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The general parametrization method [Phys. Rev. D 40, 2997 (1989)], an exact consequence of any
QCD-like relativistic field theory, is used to parametrize the electromagnetic mass differences of the
baryons. First we show that the Coleman-Glashow relationship, derived neglecting flavor breaking, con-
tinues to hold if all flavor-breaking terms are kept, except the three-quark ones; this may explain why the
formula agrees so well with the data. In addition, neglecting only three-quark terms, we reproduce some
equalities between electromagnetic mass differences of 8 and 10 baryons derived a long time ago [A. Gal
and F. Scheck, Nucl. Phys. B2, 110 (1967)] by the nonrelativistic quark model (NRQM). Also these
equalities, now testable due to the improved knowledge of decuplet masses, are well satisfied; they now
appear as a general consequence of a relativistic QCD-like field theory, not just of the NRQM.

PACS number(s): 13.40.Dk, 12.40.Aa, 14.20.—c

I. INTRODUCTION:
THE PARAMETRIZATION METHOD

In this paper we apply the general parametrization
method (a consequence of any QCD-like field theory) to
the electromagnetic mass differences of the lowest octet
and decuplet baryons. The main results, listed in the
abstract, will be discussed also in the Conclusion (Sec.
VI). The parametrization method was developed [1(a)]
—and applied to a variety of cases (Refs. [1(a)-1(d);
2])—to understand why the nonrelativistic naive quark
model [3] (NRQM) is often so successful quantitatively.
For completeness and to introduce the notation we sum-
marize in this section the basic idea of the method [1(a)].
Suppose that one has to calculate the expectation value
Q,, of some operator (1 in the exact state |¥) of some
hadron; here () is some operator constructed in terms of
the quark and gluon fields and |¥ ) is the exact state. For
instance, if we adopt QCD as the basic theory, |¥) is the
exact eigenstate of the full QCD Hamiltonian H
(H|W)=E|¥)) for the hadron under consideration; of
course |¥) has to be thought of as an infinite superposi-
tion of Fock states of quarks, antiquarks, and gluons. In
terms of |¥), the expectation value of the operator  is
Q,,=(¥|Q|¥). We now write the exact state |¥) as

V|$) so that
Q,,=(v|Q¥)=(g|Vav|¢) . (1)

Here |¢) (which we will call “the model state”) is chosen
as a very simple state endowed with all the quantum
numbers of the exact state. It is defined in the Fock sub-
space of just three quarks for the (nonexotic) baryons or
of one quark and one antiquark for the (nonexotic)
mesons. For baryons |¢) is chosen as

lp)= 3 f,s,(p,p’,p”)a;,allsa;”,IO), )

p,p’p"
r,s,t

where |0) is the vacuum of the Fock space of quarks and
gluons [4], and a;,’s are creation operators of quarks in
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the state of momentum p and spin-flavor-color character-
ized by the index r, and f,,(p,p’,p’’) is the wave function
of the model state in momentum space. For the lowest
octet and decuplet baryons we choose for the wave func-
tion f,,(p,p’,p’’) (when written in coordinate space) the
usual expression of the naive NRQM, that is,

@BZXLzo(rl,rz,r:;)WB(1,2,3)80(1’2;3) 3 (3)

where the subscript B reminds us of the specific baryon B
under consideration and the symbol ¢ rather than ¢
makes it clear that (3) is just the wave function corre-
sponding to the state |¢). In Eq. (3) X, —o(r,r,,13) is the
space factor of the wave function, with orbital angular
momentum zero and symmetric; Wg(1,2,3) is the spin-
flavor factor, that, due to symmetry, is automatically en-
dowed with the SU(6) structure; and S,(1,2,3) is the
color-singlet factor that will be usually omitted in what
follows to simplify the notation.

The unitary operator V in Eq. (1) transforms the model
state |¢) into the exact state |W). V is of course a very
complicated operator constructed in terms of the quark
and gluon fields; it has many tasks at the same time.

(a) It transforms the naive pure three-quark state |¢)
into the exact state |¥) that, as stated, is a superposition
of infinitely many Fock states; at the same time it intro-
duces all kinds of configuration mixing.

(b) It transforms the two-component spinors in terms
of which |¢) is constructed into four-component Dirac
spinors in terms of which the operator ) is constructed
and the relativistic field theory is formulated.

In Ref. [1(a)] it is shown how the operator ¥ might be
constructed by the Gell-Mann-Low procedure; V is re-
lated to the U(— «,0) operator of Dyson, where the
“perturbation” to be used in constructing the latter is
essentially the difference between the exact Hamiltonian
H and the “model” Hamiltonian (in the three-quark-no-
gluon sector) of which the |@)’s are eigenstates. But the
procedure for constructing ¥ is unimportant; the only
points of importance are that V exists and that (being a
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function of the exact Hamiltonian H) has the same good
quantum numbers as H.

The essential point of the parametrization method can
now be stated: Consider on the rlght -hand side of Eq. (1)
the projection of the operator v'QV on the three- quark
sector:

0=73 3 13¢)(3gIvTari3qg ) (3¢’| . @)
3q 3¢’

After normal ordering and contraction of all the creation
and destruction operators present in ViQv as well as in
(¢p| and |¢p ), the operator O becomes a function only
of the spin-flavor-space variables of the three quarks in
@p. Thus the problem reduces to that of constructing the
most general three-quark operator (which we continue to
call Q) of the spin o;, flavor A;, and space variables r;’s of
the three quarks (i=1,2,3) and taking its expectation
value over the wave function @j. In other words, the cal-
culatlon of the expectation in |¢p ) of the field operator
VQV amounts to that of the expectation value on the
wave function @p of some three-body operator € in ordi-
nary nonrelativistic three-body quantum mechanics.
Clearly O has the same rotation properties as €; if € is
invariant with respect to rotations also { must be such; if
Q is a vector also ) must be such and so on. To calculate
the electromagnetic masses of the 8 and 10 baryons, as
we shall do in the next section, one has to calculate a sca-
lar € bilinear in the electromagnetic current Julx). Ina
QCD-like theory the current is just that of the quarks in
terms of the quark field operators it is j,(x)
—e\IJ(x Qv,¥(x) where Q (which was called P? in Refs

[1(a)-1(c)]) stands for

— P N
Q=21pP—1pN—1p* (5)

and we use instead of 1, A;, and A, the projectors P? PV,
and P* defined as

PP=1(2+430;+1,) ,
PN=i(2—3k3+k8) , (6)

Here 7,N,A indicate the quark fields:
Mx)=dg(x); Mx)=sg(x
normalized [4].”

At this point the properties of what we called a QCD-
like field theory come into play and simplify considerably
the form of the most general .

(1) The electromagnetic current is constructed only in
terms of quark fields, as stated. The only charged fields
in the Lagrangian are those of the quarks; in particular
the Lagrangian does not contain, say, pion fields explicit-
ly as extra degrees of freedom. Due to this, the expecta-
tion value of an operator (as, for, e.g., here the Q
representing the electromagnetlc mass) bilinear in the
current ]”(x )=eW(x )Qv,¥(x) must necessarily be
quadratic in Q, because all the flavor operators P?, PV, p*
that enter in its construction commute and because of
property 2 below.

(2) In a QCD-like theory the only A-flavor matrix ap-

P(x)=ug(x);
); the subscript R means “re
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pearing in the strong Lagrangian is Ag (or if one prefers
P%), associated with the mass difference between strange
and nonstrange quarks. Because the Lagrangian contains
only A; and Ag, which commute, the Casimir operators of
SU(3) (flavor) do not enter in the final results.

Using these properties and the fact that the model
wave function @y in Eq. (3) is factorizable into a product
of a symmetrical spin-flavor factor Wy(1,2,3) times a
space factor X; _,(r,,1,,13) (with L =0), the most general
structure of the three-quark operator Q simplifies consid-
erably. It becomes very similar to that emerging from a
NRQM calculation. We discuss in the next section the
three-quark operator ) for the electromagnetic masses of
baryons.

II. THE GENERAL PARAMETRIZATION OF
THE ELECTROMAGNETIC MASS OPERATOR
FOR THE LOWEST 8 AND 10 BARYONS

With the procedure sketched above, and described in
full detail in Ref. [1(a)], the operator  acting in the
space of the three quarks can be shown to have a struc-
ture of the form

Q=3 G (1) (s,f), (7

where G, (r) is a factor depending on all the space coordi-
nates (called cumulatively r) and I" (s, f)’s are the set of
spin-flavor operators in the spin-flavor space of the three
quarks to be constructed in accordance with the proper-
ties noted in Sec. I; the sum over v in Eq. (7) extends to
all the possible I' (s,f). The factorization property of
the model wave function ¢z noted in Sec. I allows one to
perform immediately the expectation value of @ on the
space part X;_, of the model wave function @p.
Defining

t,=(X[=olG,(r)| X o) ®)

the t,’s are of course different from zero only if the
G, (1)’s are rotation-invariant functions of r. Integrating
(7) over the space coordinates, the general parametriza-
tion thus becomes

0=+ /s,f), ©)

where now the expectation value of Q in Eq. (9) for the
various baryons B must be taken just on their spin-flavor
functions Wjy. Thus, because {) must be rotation invari-
ant, the set of I" (s,f) in (9) must be scalars in the spin
space constructed only with the Pauli spin operators of
the three quarks. We proved in Ref. [1(a)] that, for three
quarks, only the following scalars exist:

1; (o;:04) (iFk) (i,k=1,2,3). (10)

The scalar (0,X0,)-0; has vanishing expectation value
on a spin-flavor state having a real wave function, as
Wy(1,2,3) in Eq. (3) is.

As to the flavor operators that appear in the I' (s, f)’s
when calculating the electromagnetic masses, they must
all be bilinear in Q (as discussed at the end of Sec. I).
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They will, moreover, contain a number of factors P} up
to three, related to the order of flavor breaking up to
which we push the calculation. The following list con-
tains all the possible structures in flavor space; in forming
the list we exploited the fact that

pPipr=p} (11)
but we did not yet use the simplifications
Q;P}=—1P!, Q,0,=0'=4P+{P+3P}, (12

to preserve the evidence that all our flavor structures in
this problem must be bilinear in the Q,’s:

0} Q.0 (13)
Q'P}, QPl, Q;0iP}, Q,0.P}, (14)
Q7P'Pl, QFPLP}, Q,0.P}P}, Q.Q,P}P}, (15)
Q'P{P3P}, Q,QiP}P}P} . (16)

Multiplying each of the flavor structures (13)-(16) by
]
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each spin structure (10) and symmetrizing over all the
quark indices i,k,j we produce all the spin-flavor struc-
tures I' (s, f) that can appear in the parametrization (9);
the symmetrization over the quark indices arises because
the spin-flavor functions Wj(1,2,3) in Eq. (3), on which
one must then take the expectation value, are symmetri-
calin 1,2,3.

We display below the complete list of spin-flavor
operators I' ; the list is ordered according to the number
of factors P*. The flavor-breaking term (proportional to
P%) in the strong Hamiltonian is multiplied by a factor
Am /m; (=0.34); but recall that, because of (P})"=P},
an infinite number of flavor-breaking terms (those
affecting only one quark i at a time) are taken into account
exactly in a calculation that, apparently, is of first order in
P*. Below, the symbols

- . 13 R
il= 3, Zlikl=— X, ZliLkjl=7 Y,
i=1 2= 6 k=1
ik by Sy

are symmetrizers

2[A4;]=A4,+4,+ 45, 2[A;By]1=4(A,B,+ 4By + A,B |+ A,B;+ A;B,+ 43B,) ,

(1) I'’s of zero order in flavor breaking:

I=2[Q}], I,=3[Q%0;-0,)], T3=3[QX0,0,)],

if A,;=B,, S[4; A ]=A,A,+ A, A+ 4, A, etc.

Fy=2[Q:0Q], T5=2[Q;0(0;°0})], Fe=2[Q,Qk(0,+t0,)0;]. 1w
(2) s of first order in P* (acting in A,=,3*,Z,E%,Q7):
0,=3[Q7P], Ty=2[Q/PMo0,)], Ty=2[QP/(a\0))],
T=2(QP}), [=2[QPi(o;0,)], T,=2[Q/Pia;+0,)0;], (18)
T3=2[Q,0 P!, T, =2[Q;QPNo;-0,)], T1s=2[Q;QPN0o;+0,)0;],
r16=E[QiQkPjA]’ F17=2[QiQkPJ'A(0i'ak)]! F18=2[QiQkPjA(o-i+ak)'Uj] .
(3) I'’s of second order in P* (acting only in Z,Z*,Q7):
Tyy=2[QP}P}], Ty=Z[Q?P}P}o;-0;)], T,,=Z2[QP}P}o,+0,)0;],
Ty, =32[QP}P}]), T, =Z[Q?P}PNo,-0;)], T2,=3[Q*PiPNo,+0,)0;], 19)
Tys=2[Q, Qi P'PL], Ty=2[Q;QiPPlo;a;)], Iq27=Z[QiQkPiAP’?(Uf+0k)'0!'] ’
F28=2[QiQkPiAPjA]’ F29=2[QiQkPiAP_/?\(ai'aj)]’ F30=2[QiQkPiAPJ‘7L(Ui+0j)'ak] .
(4) I'’s of third order in P* (acting only in Q7):
Ly =3[Q’PP¢P}), T3 =Z2[QP}P}PM(0;-0,)+(0,:0,)+(0,0,)]. (20)

Note that in the above list we omitted (in the third-order terms) several I'’s that are immediately reducible to others us-
ing the properties (11); for instance, QizPi"P,i‘Pj}‘ and Q; 0y P,-"P,%Pf‘ are both equal to (1/9 )P,?‘P,?P}; it would have been a

repetition to list them separately.

The following properties of the decuplet and octet states simplify the above expressions considerably. For any i and k

(i#=k),

(10/(0,-0,)110)=1, (8l(0,°0,)18)=—(2J-0;,)=[—30,,] (i#k#j). 1)
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Here 10 and 8 stand for Wy3(10) and Wy(8) in Eq. (3).
The expression in square brackets in the second equation
above (that for the octet) refers to the total angular
momentum J with z component up.

Using the simplifications (21) all decuplet terms of or-
der zero reduce to I')/=2[Q?] and T,=Z[Q;0;]
=%(Q2—E[Q,-2]). The octet terms of order zero are also
expressed in Eq. (22) below in terms of the four quantities
2[Q?1, Q% 2[Q}0;,), and Q=[Q;0,,] where Q=3[Q;]
is the charge of the baryon:

3
I,(8)=ry(10)= 3 Q?=T,

(22a)
i=1
3 3
I,(8)=—3I+3 3 Ql,, T, 100=3 0, (22b)
i=1 i=1
3 3
y8)=—373 Qlo,, Ty(10)=3 Q7, (220)
i=1 i=1
3
I‘4(8)=I‘4(10)=% 0*—-3 Q,~2]EF4, (224d)
i=1
3 3
Ly8)=—= 10~ 3 ¢}
i=1

3 3
+3[Q E:Qﬂnz_ E:anh ’ FA10F=F4,

i=1 i=1

(22e)

I'4(8)=—3I's(8)—3I'y, I'x(10)=2T,. (22f)
In the next section we rederive by the present technique
the Coleman-Glashow formula for the electromagnetic
masses at zero order in flavor breaking. In Sec. V we will
examine the flavor corrections to that relationship.

III. THE COLEMAN-GLASHOW
RELATIONSHIP AT ZERO ORDER IN
FLAVOR BREAKING

The general expression 8,B of the electromagnetic
mass of baryon B at zero order in flavor breaking is, ac-
cording to Eq. (9):

8B =aTl';+bT,+cTy+dT,+els+ T (23)

(where we used a,. . .,f instead of ¢,,...,ts and the in-
dex 0 in §; recalls that we are working at zero order in
flavor breaking). The values of the quantities =[Q?], Q2,
2[Q?%0,], @3[Q;0,,] in terms of which all six I',’s of or-
der zero are expressed [Eq. (22)] appear in Table I for
each octet and decuplet baryon; all §,B’s of decuplet
baryons can be expressed only in terms of 3[Q?] and Q%
therefore for them the quantities in the second and fourth
columns of the table have not been calculated. It is easy
to check that for each column of Table I one has

8P —8N=8,31 =8, +8,= ~ —5,=°
1.29 1.6740.6 MeV (24)

which is the Coleman-Glashow [5] relationship at zero
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TABLE 1. The values of the quantities: Q2 =Q20,, Q%
Q2Q,0,, for all baryons. The I';’s (i=1-6) that contribute in
the case of no flavor breaking can all be expressed in terms of
such quantities.

302 3Q%,, Q? 0300,
P 1 = 1 1
N N 0 0 0
A : } 0 0
st 1 3 1 1
20 % % 0 0
3 3 3 1 3
=0 2 0 0 0
= 4 4 1 4
ATt 3 — 4 —
At 1 — 1 —
AO % —_ 0 —_
A~ % — 1 _
S*+ 1 _ 1 —
3 *0 % _ 0 —
>*— % _ 1 —
E*0 2 — 0 —
=% 1 — 1 —
Q- % — 1 —

order in flavor breaking; the figures under the left- and
right-hand sides are the present experimental values [6].

IV. THE GAL-SCHECK RELATIONSHIPS
AT ZERO ORDER IN FLAVOR BREAKING

Using the nonrelativistic quark model (NRQM) Gal
and Scheck [7] derived long ago a set of relationships be-
tween the electromagnetic masses both for mesons and
for baryons. Whereas for mesons the assumptions in Ref.
[7] are very restrictive, for baryons these assumptions
amount mostly to the neglect of three-body electromag-
netic interaction terms. With that neglect the NRQM
leads to the following relationships that involve both the
octet and the decuplet electromagnetic masses:

SATT —8A°=2(6P—8N)+ (82T —83°)+(83~ —83°) ,

25)
SATT—8AT=3(8P—6N), (26)
SAT —8A°=8P—6N , 27)
(83** —83* )+ (8E* ~ —8E*0)=6P—56N ,
—1.240.9 —1.29 MeV (28)
L(BZ*T +83*7)—83*0=1(62"+637)—82°.
1.3£1.2 0.85+0.12 MeV (29)

We have not given numbers for the relationships (25),
(26), and (27) because the experimental uncertainties on
the masses of A’s are still large.
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To check if the formulas above are generally true in a for the octet baryons we have

8oB[8]=(4d —3e+1/)Q?

QCD-like theory (not just consequences of the nonrela-
tivistic quark model) we must calculate the electromag-
netic masses of the baryons that appear in (25)-(29) in
terms of the six parameters a,b,c,d,e, f in (23). Of course
Eq. (23) refers to zero order in flavor breaking; in this sec-
tion we confine ourselves to this case, so that, in fact we
are checking Egs. (25)—(29) with & replaced by §,; for
Egs. (26) and (27) terms proportional to P* do not con-
tribute so that, for them, §,=5.

It is straightforward to check from (22) and (23) that  and for the decuplet ones

+(a—3b—1id+3ie—3f)2Q}

+(3b—3c—3e+9f)2Q%0,,

+(3e—9f)Q2Q;0,,

TABLE II. The values of the quantities: =Q?, Q% ;,, Q% Q2Q,0,, given in Table I, each multi-

plied by its coefficient [that appears in Egs. (33) and (34)] for all baryons of interest.

[Coeff]=Q? [Coeff]2Q%0,, [Coeff]Q? [Coeff1Q2Q;0,,
P a—2p-212, 5(3b—13e) £-3 3e
N % a~%b—g—+%e] 0 0 0
s a—2p-2+2 3(3b—3e) -2, 3e
50 % a—%b—%Jf%e 1(3b—3e) 0 0
s % a——%b—%-l—%e] 1(3b—3e) %—Ee e
=0 % a-——;—b—-%ﬁ-%e 0 0 0
=~ Tla-2p-24 2, 1(3b—3e) -3 e
At % +b—-%——§ 0 4 §+§ 0
A* a+b—%—§ 0 %+§ 0
A0 % a+b—%—§ 0 0 0
A~ % a+b—§—§ 0 %4.% 0
s a+b—%—§ 0 §+§ 0
s*0 % a+b~§—§ 0 0 0
5+ Tlats-2-2 0 —‘;—+§ 0
Al 2 at+p—2-2 0 0 0
z*- 5 a+p—2-< 0 izi-+§ 0

(30
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8,B[10]=(Ld+1le+f)Q?

+@+b+c—Ltd—Lte—f)Z0Q?. 31

The neglect of three-quark terms amounts to the omis-
sion of the terms I'; and I'¢ in (23) that is to

c=f=0. (32)
With this neglect the expressions (30) and (31) simplify to
8,B(8]=(1d —3e)Q?
+(a—3b—1d+2e)2Q}

+(2b—3e)2Q%0,, +3eQ3Q;0,, , (33)
8,B[10]=(1d +le)Q?
+(a+b—1d—1e)2Q}? . (34

Using Egs. (33) and (34) it is easy to check that all Egs.
(25)-(29) are satisfied; it would not have been so if we had
kept the three-quark terms. To simplify this check we
display in Table II the values of 207, 3Q%0,,, 02 and
Q2Q;0,;, times their coefficients for all the baryons in-
volved [8]. In Table II [Coeff] means the coefficient that
multiplies, respectively, =Q?, =Q720,,, Q% and Q=Q;0,,
in Egs. (33) and (34) [9].

V. FLAVOR BREAKING DOES NOT MODIFY
THE ELECTROMAGNETIC MASS
RELATIONSHIPS IF THREE-QUARK TERMS
ARE NEGLECTED

The derivation of the Coleman-Glashow formula for
the octet (both the usual derivation and that given here in
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Sec. III) is general, except that it does not take into ac-
count terms P* or P}P}. As to the octet-decuplet rela-
tionships (25)-(29) of Sec. IV, their derivation excludes
three-quark terms and also it does not take into
account—for Egs. (25), (28), and (29)—flavor-breaking
terms. In this section we will show that, if we exclude
three-quark terms, both the Coleman-Glashow and the
octet-decuplet relationships are not modified by flavor
breaking.

Before proving this, it is necessary to be precise in the
definition of three-quark terms in our parametrization.
In the list [(17),(18),(19)] they are all terms that depend on
the indices of three different quarks, that is the terms I'3,
with n =1 to 10 plus 'y, "7, 5y, 13, T8, '5g; note, how-
ever, that the use of (21) changes (and may reduce) the
number of different quark indices. But Egs. (21) intro-
duce a collective variable of the quarks, the total angular
momentum; we define three-quark terms as those that are
such before introducing these collective variables; indeed
this introduction simply conceals the three-quark nature
of these terms [10].

In Table III below we give the values of all different
non-—three-quark terms with one and two P"s for the
baryons of interest (P, N, and A’s are not affected by p*
terms, that is they would have all zeros in the tables; we
have not listed them).

It is easy from Table III to check that each I'; does not
contribute either to the Coleman-Glashow formula or to
the formulas (25)-(29) thus showing that all these rela-
tionships are correct to any order in flavor breaking
provided that three-quark flavor terms are omitted. For
instance, consider the contribution from I'}; to the

TABLE III. The values of all T';’s (except the three-quark ones) that enter in calculating the flavor
contributions to each baryon; I'ys and I'y are not listed because they are identical respectively to T'jg

and on-
I, Ty T LY IF! Ty Ty Ty
A 1 0 3 2 -1 1 0 0
9 9 9 3
>+ 1 —4 3 11 —4 —1 0 0
9 9 9 9 9 9
30 1 —4 3 3 —1 2 0 0
9 ] 9 9 9 9
- L -4 2 3 2 5
2 9 9 9 9 9 9 0 0
=0 2 —2 10 22 -2 10 —1 1
= 9 g 9 9 9 9
=" 2 —2 4 16 4 16 -1 1
g 9 9 9 9 9 3 9
*+ 1 1 8 8 _4 _ 4
> 9 9 9 9 9 9 0 0
3 *0 1 1 3 3 —1 -1 0 0
9 9 9 9 9 9
>*- 1 1 2 2 2 2 0 0
9 9 9 9 9 9
=*0 2 2 10 10 —2 —2 —1 1
= 9 9 9 9 9 9 3 9
=*- 2 2 4 4 4 4 —1 L
9 9 9 9 9 3 9
- 1 1
Q 3 3 3 3 3 3 —1 ;
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Coleman-Glashow formula; from Table III we read
[Zt—3"+E"—E%=(11—-5+16—22)/9=0. The
same is true for all I'’s and all relationships. Note again,
finally, that the Coleman-Glashow relationship includes
at zero order all terms, in particular three-quark terms,
while the formulas (25)-(29) do not include three-quark
terms already at zero order in flavor breaking.

VI. CONCLUSION

(1) That the Coleman-Glashow relationship is satisfied
“too” well has been a fact known since the formula was
written; now perhaps it can be understood. It would be
of great interest to reduce the experimental error on the
mass of =°, which is the reason for the error +0.6 MeV
on the right-hand side of Eq. (24); the other masses there
are known to +0.13 MeV or less.

(2) It is rewarding that the general parametrization
method allows once more (compare Refs. [1(a)-1(d),2] to
give a firm basis to the quantitative success of a NRQM
calculation, as that of Gal and Scheck for the electromag-
netic masses of the 10 and 8 baryons; once more the basis
of this success is simply that the parametrization given by
the NRQM is quite similar to the parametrization that
would be obtained in a full calculation based on a QCD-
like field theory. Note, again, that when we say QCD-
like we mean that the theory must have in common with

QCD only the following two features: (a) that the elec-
tromagnetic current is carried only by the quarks; (b) that
the only flavor breaking is due to Ay terms. These
features, in fact, simplify the parametrization eliminating
all Casimir flavor operators from the final results.

(3) As to the quantitative agreement of the relations
(28) and (29) with the data (1.21+0.9 to be compared with
1.29; and 1.3%1.2 to be compared with 0.8510.12), this
is also a confirmation that three-quark terms are negligi-
ble. This confirmation adds to that provided in Ref. [2]
by the modified Gell-Mann-Okubo mass formula, based
on the same assumption, and satisfied, we recall, at the
level of 1132.4+0.8 compared to 1133.9+0.1. That the
above verification of the relations (28) and (29) is now
possible is due to the decrease, during the years, of the
experimental errors on the masses of the decuplet and
suggests, if feasible, further efforts in this direction al-
though here the difficulties, particularly for very broad
resonances such as the A’s, are evident.

Finally we note again [11] that the interpretation of the
meaning of the NRQM brought by the general parame-
trization method makes more acute the need of under-
standing the meaning of the many descriptions of the
internal dynamics of hadrons (relativistic quark models,
bag models, quarks plus pions, Skyrmions, chiral models,
etc.) and their compatibility with the underlying basic
field theory; we hope to discuss all that soon.
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