM it breaks up as
follows:

4 ~ (1, 1, 2, 2)(0) (1, 1, 2, 1)(-1) (1, 1, 1, 2)(1)
(1, 1, 1, 1)(0), (39)

logical interest we prefer to induce SU(2)~ breaking at a
much lower scale than extended weak isospin. Since gL &
are in the same multiplet as yL & we would expect that
if they were to develop nonzero VEV's they would be of
the same high scale as (yL R). Second, as one can see

from Eq. (28), nonzero VEV's for yl & would only mix
the liptons with the k's, rather than the v's with the K's
and/or the d's with the D's

We reiterate our attitude to results such as these: it
is probably a good thing that these constraints exist in
the theory. We ultimately want a predictive theory of
fermion masses. It makes sense to first construct a model
which provides incorrect but suggestive mass and mixing-
angle relations, and then to see whether radiative cor-
rections in the model itself, or in some development of
it, , can perturb the wrong tree-level results into correct
renormalized results. Remember also our previous re-
mark that relations such as these may be evaded at the
expense of predictivity by enlarging the Higgs sector.

The Higgs bosons pL and p& are the appropriate fields
to serve as the left-right symmetry breaking doublets. If
the left-right symmetry breaking scale is not too much
higher than the electroweak scale, then only a relatively
small hierarchy in VEV's need be induced between the
extended weak-isospin partners P, a', and p& &. Further-

I

more, nonzero values for (pL &) will induce mixing be-
tween ordinary down quarks and D's, and ordinary neu-
trinos and N's.

Finally, the singlet field ~ will give tree-level masses to
the I", N, and D exotic fermions if it acquires a nonzero
VEV. For phenomenological reasons we require this VEV
to be fairly large, so that, the exotic fermion masses cause
no experimental problems. However, it need not be much
larger than the VEV for p&. Note that a nonzero (ir) also
breaks extended weak isospin. (We choose not to use it
as the primary source of extended weak-isospin breaking
because it is in the same multiplet as P and pL &.)

Since the VEV for o induces k, N, and D masses, it
evidently has to spontaneously break U(1)A. However,
with the introduction of 4 it is natural to break this
axial symmetry explicitly in the Lagrangian. This is ac-
complished through the gauge invariant Higgs potential
terms

~- 4~i ~R ~ (40) y, ~y)~C + y2~y2~4'+ H.c., t (42)

Under both quark-lepton and left-right symmetries 4 ~
(p c

The Yukawa Lagrangian may be rewritten as

These terms explicitly break U(1)c„ U(1)&„down to
the diagonal subgroup. This reduces the number of exact
global symmetries after the first stage of symmetry break-
ing by one. It is straightforward to check that U(1)A is

the explicitly broken symmetry. Furthermore, since the
absence of the Higgs-boson trilinear term in Eq. (42) in-

creases the symmetry of t,he theory, its coeKcient may be
kept small in a technically natural manner. This protects
I-, N, and D from obtaining large radiative masses from
the heavy sector of the theory.

The vectorlike symmetry U(1)y is spontaneously bro-
ken through nonzero VEV's for p& &. This is corre-
lated with the fact that d-D and v-N mixing is induced
through these Higgs fields [remember that exact U(1)y.
forbids this mixingj. There is however a remnant exact
global symmetry given by U(1)~ where

We would like to identify P with the usual Higgs bidou-
blet, in left-right symmetric models. Nonzero VEV's for

P will give ordinary quarks and leptons a mass. As is

usual in quark-lepton symmetric models equal masses
are induced for quarks and leptons. There is, however,
an additional constraint due to extended weak isospin:
the mass matrix for down quarks is proportional to the
mass matrix for up quarks. Similarly, the charged lepton
mass matrix is proportional to the neutrino Dirac mass
matrix. This implies that the I&obayashi-Maskawa (I&M)
matrices are just equal to unity in both sectors. This
constraint occurs because SU(3) weak isospin forbids the
charge conjugate of P (given by ~t' = rzPrz) from cou-

p ling to ordinary fermions.

(43)P' = (B —L)+ X = B' —L'.

This is a fermion-number —like symmetry which does not
distinguish between d's and D's, or between v's and N's.
Again, there is no Goldstone boson produced by this
spontaneous breaking.

', „', = h(S, Z.~+ k.y.p. + S,k~p, + 1.~«
+ HL, 4$+ Ni. lit pR+ I-L NRpr + Nr.NRo.
+ qi. q~g'+ Dl. qRp'R+ qL, DRp'l. + Dr. Drtrr')

+H.c. (41)
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D. Fermion mass and mixing-angle generation

Let us summarize the symmetry breaking and fermion
mass gener ation physics in the model. The gauge-
symmetry breaking pattern is

SU(3)r (g SU(3)q @SU(3)L, C3 SU(3)~

& (xL„R)

SU(2)' Ia SU(3)q @SU(2)L, C3 SU(2)~ 8 U(1)gy

l (~~) (~)

SU{2)'g SU(3), gSU(2)L, g U(1)&

i (~),(")
SU(2)' g SU(3), g U(1)q. (44)

The various types of fermions gain mass as follows: (a)
liPtons gain tree-level masses from (Xr &); (b) the lr, N,
and D exotic fermions gain tree-level masses from (o),
while (c) ordinary quarks and leptons gain masses from P,
and through the mixing with D and N which is induced
by (p& &). The symmetries of the model (both exact and

approximate) ensure that (i) the k, N, and D fermions
do not get large radiative masses induced by the heavy
sector, and (ii) that d Dand v N-mixing -is absent until

pL R develop nonzero VEV's.
Given the hierarchy between the (X) and (4) scales

necessary phenomenologically, we see that in general the
liptons should be unobservably heavy, while the k, N,
and D fermions may have masses as low as 100 GeV or
So.

There are two other interesting observations: (i) The
KM matrix is diagonal at tree level due to constraints
from extended weak isospin if the minimal Higgs sector
of only one 4 is assumed. (ii) If there is only one 4
then its VEV induces the mass relations m„= rn, and
md ——rn„at tree level. Nonzero VEV's for p& & induce d-

1

D and v-N mixing, but quark-lepton symmetry ensures
that the mass relations remain nevertheless.

It is clear that the combination of quark-lepton symme-
try and extended weak isospin can be used to constrain
fermion masses and mixing angles in an interesting way.
It is tantalizing to think that radiative corrections in the
theory may be sufficient to correct the t, ree-level results
quoted above into renormalized quantities that are both
correct, and predictive. One would expect, , for instance,
that the spontaneous breaking of quark-lepton symme-
try at the (XPn) scale would induce, through radiative
effects, a correction to the mass relations m„= m, and
mg —rn„. Also, the breakdown of extended weak isospin
at the same high scale should generate ofF-diagonal KM
matrix elements.

Of course, it would be remarkable if these radiative cor-
rections yielded correct masses and mixing angles. The

I

authors feel that the scenario studied here is sufficiently
different from conventional GUT models to be worth
some further study. We know that conventional GUT
models can succesfully predict the ratio mg/m„while
failing to correctly acount for all of the other mass rela-
t, ions. We hope the scheme presented above will prove
useful in developing new ideas in the continuing effort
t 0 understand the origin of fermion masses and mixing
angles.

E. Constraints from partial unification

1 1 b Mi

n(Mi ) n(M2) 2n Ms
(46)

where Mi 2 represent two mass scales in the theory, and
b is given by

11 2
6 = ——T(gauge boson) + -T(Weyl fermion)

3 3
1

+—T(complex scalar).
3

(47)

The group-theoretic quantities T are defined by
Tr(X X ) = T(R)b where the X"s are the generators
of the group in the representation R.

Hy matching up the running coupling constants at each
symmetry breaking scale, one may relate the values of the
fine-structure constants at M~ to the scales Ai and Ag.
The equation is

We have fairly laboriously developed a scenario above
where: (i) extended weak isospin together with quark-
lepton symmet, ry is broken, and liptons become massive,
at a high scale; (ii) SU(2)~ and electroweak breaking, to-
gether with mass generation for the other fermions, oc-
curs at a much lower mass scale. We now have to check
that this qualitative pattern is consistent with the partial
unification of gauge coupling constants enforced by the
two discrete symmetries of the model [16].

The analysis is quite straightforward (we assume three
generations of fermions). Denote the three principal
scales in the theory as

Ai - (Xii,a) A3 - (~~) (~) M~ - (pi) (&)

(45)

We will ignore all the fine structure in this hierarchy as,
for example, may exist between (X&&) and (X&&) if parity
is spontaneously broken at the high scale of the theory
rather than the intermediate scale. Consequently, a sin-

gle coupling constant gq will be assumed for both SU(2)L,
and SU(2)R between Aq and Aq. The one-loop renormal-
ization group equations for the fine-structure constants
Q3 Q2 QQI and n~ (where these refer to color, the weak
SU(2)'s, B —I, and Y, respectively) will be used. (The
coupling constants of U(1)y and U(1)g L, are chosen to
be gy/2 and g~L, /2, respectively. ) The generic form of
these equations is

3 —b3+ 2b2 —gb2 —3baI. + 3bv ~2 3b~L, —b3 —2bq A&
ln + ln

33 3oq 6x Mw 6x Mw
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where the 6 quantities refer to running between Aq and
A2, while the b's without carets refer to running between
A2 and Mgr. For three generations of fermions, these
quantities are

b3 ——5, b2 ——10/3 + n/2, baal = 6 + n/3,
(49)

b3 ——7, b2 = —10/3 + n/2, by —20/3 + n/2,

where n is the number of 4 multiplets. These numbers
dlfkI' frolll t, hose 1n thc usual left-I'ight syiTIITlctrlc IHodcl
because of the effect of the exotic fermions I" and D be-
tween AI and A2. Note that we have assumed all of the
degrees of freedom in the y Higgs bosons become massive
at A1 and thus do not contribute to the running of the
coupling constants in the region of interest.

Substituting these numbers into Eq. (48) yields

simple calculation shows, in fact, that A' is given by

(b'„—b3 )/b~

A'= Mw
(Mn )

x exp &'")

(b3 b3+bg bg)/bg
A2

I Miv)

(54)

b', = —16/3 and b2 ———22/3. (55)

The exotic fermions I- contribute to this running between
Ai and A2, whereas the running below A2 is due entirely
to the SU(2)' gauge bosons. Substituting these numbers
into Eq. (54) yields

The quantities b& and b2 refer to the running of the SU(2)'
fine-structure constant for AI Ag and A2 A', respec-
tively. They are given by

0'y M 18 M

(50)

~-3~&
A' = Miy

/

exp I

iMg ) i llasj
Note that A' turns out not to depend on the intermediate
scale A2. Using AI —3 x 10' one finds t, hat

The centra, l values of the allowed ranges for the fine-
structure constants at Miv are [17] 110 Mcv, (57)

Interesting representative solutions of Eq. (50) with these
iIlputs are

A- =Mw Ai 3 x 10' GeV, (52)

AI —A2=A, n= 1 A 4 x 10' GeV.

(53)

These results show that A2 can be anywhere between a
few 100 and 10' GeV, while AI ranges between about
10 and 10' GeV. Therefore, a low SU(2)~ breaking
scale, t, ogether with low masses for the k, X, and D
ferillioils, is compatible with partial unification in this
model. Note that the high scale AI is always comfort-
ably below the Planck ma.ss.

3
A3 —0.108, n2 —0.03322, and n~ ——x 0.016 887.

5

(51)

which is of the order of the color scale. These exotic
nonIelativistic bound states will decay via electromag-
netic, Z and SU(2)' interactions. We will not consider
their phenomenology in detail here, because of its simi-
larity to lipton physics (which has been studied elsewhere
[5]). Although our model also has lipton states, they are
expect, ed to be extremely heavy and thus irrelevant for
collider experiments.

Anothei interesting prediction of the model is that of
SU(2)~ gauge forces which are spontaneously broken by
doublet Higgs bosons, rather than the more standard
choice of triplets. Allied with this is the existence of
the exotic fermions N and D which in general will mix
with neutrinos and down quarks once the aforementioned
Higgs doublets deyelop nonzero VEV's. These exotic
fermions form half of the states required to institute a
universal seesaw mechanism. It is possible that an ex-
tension of our model could be constructed which con-
t, ains all of the fermions required for the universal seesaw
I Ile ch a,n ISill.

F. Possible low-energy phenornenological signatures III. CONCLUSION

The most interesting prediction of our extended weak-
isospin model is the existence of the class of exotic
I'ermion we call k. These are charge +1/2 particles that
transform as doublets under the unbroken remnant group
SU(2)'. Since they receive mass at the second stage of
symmetry breaking, they could well be as light as 100
GeV or so. Their experimental signature is quite striking:
they emerge as integrally charged exotic hadrons of the
SU(2)' sector. Their properties are quite similar to those
of lipt, ons; the main difference is that they do not couple
to H~L ~ bosons, unlike the liptons. Since I" masses are
expected to be much higher than the SU(2)' confinement
scale A', they will form nonrelativistic bound states. A

It is important to analyze the standard model in a rig-
orous way, to see which features of it have a degree of
permanence, and v hich may be enlarged without catas-
trophic consequences. We have argued in this article that
both the color group SU(3), and the weak hypercharge
group U(1)y are fragile —they can be replaced by SU(5),
and SU(2)~ U(1)~ L„respectively without greatly dis-
turbing the structure of the theory. The weak-isospin
group SU(2)L, is in a diff'erent category. It is robust be-
cause [weak isospin]s anomalies only cancel automatically
when real representations are used.

However, a sensible and interesting extension of weak-
isospin from SU(2) to SU(3) can be achieved provided
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one also introduces a spontaneously broken leptonic color
group. This led us to construct an extended weak-isospin
model which had as its starting point the quark-lepton
symmetric model of Foot and Lew [5] rather than the
standard model. In this way a theory "twice removed"
from the SM emerged.

It turned out that elegance demanded the introduction
also of left-right symmetry, leading to the gauge group
SU(3)q SU(3)~ SU(3)L, SU(3)R. As well as pro-
viding an aesthetically pleasing spectrum of quark and
lepton quantum numbers, this gauge group with the two
imposed discrete symmetries implied a partial unification
of gauge coupling constants. A renormalization-group
analysis of the running coupling constants then showed
that a low SU(2)~ breaking scale was possible, and that
the extended weak-isospin breaking scale had to be in the
range 10iu to 1014 GeV.

A number of testable low-energy phenomenological
consequences are possible. The most striking predic-

tion is that of charge +1/2 fermions confined into in-
tegrally charged nonrelativistic bound states by an un-
broken SU(2)' gauge force. Also, SU(2)R is broken in an
unconventional way through Higgs doublets rather than
the more familiar triplets. This breaking in general also
leads to neutrino and down-quark mixing with the exotic
fermions N and O.

The quark-lepton discrete symmetry and extended
weak isospin lead to a number of interesting fermion mass
and mixing-angle relations. An important open question
is whether radiative corrections in the model as is, or
in some development of it, can lead to correct mass and
mixing-angle predictions,
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