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Feynman rules for Majorana-neutrino interactions
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Simple Feynman rules for Majorana neutrinos and Dirac fermions interacting with spin-1 or spin-0
bosons are presented. Several examples using these rules are given.
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I. INTRODUCTION

In perturbation field theory the Feynman-diagram
technique is usually applied. This technique is very well
known for neutral and charged spin-0 and spin-1 bosons
and for charged spin- —,

' fermions while for neutral spin- —,
'

fermions the diagrammatic methods are not fully
developed. We know of only three papers which touch
on the problem [ I —3]. However, the presented Feynman
methods are complicated and in many papers which de-
scribe Majorana-neutrino interactions the authors prefer
to use the Wick theorem [4]. The Feynman rules for Ma-
jorana particles differ from those of Dirac fermions due
to the presence of several different propagators, a related
multiplicity of Feynman vertices, and the problem in-
volved in the relative signatures of the various diagrams
contributing to a given amplitude [5]. The self-conjugacy
of Majorana fermions is responsible for all these
differences. On the other hand, the Majorana neutrinos
appear in a number of proposed extensions of the stan-
dard model so it becomes important to have simple di-
agrammatic rules to calculate cross sections. The num-
ber of necessary propagators and related Feynman ver-
tices was reduced already in Ref. [3] but the applications
of their Feynman rules are still complicated. First of all,
the authors of Ref. [3] give the rule for an absolute signa-
ture of each Feynman diagram which depends on the or-
der of fermion operators in the Green's function. In
Refs. [l —3], the Majorana representation for the Dirac
y" matrices and spinors is used; therefore, it is not obvi-
ous which simplifications originate from the proposed
method and which from the spin representation.

In this paper we propose a Feynman-diagram tech-
nique for Majorana neutrinos which is independent of the
spinor representation and does not attempt to give a rule
for the absolute sign of each diagram. We found a simple
method which makes it possible to predict the relative
signs between different diagrams, which are important in
practical calculations. The proposed Feynman-diagram
technique for neutral spin- —, fermions is very simple and
we hope it will find applications in practice.

In the next section we describe the Majorana-neutrino
interactions for which we have found Feynman rules. In
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II. MA JORANA-NEUTRINO INTERACTIONS

We will consider only that part of any gauge theory
which describes the Majorana-neutrino interactions. The
other parts of the gauge theory Lagrangian are not im-
portant for our purpose, and give Feynman rules which
are well known. We take the interactions of Majorana
neutrinos (N) with charged leptons (1) and charged ( W~)
or neutral (Z ) gauge bosons in the form

L~~ =NI I IS'„+ +l I I NJY„

L o=(NI "N+lI", l)Z„,
where

f'~~.~=r"(PL AL +PR Az"'), x =l, N, lN,

and

f'i =xof'i'—ro=r"(Pi AL +Pg AR

PL, (it)= 2(i+l's) .

(2. l)

(2.2)

The parameters AL z are real for x =N, lN and gen-
erally complex for x = I and depend on the theory under
investigation. In the case of mixing between generations
the AL R quantities are matrices, but this does not com-
plicate our approach to the Feynman rules.

In a similar way we consider the Majorana neutrino in-
teraction (N) with the charged (H —

) and neutral (H )
spin-0 Higgs particles:

L + =NI, IH++I I,NH

L =(Nl N+lI i l)H

(2.3)

(2.4)

where

I
( )=PLBL"'+P~B~ ' for x =I,N, IN,

I I—= y' I Iyo—=P~BI +P B(I)* (I)*

and

Sec. III the Feynman technique is presented. At the be-
ginning of this section we consider a very simple example
which explains why it is possible to formulate explicit
Feynman rules in spite of the multiplicity of vertices and
propagators. In Sec. IV we give certain examples using
our rules.
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B'"'=B' ' for x =N, lN,L R

and as previously BL"l'„] are theory-dependent numbers
(or inatrices). The Majorana fields are self-conjugate and
have a plane-wave decomposition,

N (x)= g f [u (k, )(.)a(k, A, )e
d k

n (2n. ) 2E

and

T
I ~„~

——Cl ~„~C
' = y—"(P„A'"'+PI AR"'),

r,.„=—cr,'.,
c-'= r,„, .

III. THE FEYNMAN RULES

(2.7}

(2.8)

Tc~"c '= —y&, ct=c ', c = —c . (2.6)

The Feynman vertices will be described by the I ~„] or
I

~ ] matrices and their charge-conjugate quantities

+ U (k, A, )a (k, A, )e'""],

(2.5)

N (x):—CN (x)C '=C &[N (x)]&=N (x),

where C &
is the 4X4 charge-conjugate matrix in Dirac

space

We will present our Feynman rules for the Majorana
fermion interactions given by (2.1)—(2.4). On Feynman
diagrams the Dirac fermion will be depicted by a double
continuous line ( ), the Majorana fermion by a
single line ( & and other particles will be depicted
traditionally.

The problems arising with the Feynman rules for Ma-
jorana neutrinos are connected with the fact that Majora-
na fields satisfy the self-conjugate condition (2.5). The
basic propagator for Majorana neutrinos is the same as
for Dirac fermions:

&OIT[N (x)Np(y)]IO&—= iS p(x y)=

where

"4xf d x —r'(x —yg k +m
(2~) k —m +i@

x, a
(3.1)

(O~T[N (x)N&(y)]~0) = —i[S(x —y)C] &= (3.2}

and describe the fermion created at y and annihilated at x. Using the relations N =NC and N =C 'N valid for
Majorana particles (2.5}we can define the other three propagators,

cx ygP

describing the Majorana neutrino annihilated at x and y,
x, a

(0~T[N (x)N&(y)]~0):i[C —'S(x —y)] &=

where the particle is created at x and y, and finally

(O~T[N (x)N&(y)]~0) = i[C 'S—(x —y)C] &=

X, a

yiP

yiP

(3.3}

(3.4)

which describes the particle created at x and annihilated at y. For a given interaction between fermions and a gauge bo-

son there are also four types of vertices. To show this, let us take the neutrino-charged-lepton interaction given by

(2.1). Using the relations N =CN and N= NC ', the La—grangian can be written in the form

L = ,'[l&r~& N W„+N I i—'&1&W„++1&(rlC)& NrW„+Nr( —C 'li') &l&W„+] . (3.5)

Hence four types of vertices which are connected successively with the terms of the Lagrangian (3.5) can be defined as

(3.6)

(3.7)



FEYNMAN RULES FOR MAJORANA-NEU'M. INO INTERACTIONS 1695

(3.8)

and the last term

(3.9)

At first sight this appears to be complicated because it seems to be necessary to remember the particle-antiparticle
direction of fiow on the fermion lines. Fortunately, we shall see that the additional C matrices which appear in the ver-

tices and propagator all cancel and hence we are able to formulate simple Feynman rules for Majorana neutrinos. To
present the basic idea we will consider one simple example. The lepton-number-violating process e 8'+ ~e+ 8' is

described by one diagram which can be depicted in four different versions:

X y

=[il "] [iC 'S(x —y)] p[ir "]ps

= [iI "]T[ic 'S(x —y)][iI'"], (3.10)

x y =[—iC 'I "] [ iS(x ——y)C][ iC —I "], (3.11)

W y
=[ir"]'[—ic 'S(x —y)C][ ic 'r"],—- (3.12)

and

x& Xy = —[iC 'I "] [iS(x —y)][iI "] . (3.13)

We may see that in all four cases we end up with the same amplitude (C = —C):

+ +~- ——iC '[rc]S(x —y)[r"] . (3.14)

After appropriate attribution of spinors to external fermion lines the C matrix can be eliminated from the amplitude.
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In the full amplitude the C matrix (3.14) is sandwiched with spinors, u for the incoming electron and v for the outgo-
ing positron; then using the relation —u C '=U we get

T = —iu (e )C '[I c]S(k)[I"]u(e+)=iv(e )[I c]S(k)[1"]u(e+) . (3.15)

Hence, irrespective of which propagator (3.1)—(3.4) is used, with correct choice of vertices (3.6)—(3.9) and suitable attri-
bution of spinors to the external lines, we obtained for the amplitude one simple expression (3.15). Now we will formu-
late the rules for Majorana-neutrino interactions (2.1)—(2.4) which can be used for a rapid calculation of the amplitude
for any process.

At the beginning of our procedure we need to attribute spinors to fermion lines on the given Feynman diagram (not
only to external lines). The propagators for the internal fermion will be built from spinors as described below.

Spinors

For the Majorana-Dirac coupling with charged bosons ( W ,H ) —the —spinors' attribution to the Majorana line de-
pends on the nature of the Dirac line.

(a) For the incoming Dirac particle (antiparticle) the outgoing Majorana fermion must also be treated as a particle
(antiparticle):

Dirac particle (antiparticle)

+ +
W or H

u(v)

(3.16)

(b) For the outgoing Dirac fermion the fermion "nature" of the vertex is also conserved and for the outgoing Dirac
particle (antiparticle) the incoming Majorana fermion must be treated as a particle (antiparticle):

u(u)

+ +
W or H

Dirac particle (antiparticle)

(3.17)

e see that for the Dirac-Majorana transition the attribution of spinors to Majorana lines is de6nitive —the Dirac
"particle nature" is remembered in the vertex. This is not so in the case of Majorana-Majorana coupling with the neu-

tral bosons (Zo, Ho). ~e can treat the Majorana fermion as a particle or an antiparticle, and the final result will be in-

dependent of this choice.
(c)

u(u)

Z or H0 0
(3.18)

The situation sometimes arises where the "fermion flow" is opposite to the momentum flow on a line. In such a case
we use the standard relation for spinors:

(d)

u(+k)=v(+k) . (3.19)

Vertices

Contrary to previous approaches, our vertices are independent of the direction of the "ferrnion flow" on the line. We
have only one vertex for the given Lagrangian as in the Dirac fermion case.

(a) For Dirac-Majorana fermion coupling with the bosons with spin 1 ( W —
) or spin 0 (H )we have—
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r,
(

( +
W or H

i I ~& for outgoing W or incoming 8'+,
for outgoing 8'+ or incoming 8'

iI
&

for outgoing H or incoming H+,
for outgoing H+or incoming H

(3.20)

(b) For two Majorana fermions' coupling with the neutral bosons Z or H we obtain

p ., H i(I ~+I'~Nc) for Zo,
I'

i(I ~+I ~c) for H
(3.21)

As we see, there is no "particle flow" indication on the
vertices' lines. This means that the vertices are the same
for particles and antiparticles, and are independent of the
direction of the "particle flow" if they flow in the same
direction. When the relation (3.19) is used, the vertices
with opposite "particle fiow" (e.g., : = or

) are not needed.

Propagators

In the proposed Feynman technique we need only one
propagator for internal Majorana particles, the same as
for the Dirac fermion. To eliminate the problem con-
nected with the sign ambiguity [3] the propagators taken
will be made of spinors.

(a) For the internal Majorana line, we may choose any
direction of momentum k. The final result will be in-
dependent of the direction of k (taking into account the
sign convention).

(b) We use the relation of type

v20u& = —v&O&u2, u20u& = —v&O&v2, (3.22)

(c) If we use relations (3.22) n times, in order to find the
propagators (3.23) for Majorana or Dirac particles, we
multiply the amplitudes by ( —)", which is equivalent to
disregarding the minus sign in formulas (3.22). If both
spinors 1 and 2 in (3.22) describe the external particles,
we have to take into account the minus sign.

for 0 = ( I'"„,I „,. . . ) and Oz =—CO C
Then, using relations (3.22) we transform the ampli-

tude in order to get an expression of u (k)u(k) type and
instead we put the normal Dirac propagator

u(k, A, )u(k, A, ) i(0+m)
z z, ;„~z~ k m+ie k —m+ie—

(3.23}

operators inside the Green's function [3]. However, the
amplitude is normally used to calculate a cross section;
then we need only the relative sign between various Feyn-
man diagrams. This relative sign problem can be
resolved as follows.

(a) We choose any Feynman diagram which we call the
reference diagram. In its amplitude, Dirac and Majorana
fermions appear in the fermion chain in a given order.

(b) We compare all the other diagrams with the refer-
ence one. We permute the fermions in their "fermion
chains" to obtain the same order as in the reference dia-
gram.

(c}The signature of each diagram in the full amplitude
depends on the fermion order. If parity of the permuta-
tion is even (odd), the sign of the diagram in the full am-
plitude remains unchanged (is changed). In this way we
have resolved the relative signature problem.

The Lagrangians (2.1)-(2.4) are usually a part of some
gauge-independent theory. The Feynman rules for bo-
sons remain unmodified. For Dirac fermions the same
rules as described above for the Majorana particles can be
applied.

We now apply the presented Feynman technique in or-
der to calculate amplitudes in a few simple examples.

IV. EXAMPLES

A. Electron-neutrino scattering e N ~e N

Three diagrams given in Fig. 1 describe the process on
the tree level. If we compare the process with neutrino
(v, ) or antineutrino (v, ) scattering with electrons, in the
former case the A

&
and A2 diagrams contribute, and in

the latter, only A, and A3 are present. Our rules tell us
that in the Az diagram the Majorana neutrino should be
considered as a particle but in A 3 as an antiparticle and
hence we have

Sign convention

Using the proposed rules for each Feynman diagram
we obtain some analytical expression which contributes
to the full amplitude with an unknown sign. To find the
absolute sign we need to know the order of fermion

A, =u(3)[iI ~i~]u (1)iD„„(k,—k3)u(4)

X [i(r„"+r„",)]u(2),

A =u(4)[iI ~&]u(1)iD„(k,—k )u(3)

X[iI (]u(2),

(4.1)

(4.2)
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A3

FIG. 1. Feynman diagrams for electron-Majorana-neutrino interaction e N ~e N.

A =u( —k )[iI",]u(1)iD„„(k,+k )u(3)

X[iI (]u( —k~)

=V(2)[il ", ]u (1)iD„„(k,+k )u(3)

X [iI,"]u (4) . (4.3)

B2=u(1)[iI ~1]iS (kz —k3)[iI tc]u(2)e„"(4)p„*(3).

(4.7)

And for B2 we have

B =u(1)[iI ", ]iS (k —k )[iI'", ]u(2)e„'(4)e„'(3) .

To find the relative sign between the amplitudes A;
(i =1,2, 3) let us analyze the order of the fermions in the
"ferrnion chains. " For diagram A, the order is (3,1,4,2),
for Az-(4, 1,3,2) and for A3-(2, 1, 3,4}. Let us take di-

agram A, as the reference point. To find ordering as in

A, we have to make an odd number of transpositions in

A2 and an even number in A3, so that the full amplitude
for the process is

As in both amplitudes, the external fermions ordering is
identical and we have

M + + ~+~+ —Bj,+B (4.8)

As previously stressed, our method is independent of the
direction of internal Majorana fermion momentum. Let
us choose the momentum in the B2 diagram in the oppo-
site direction (Fig. 3}. Then we have

-~ —A&
—A2+ A3 . (4.4) B' e„'(4)e,*(3)v(1)[il'~(]v (k)u(2)[iI I ]v (

—k) .

In diagram A, we treat the Majorana neutrinos as par-
ticles. Our rules teil us that these neutrinos can also be
considered as antiparticles; then the neutral vertex will be
described by

V(2) [i( I /+ I /c ) ]v (4)

=v (4)C C [l(r„'+r„"',)]C-'Cu '(2)

= —u(4)[i(I" +1" )]u(2) . (4.5)

M' = —A i+ A2 —A3, (4 6)

If we consider the Majorana neutrino as an antiparticle
then the amplitude for the A

&
diagram will have the op-

posite sign. Taking the same A
&

diagram as a reference
we obtain

and hence

B' =e„*(4)e„'( 3u}(2)[il,"]i S(k, —k )[iI ", ]u(1}

=e„'(4)e„'(3)u (l)C 'C[il " ]C 'CiS (k, —k„)

XC-'C[ir "]@4;Wu'(2)= —B, . (4.9)

M + + + + B~ B2 =8~+B2

and the final amplitude is independent of the direction of
momentum.

But also the fermion order in Bz(1,2) is opposite to
that in B2(2, 1); therefore it is in agreement with our sign
convention

which differs in sign from the previous one and has no
meaning for practical calculations.

B. The process e+e+ ~ W+ IY+

Only two diagrams describe the process in the tree ap-
proximation (Fig. 2}. Let us choose the internal neutrino
momentum from the positron 2~1, as in Fig. 2. Ac-
cording to our rules we have

k=k -k
2 4

k=lt
2 3

B, u(2) [iI ", ]v (k}v(1}[iI "]u (
—k)

V( l)[il &']u (k)u(k)[iI ~&c]u (2),
and hence

B
1

B
2

FIG. 2. Feynman diagrams for two- W+ production process
e+e+~ W+W . We changed the neutrino rnomenturn (from

the positron 2 to the positron 1).
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k=k
1

k=k -k

k -k -k'
1 3

B
2

rr k k -k
1 3

FIG. 3. Diagram B2 from previous figure where we change
the direction of the neutrino momentum (k =k& —k4).

C. Process e e —+e H N

D
1

FIG. 5. Diagram describing the virtual one-loop correction
to the Majorana neutrino propagators in the process
e e —+W 8'

Let us consider a more complicated process which, in
the framework of our Lagrangian (2.1)—(2.4), is described
by six diagrams given in Fig. 4. Using our rules we get

C r =u(5)[il i]iS'(k +k )[il't' ]u (1)iD„„r(k —k )

X u (3 }[il (~ ]u (2) . (4.15)

C, =v(1)[iI I ]iS (k —k, )[iI,]u(2)iD (k +k )

X u (3)[iI I ]v (5), (4.10)

Taking into account the order of fermions C, (1,2, 3, 5),
C2(3, 1,5, 2), C3(3,2, 5, 1), C&(1,2, 3, 5), C~(5, 2, 3, 1), and
C6(5, 1,3,2) and C, as the reference diagram, we have

C =u(3)[iI', ]iS (k, —k )[iI,]u(1)iD (k —k )

X u(5)[il'(]u (2), (4.11)

M — -H-N =C1 —C2+ C3+ C4

—C —C$+C +Cr (4.16)

C =u(3)[iI I]iS (k —k )[iI', ]u(2)iD (k, —k )

X u(5)[iI, ]u (1}

C =v(1)[il r ]iS (k —k )[iI,]u(2)iD (k +k )

(4.12)

in agreement with the Wick theorem. To reach agree-
ment it is important to use relation (3.22) without the
minus sign in the amplitudes C, and C4.

D. Virtual corrections
Xu(3)[iI', ]v(5), (4.13)

X u(3)[il,"~]u ( I ), (4.14)

C r =u(5)[iI, ]iS'(k +k )[il'r,' ]u(2)iD„, r(k —k, )

Our rules can be applied in any order of perturbation
theory. As an example, let us calculate only one diagram
(Fig. 5) which presents the one-loop correction to the
neutrino propagator in the process e e ~ W 8'

H 4 H 4 N 5

q =k -k
1 4 1

3
III

N

q =k -k
1 1 4

q =k
2 1 5

2 e

&(q =k-k
1 2 4

H 4

c
1

c
2

c
3

1 e e 3

q =k -k r&
1 2 4

H 4 e '1 S 2 e e 3

c
5

c
6

FIG. 4. Six Feynman diagrams which describe the three-body process e e ~e H N. All momenta inside the propagators are
specified.
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I

D =E (4)e„*(3)f U(2)[iI'", ]iS (k —k )[i(l ~ +I ~ )]iS (k')[i(I +I )]iS (k, —k, )
(2')
X [i I ", ]u (1)D iI(k (

—k3 —k') . (4.17)

The same convention as for charged leptons, known from QED, is applied now for the Majorana fermion; e.g., a fac-
tor of —

—,
' must be associated vrith each closed Majorana fermion loop.

V. CONCLUSIONS

We present here very simple Feynman rules for Majorana fermions. We have used only one vertex for each Majorana
fermion interaction, independent of the particle or antiparticle Bow. We have also used one Majorana fermion propaga-
tor, identical to the Dirac one. Our rules are so simple that it appears to be advantageous to use them instead of the
Wick theorem.
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