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Hadron masses are investigated in the framework of a chirally invariant, effective quark Hamil-
tonian. The hyper6ne, spin-orbit, and tensor forces are found to be connected to the chiral angle,
which measures the extent of vacuum condensation. The only finite eigenvalues of this Hamiltonian
are shown to be color singlets. The chiral angle is obtained as a solution of the associated mass-gap
equation. With the same bare parameters used when studying mesons with light quarks, we are
able to account for the spectroscopy of charmonium and the N-6 mass difference. The results are
reasonably good.
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I. INTRODUCTION

Recently, in a series of papers [I—3], we have introduced
a microscopic quark model where chiral symmetry and
color confinement were consistently taken into account.
Consistency was obtained by solving, for the chiral angle,
the appropriate mass-gap equation of the model [2—5].
The chiral angle measures the extent of quark-antiquark
condensate of the vacuum and was shown to affect the
rate of mesonic decay and hence the resonance widths.
In addition to the pion, we were able to describe the p
and the P resonances.

In those articles, it was also shown that bare meson
wave functions, i.e. , prior to decay, must have at least
two components —the so-called positive- and negative-
energy components. In the chiral limit of zero current
quark masses, the pion behaves as a Goldstone boson and
these two components are, to within a possible difference
of a phase, degenerate. By turning on t,he quark cur-
rent masses we lift this degeneracy, explicitly break chiral
symmetry, and the pion acquires a small mass. Now, the
p being a spin triplet, is not affected by the spontaneous
chiral-symmetry-breaking mechanism. Its mass and wave
function are essentially given by the Schrodinger-like one-
channel equation. In other words, although the p is a
bound state of light quarks, it contains only a small ad-
mixture of the "negative-energy" wave-function compo-
nent. It is, unlike the vr, a highly nondegenerate system.

This extra degree of freedom, called F spin, is unavoid-
able when dealing with bound states of fermions. Were
it not for the E spin, the pion mass would be, for rela-
tively light current quark masses, forbiddingly high and
similar to the p mass. In fact, we would recover the old
hyperfine splitting between the x and p.

This observation prompted us to see whether we could
also describe, at the BCS level and with the same param-

eters and success as before, both the charmonium and the
baryonic sector. If this proves successful, then we will
have established a direct link between the chiral angle
and, not only the strength of the hyperfine splitting, but
also the strength of t,he spin-orbit and t;ensorial forces.
This, while preserving the smallness of the pion mass,
will allow the usual results of the quark model [6]. There
is, however, one notable difference: In this model, and
unlike other quark models, the strengths of the spin-spin,
spin-orbit, and tensorial forces are connected through the
same physics and are not separate.

At this point it should be stressed that the existence
of these interactions and their global features do not de-
pend on the detailed form of the chosen confining poten-
tial, provided it supports a z Goldstone boson. In fact it
is not clear how to integrate the gluonic degrees of free-
dom, nor if, due to the non-Abelian nature of /CD, these
gluons acquire a mass, in which case the instantaneous
potential could give a good approximation [7]. Another
source of theoretical uncertainty stems from the possible
three-body nature of gluonic forces when dealing with the
baryonic sector. It should be noticed that lattice gauge
simulations seem to indicate that these three-body forces
are small, and the microscopic quark interactions seem
to be dominated by additive potential insertions [8].

Although we work with an instantaneous potential,
it should be clear that the effect we are studying still
holds for a proper covariant potential, as long as it
admits vacuum quark condensation, i.e. , spontaneous
chiral-symmetry breaking. In addition, since we are using
relativistic kinematics from the very beginning, this ap-
proach goes one step further in hadronic spectroscopy, as
compared with nonrelativistic quark model calculations.
However, it is true that for actual detailed predictions
involving recoiling hadrons in the final st, ate, one must
use a covariant form for the microscopic potential ~ This
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entails extended and cumbersome calculations which we
defer to a forthcoming article. To our knowledge, this has
not been accomplished in a satisfactory way (an effort in
this direction can be seen in Ref. [9]).

Many potential models and lattice calculation results
for charmonium seem to favor a linear confining potential
[10]. Although some degree of scalar potential admixture
is still compatible with chiral symmetry breaking, and
henceforth with a small mass for the pion, a pure scalar
potential is not [1]. However, the evidence for a purely
scalar confinement ansatz deduced from the behavior of
the spin-orbit potential and extracted using nonchirally
rotated spinors, from quenched lat tice simulations seems,
in our view, not absolutely compelling. Here we point out
t, hat the mere existence of the chiral angle, affecting the
strength of the microscopic quark interaction (including
the spin-orbit potential) changes the results and the new

physical features arising from this fact alone, makes it
worthwhile to pursue the study of the phenomenological
implications of chiral condensation, using the harmonic
potential as a first step. This choice allows us to turn the
mass gap equation from a nonlinear integrodifferential
equation into a differential equation. Work using a more
realistic linear potential is in progress.

Following Ref. [1],we prefer to work in the formalism of

quark and antiquark field operators bt and dt instead of
the Feynman field operators g. In this equivalent formal-
ism, we absorb the spinorial matrix elements u, (p) and
v, (p') into the vertices, and keep the quark propagators
at their simplest form. It happens that these (Valatin-
Bogoliubov rotated) spinors contain, through the chiral
angle, information about the vacuum condensate. There-
fore, it should be no surprise that they yield effective chi-
rally induced spin-spin, spin-orbit, and tensorial forces.
The fact that these forces, weighted by appropriate func-
tions of the chiral angle (which is a solution of the mass-

gap equation), are in the range of the observed spectrum,
for the bare parameters used in Refs. [1—3], constitutes
per se an interesting result.

The paper is organized into six sections and two appen-
dices. In Sec. II we briefly describe the model. In Sec. III,
we show how this model leads to color confinement. Sec-
tion IV is devoted to the study of mesons and baryons
as bound states of quarks. The details of the derivation
of bound-state equations are given in Appendix A. In
Sec. V, the several terms arising from the q-q interaction
and their relation to the chiral angle are studied. In this
section, the bare masses of charmonium, nucleons, and
the delta are evaluated solving the effective Schrodinger
equation. In the meson case we use the Runge-Kutta
method, while for baryons (and mesons with only one
channel) we use the variational method. Appendix B
contains the details of the variational method. We con-
clude in Sec. VI.

quark interaction can be defined in several ways: We
could consider the microscopic interaction, for a given
asymptotic system of n quarks and antiquarks, to be
given by the sum of all n-irreducible Green's functions,
i.e. , Green's functions (truncated of the exterior 2n
fermion legs) which cannot be cut in two, simply by cut, —

ting n interior fermion legs. Hadrons are then obtained
by summing, in the ladder approximation, the kernel.

An alternative way of summing these Feynman dia-
grams is provided by the resonating group method [3].
There, the microscopic potential is given solely by t, hose
diagrams which do not contain ferm'&n loops. Coupled
channels are thereafter used to cf isistently evaluate the
effect of those missed diagrams through the intermediate
mesonic degrees of freedom. In this case, the interaction
can be defined from the Green's functions of pure gauge
QCD with 2,3,. . . gluon legs.

The quark model can be properly used only when the
Green's function with two gluon legs is dominant, with re-

spect to the others. Only in this approximation is it pos-
sible to use the same two-body interaction to st;udy the
mass-gap equation (one fermion), mesons (two fermions),
baryons (three fermions) and coupled channels which ef-
fectively include fermion loops.

This approximation has been tested in Refs. [1—3] using
a microscopic quark model which leads to confinement
and chiral-symmetry breaking in a consistent way. In
this paper we extend that study to the case of heavy
mesons and baryons.

First let us briefly review the Hamiltonian of the model
which is

d z[Hp(x) + Hg(x)],

where Ho is the Hamiltonian density of the Dirac field,
and Hy an effective interaction term:

Ho(x) = q (x) (mP —'cx V) PP(x),

1
Hg(x) = — d y V(x —y) @t(x)—@(x)

2 2

x0 (y)
2

@(y)

The A"s are the Gell-Mann color matrices. The spinor
structure of this effective interaction is "Coulombic. " In

principle, there could be terms other than Coulombic, in
which case the formalism we use here can be generalized
to a wide range of combinations leading to similar mass-

gap equations and chiral angles (see for example Refs. [1]
and [9]).

The field operator has the form

4gc(x) =

II. QUARK MODEL W'ITH
CHIRAL-SYMMETRY BREAKING

The nonperturbative nature of QCD at low energies
does not rule out, in principle, the possibility of con-
structing a quark model. For the same dynamics, the

Here the Fock-space operators b and d refer to quark
and antiquark, respectively, and they carry indices for
flavor, spin, and color. Summation over repeated indices
is used throughout this paper. The spinors u and v,
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and the Fock-space operators are not the same ones used

in free Dirac theory, but rather linear combinations of
them. Indeed, it amounts to choosing a specific Fock
space which de'ers from the "naive" one. For u, and n,
we have

u. (P) = [f(P) + g{P)I ~] «.',
2

v. (p) = [f(p) —g(p)p ~]v,'
2

f(p) = gl + sin q'(p),

g(p) = Ql —sin io(p),

where u, and v, are the usual spinor eigenvectors of yo
corresponding to eigenvalues +1. The function p(p) is

called the chiral angle and indexes the diferent Fock
spaces compatible with the Pauli principle. This chi-
ral angle has been studied in detail in Ref. [1]. Here we

point out that in the limit of zero current quark mass
and zero potential (which forces the chiral angle to be
zero), expression (5) yields the massless Dirac spinors.
The other trivial limit arises for very massive fermions
with p = z'/2, for all momenta small enough. In this
case and for this region of momentum, Eq. (5) becomes
an identity.

In terms of the Fock-space operators, the Hamiltonian
becomes

H = H2+Hq,

H2 — d k E(k) by„(k)by„(k) + dy„(k)dy„(k)

dspdskdsqV(q) """"
~ ):Q„„(p,p+q)O'„„(k, k —q):.
j,l =1

(8)

In Hq, the ten diA'erent terms obtained when summing
over the indices j and l, are combinations of the following
vertices 8~:

o-,' .(p p') =—u. (p')u. (p) by ' '(p')by-(p)

0, ,(p, p')—:-v, , (p')v, (p) dy„(-p)dy, , (-p'),
(9)

8...(p, p') = u, , (p')v, (p) by. .., {p')dy„(—p),

8, ,(p, p') = v, , (p')u, (p) dy, , (—p')by„(p) .

The two terms Hz and H4 have been normal ordered.
The normal ordering of the potential-energy operator in-
troduces self-energy terms which are included in H~, to
give the quark energy E(k):

(10)E(k) = A(k) sin io(k) + B(k) cos y(k),
2

A(k)—:m + — d p V(k —p) sin p(p),
3

2B(k)—:k+ — dsp(k. p)V(k —p) cosy(p) . (12)
3

A(k) cos p(k) —B(k) sin &p(k) = 0,
which defines the chiral angle p(k). This equation en-
sures that the vacuum condensate is stable: p(k) turns
out to minimize the vacuum energy [5].

III. COLOR CONFINEMENT

In this paper, following Refs. [1—3] and [5], we choose
to work with the potential

There are also constant terms arising from the normal
ordering of both the kinetic- and the potential-energy
operators. Their sum yields the energy of the vacuum
condensate.

The Ward identity [ll) with kernel H4 gives, at least
at the BCS level, the mass-gap equation.

V(x) = —I~ox + U. (14)

2:—U cos p(k),3
which gives s U for the quark (antiquark) self-energy
E(k) The parts of A(k.) and B(k) which depend on
IVo are well-behaved functions of k, and independent of
U[l—3]. If U ~ oo, then E(k) = s2U ~ +oo and there-

The necessity of having asymptotic free quarks for defin-
ing "in" and "out" fields has forced us to introduce in the
expression above a "constant" interquark potential shift
U, independent of space coordinates. Both Ko and U are
positive and have dimensions of energy. Then, the total
q-q potential can be seen as the limit, when U ~ +oo, of
a succession of deeper and deeper potentials with even-
tually V(koo) = 0. Notice that U does not, correspond
to a universal, first-quantization, shift of the hadronic
masses. It enters in the Hamiltonian (3) multiplied by a
product of four fermion field operators Q and two color
matrices. Therefore, it will correspond to an operator
and not to a c number. Furthermore, as we will see be-
low, the eA'ective interaction among quarks, in spite of V
being positive, will be attractive in hadrons.

The function V(q) in (8) has been defined as the
Fourier transform of V(x) divided by (2z')s; then

V(q) = Icos%' qb(q) + Ub(q). (15)
We proceed now to prove a series of simple results.
(a) When U~ +oo, the quark (antiquark) self energy-

approaches plus infinity. This can be easily seen when
considering the contributions of such a constant shift U
to the functions A(k) and B(k) [see (11) and (12)]:

=2 3 =2Alvl(k) = — d p U 6(k —p) sin p(p) = -U sin p(k),3 3
(16)

B[v](k) = — d p (k. p)U b(k —p) cos p(p)
=2 3--

3
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fore, we cannot have free quarks with finite energy.
(b) Such a shift of the interquark potential leaves the

BCS mass-gap equation invariant. In fact the contribu-
tion of U to (13) is

2—U (cosy(k) sin &p(k) —sin(p(k) cosy(k)) = 0. (17)
3

(c) A "constant" potential does not yield quark
antiquark annihilation (creation) amplitudes. For a con-
stant potential, the Feynman rules are simply given by

po/ential insertions:

4
'

vertices:

u„(k) u, (k) = b„, ,

-v„(k) v, (k) = -b„, ,

ut(k) v, (k) = 0,.t(k) , (k) = O.

It is clear that a constant potential does not yield q-q
pairs.

(d) The Salpeter equation for mesons is invariant un
der the set of potential shifts parametrized by U. This is
also very easy to see. Consider, for instance, the Salpeter
equation for the positive-energy mesonic wave function
[2,5]:

[M —2E(k)]g+(k) ,= ——f dvk' V(k —k') [v) (k) v, , (k')] [v), (k')v. , (k)]P+...(k')

dsk' V(k —k') [u„(k) v„(k')] [u„(k')v„(k)]P,„,(k').4
(19)

The contribution of U to the integral, which is —3U,
cancels against the total shift of 2 (s2U) coming from the
added self-energies of the quark and antiquark. This is
referred to in the literature [5] as the infrared stability
of the physical quantities. Notice also that a constant
potential does not connect positive-energy wave-function
components with negative-energy components.

EVe point out that the potential energy terms in (19)
are diagonal in color because the following matrix, ap-
pearing in the binding energy of a meson, is diagonal:

1, , 4—A' A' = —.
4

(20)

The minus sign in the quark-antiquark interaction inside
a meson comes from the normal ordering of the antiquark
vertex (antiquarks have negative color charge).

(e) This Hamiltonian confines color Consid. er a sys-
tem with a total number 1V of quarks and antiquarks.
The contribution for the mass of such system is given by
the sum of the quarks' (and antiquarks') kinetic energy
plus the interquark potential energy. The "constant" po-
tential contribution for t, he total energy is given by

) ) ' ' U = [-'A'A' —-'X]U,
i= 1 j=i+1

N

A=—)X'
(21)

In obtaining the result above we used (20). The total
kinetic energy is, for the same "constant" potential, given
by

2
Ekinetic

3

which cancels against a similar term in Eq. (21), leaving
for the total energy of a system composed of N quarks

and antiquarks the simple expression

1
Egot, )

—— —A' A' U.
8

(23)

Now, if we have color singlets, A = 0, and we have no
contribution of such potentials. If, on the other hand,
we have a colored ensemble of quarks and antiquarks, we

have a positive contribution, proportional to A2U, for the
mass of such a system.

When U goes to plus infinity, the mass of a colored
object goes also to infinity. Only color singlets escape this
fate; therefore, the only physical states are color singlets.

IV. BOUND-STATE EQUATIONS

H (Q) = M )il), (24)

where
~ @) is an eigenstate of the Hamiltonian, with mass

M.
Here we report on our results for bare baryons and

charmed mesons, i.e. , hadrons without coupled hadronic
channels. Hence, we are not going to consider those ver-

tices which create or annihilate q-q pairs. We postpone
this study to a later paper.

Light-quark mesons were studied in Refs. [2] and [5],
where it has been shown that, the negative-energy com-
ponent of the wave function was only relevant for pseu-
doscalar mesons which play the role of the Goldstone bo-
son when m = O. Whenever the quark or antiquark have
a mass bigger than (4/3)'lsd o, the negative-energy com-
ponent of the mesonic wave functions can be neglected.
In the case of baryons, the negative-energy component
does not exist because the two-body potential is clearly
insufficient to annihilate a baryon-antibaryon pair.

Since our Hamiltonian (6) is instantaneous and we ne-

glect, negative-energy channels, the bound-state equation
can be written in the form
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A. Mesoas as bound systems of taro guarks

As discussed in the previous section, the only physi-
cal states, i.e. , with a finite energy, are those which are
color singlets. Therefore, we restrict our treatment to
color singlets and positive-energy channels. Under these
assumptions, the general form of the operator which cre-
ates a meson is given by

= f Ab(r»+c~) M(ci, r&2)

, ,(Pl)df, ,(P2) .t t

The color indices of the two quarks have been contracted
to obtain a color singlet, . As a consequence, the wave
function gX can be taken to be symmetric under ex-
change of coordinates of the two quarks, without any loss
of generality. Furthermore, for the ground state we will

assume that the momentum part of the wave function,
I

1p, ls SylT111letrlc.

The one-quark part of the Hamiltonian, Eq. (7), acting
on the meson states gives

10) = d'p~(pl+ P2) [E(pl)+ E(J2)] 4(pl, p2)

Xfifcc»c t'f, c,c(pl)df„„(p2) I o) (26)t

The kinetic energy E(p) does not have the same func-

tional form for all of the quarks involved, because in

general their current masses can be different (different
flavors) leading to different chiral an~les. To emphasize
that point we have used the notation E(p) for one of the
quarks (antiquarks) involved in the microscopic scatter-
ing. The same is true of the spinors u and v which also
depend on the chiral angle; consequently, we will use v

for the second vertex in the potential.
Only one of the 10 terms in 84 connects mesonic states

with themselves, namely, the term

: e,'„,(p, p')O„„(k,k'):= —u„(p')u„(p)v„(k')v„(k)t)f, , (p')df, , (—k)df„„,(—k')t)f„„,(p) .

When the corresponding part of H4 operates on the meson state the result is

I()) = --xi, f..... f&'v &'e b(ci+c~) )'(c) 4(ps —Q, pa+c)
3

, (pl) uc (pl —q) vt, (—pz —q) v., (—pz) &f,...(pl)df, ...(pz) 10) .

The bound-state equation is obtained from (26) and (28):

(27)

(28)

[M —E(k) —E(k)] Xf f cc P(k) = —— d q V(q) [u„(k)u„(k—q)v„(k —q)v„(k)]Xf,f„„,g(k —q), (29)

where P((p —p')/2) = g(p, p') ~z+&~-0. With the negative-energy channel excluded, this equation coincides with the
Salpeter equation for mesons (19).

With the potential (15), the constant term U does not contribute, as explained in the previous section, while the
harmonic term turns the bound-state equation into a second-order differential equation (a detailed derivation is given
in Appendix A):

L(L + 1) p' (k) + p' (k) sin p(k) sin y(k) —1 2
[ 3( )

W

2 g'(k) g'(k) (S
~

—(S+ 1) + (k Sl)(k Sz) ——Sl Sz ~ v(k) = 0 . (30)kz i, 3 3

In this last equation all momenta, energy and masses are
given in units of (4/3)'f It'0. The operator L is the total
angular momentum, S; is the spin of the ith quark, and
S is the total spin. This equation is to be solved by the
numerical method used in Ref. [2].

B. Baryons

The formalism used to derive the bound-state equa-
tion for mesons can be easily generalized to bound states
of three quarks. As mentioned at the beginning of the
section, the wave functions of baryons have no contri-

I

bution from negative-energy channels. Furthermore, in
this paper we will restrict our treat, ment to baryons with
quarks of the same current mass, leading to only one chi-
ral angle p, the same dispersion relation E(p) for the
three quarks, and only one set of spinors u and v in the
vertices e. This constitutes a reasonable approximation
in the case of the nucleon and A. We will also restrict
the baryonic wave function to the simplest S-wave con-
figuration, and discard, in what this paper is concerned,
coupled channels.

As was done in the mesonic sector, the creation oper-
ator for baryons has the form

d'p &(pl+p2+P3) 4(pl ~ P2, P3) &czcccc Xf~ fcf , ccfzccczcccz(pl)
t
& fz cc(cP2)t)f&cccc(P3) ~

t f t t (31)
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The anticommutation relations for the quark operators ensure antisynu'netry as required by Pauli exclusion. However,
since the color part of the wave function, e...,... is completely antisymmetric, the flavor-spin-momentum wave function

yg can be taken to be symmetric.
The one-quark part of the Hamiltonian acting on the baryon state gives

H2e, )0) = fs ~(pl + P2+P3) [E(Pl )+@(P2)++(P3)] 4(pl & P21 P3)

cicscsgf)fsfssis~ss f,„„(P1)f„,c, (P2) f s c (P3) 10) .t t f (32)

Without coupled channels, we have only to consider the following vertex product in the interaction:

: 0,'„,(p, p')8,'„,(k, k'):= u„(p')u„(p)u„(k')u„(k)bf, , (p')bf, , (k')bf„„,(k)bf„„,(p),
which leads to

(33)

~
0): 2&c, cscsXf~ fsfss3$$$5 d'P d q b(Pl+ P2+ P3) V(q) @(P1 —q, P2+ q, P3)

x [u, (pl)u„{pl —q)u„(P2)u. , {P2+q)]tf „„(pl)~f„„,(P2)t'f„„,(ps) 10) .f t t

(34)

Notice the factor of —2 which includes a contribution of —2/3 from the contraction of the color matrices times the
number of quark pairs.

The resulting bound-state equation for baryons is

[M —3E(11)]X...,..@(Pl P2 P3)

'q ~(q) [u. , (pl)us. (pl —q) u„(p2)us, (p2+q)]ps. s.s, @(pl —q, p2+q, ps), (35)

with pl +p2+ps ——0, for any flavor indices in the function y. As in the case of mesons, Eq. (29), the harmonic
potential (15) leads to a second-order differential equation, as shown in Appendix A:

3E(P1) —M ——7' + —y' (Pl ) +3 2 3,2 3[1 —sin y(pl )]
Pie p'

1

+ ———S(S+ 1) [1 —sin V'(Pl)][1 —sin V'(P2)] 4(pl P2 P3) 0 (36)
3 1 pi p~
4 3 P1P2

where S is the total spin, and 7' stands for the Lapla-
cian with respect to the relative momentum (pl —p2) j2.
)Ve have omitted the spin-orbit and tensorial terms which
vanish in the N-6 case with only one channel. The larger
number of variables in this equation makes it intractable
with the numerical method used for mesons. Instead, we

have used a variational method (Appendix B).

V. CHIRALLY INDUCED HADRON
MASS SPECTRUM

The bound-state equations (30) and (36) resemble a
Schrodinger equation with spin-spin, spin-orbit, and ten-
sor interactions. As usual, these interactions will yield
diA'erent masses for difkrent mesons, depending upon to-
tal S, I, and J. However, all of these interactions have
been derived from a single potential term of the Hamil-
tonian, and contain the "same" information of the chiral
angle.

For mesons,

For baryous,

d'«(q) [ut, (pl)u. .(Pl-q)ut, (P2)u. .(P2+q)]

(38)

In what follows, we will consider each one of these in-

teractions in detail.

A. Hyper6ne splitting in light xnesons

The terms proportional to S2+ S in Eq. (30) were de-
rived from t, hat part of the interaction which contains the
operator Sq S2. They stand for the eR'ect, in the mesonic
"positive-energy" channels, of the hyperfine interactions
weighted by an appropriate function of the chiral angle:

2
[1 —sin p(k)][1 —sin p(k)] .

3k2

d q V(q) [ut (k)u„(k —q)vt (k —q)v, ,(k)]

(37)

This hyperfine interaction plays its traditional role in sep-
arating the Ssf2 and Slf2 baryon masses (b,-nucleon
mass difference). This is clearly seen in our results for
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the 6 N-mass diff'erence (Table I).
But in the case of light mesons, in addition to this tra-

ditional contribution, the hyperfine term also enters the
potential connecting "positive-energy" and "negative-
energy" channels. This transition potential comes from
the vertex structure of the mesonic Salpeter equation,
which contains a term

[ut(k)Vv(k)] [Vut(k)v(k)] (k S, ) x (k S2),

(40)

m (MeV) Mpg (MeV) M~ (MeV)

1378 1612
1378 1611
1375 1607
1844 2005

0
0.725
7.25
290

a~ (fm) a)) (fm)

0.629
0.628
0.622
0.479

0.540
0.539
0.537
0.435

TABLE I. The masses of the nucleon and the 6, for dif-

ferent current quark masses m = m„= mg. The potential
strength is the same used for charmonium (4/3) ~ Kp ——290
MeV. The length o is the variational parameter (Appendix
B).

which yield both Sq S~ and tensor terms.
Because of the large negative-energy wave-function

component of the pion it turns out to be the mechanism
responsible for the anomalous mass difference between
the vr and the p. It is instructive to see how this hap-

pens. If we neglect the I = 2 wave-function component
for the p, which has a small effect in the p mass, we have
for the Salpeter equation [2] the following.

For the p,

I+M I I

—
/ I+( d' 8g'(k)) f 1 0b /1 0 ) io"(k) (3 I') cos'y(k) ( 1. —1~ &us+ )

dk 3k' ) &0 I) (0 I) 6 I 1 3) 3k2 0 1 ). i o

For the x,
(41)

( d t (I 0& & I 0 ) (p' (k) cos &p(k) l I'1 I & (us+ &

I, dk~ j I 0 I) q0 -I ) i, 2 k2 ) pl 1 p. Euo ) (42)

It can be seen by direct inspection that the transition
potential between these two energy channels goes as fol-
lows.

For the

ip'~(k) cos~ &p(k)

2 k

and for the p,

1 (y"(k) cos' p(k) )+

(43)

In the p case, the transition potential turns out to be
three times smaller than the corresponding potential of
the ~.

As a result, the hyperfine origin of the p-x mass dif-
ference is established, with the surprising result that it
is realized in a generalized space which includes the so-
called energy-spin space. This result does not depend on
the actual form of the microscopic potential provided it

supports spontaneous chiral-symmetry breaking, which
in turn forces the pion to be a pseudo Goldstone boson
(a true Goldstone boson in the chiral limit). The p being
a vector escapes this fate. In fact, the p mass depends
on the strength of the confining potential whereas, in the
chiral limit, the r "does not, " protected as it is by the
chiral symmetry. The dynamical translation of this sym-
metry requirement forces a large hyperfine strength in the
coupling of positive- to negative-energy spin pion wave-
function components. Had we chosen a different potential
also supporting dynamical chiral-symmetry breaking, the
same mechanism would be bound to occur to keep the x
at its smallest possible mass, compatible with the ex-
plicit, chiral-symmetry-breaking, quark current mass.

B. Spin-spin, spin-orbit, and tensor forces

In Appendix A, the effective spin-orbit, and tensorial
forces are derived. For completeness, in Table II we give

TABLE II. Spin-spin, spin-orbit, and tensorial forces in terms of y.

Force

Spin-spin

Mesons

g (k) g (k) S) S2

Baryons

g (p)) g (p2) S) S2
P1P2

Spin-orbit
2—[g (k) S) + g (k) S2] L 6g'(p)) 3g'(p))S) L)+, (S)+S,) ()V), x p) )

~1 ~1

Tensor k, g'(k) g'(k)

[(k . S) )(k . S2) —
3 S) . S2]

3P) P2 2( ) 2( )P1I 2

x [(p S) )(pz S2) ——(p) . ps)(S, S2))3
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their explicit form in terms of the chiral angle p.
This spin-orbit interaction can be decomposed as the

sum of normal and "anonralous" spin-orbit terms

2—„[g (k) S)+g (k) S2] . L

2.0

1.5

: up and down

g'(k) + g'(k) g~(k) —g (k)
6- i.o

(44)

The "anomalous" term only appears for unequal quark
masses and mixes the charge-conjugation eigenstates 1

and 1+
As the current quark mass m increases, the chiral angle

&p(k) approaches the limit r/2 (see Fig. 1), and all of these
forces become zero, turning the bound-state equation
into a Schrodinger equation with a harmonic-oscillator
potential, Another interesting limit is when chiral sym-
metry is restored (m ~ 0 and a potential which does
not break chiral symmetry), which gives p = 0 and the
function g (k) = [I —sin p(k)] reaches its maximum.

In charmonium, t, he spin-orbit, force is responsible for
the coupling bet ween Pq and Pr channels, and the ten-
sorial force is responsible for the coupling of S~ with

Dq. For baryons, since we restrict our treatment to S-
wave ground state without coupling to other angular mo-

0.5

500

k (MeV)
1500

FIG. 1. The chiral angle for up and down quarks (m
mq = 0), and charm (m, = 1362 MeV). The potential is
harmonic with a strength constant (4/3) Iis = 290 MeV.

menta, the spin-orbit and tensorial terms do not appear
in the bound-state equation. These various terms can
now be used to obtain the charmonium mass spectrum,
as well as the masses for the nucleon and A.

C. Charmonium

For charmonium we have the following cases (see Table III).

'Su . (0 ) and (0 +)

1 —sin io(k) sin p(k) +M v=0. (45)

Pc . (0+) and (0++)
' d' — 2 p"(k) + p '(k)

4

1 —sin ic(k) sin p(k)
k~ (46)

Pq 'Pt . (1+); (1++) and (1+ )

d — 2 &p' I- +p' k

1 —sin p(k) sin p(k) I' 0 0 g'(k) —g'(k) 10 1
I

( v
k2 ~0 1 k2 q1 0)

1 —sing(k) sing(k) ( 2 V2 g (k)+ g (k) —4 ~2 v2)
3k2 I V2 1 3k2 ~2 4 vup
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3p 3p

d2 — p'~(k) + (p' (k) 61 p) 2 t'6 p

1 —sing(k) sin p(k) ( 3 VI61 g (&) + g ()'r) —12 +61
q~6 2 p 5k~ v6 12)

We have solved these equations using the Runge-Kutta
method and the numerical results are summarized in Ta-
ble III.

D. Nucleons and A

TABLE III. Mesonic spectrum in the charm sector, with
(4/3)' Ito = 290 MeV and m, = 1362 MeV. m„= mg = 0.
The experimental values are from Ref. [12].

Meson

+C1

p
III

IIII

@
IIIII

D
Do
D'
Dg

Dg

D2

0
—+

1
0++
1++
2++
1

1

1

1

1

0
0+
1

1+
1+
2+

sL

'Sp
'Si +'Di '
3 p
3p
3p +3+
3S +3D
3S +3D
3S +3D a

3S +3D cL

Sg+ D

3 p
S

+1p
3p +1p b

'P2 +'I'

Theory
(MeV)

3096
3097
3332
3343
3365
3579
3611
4155
4209
4935
1998
2216
2005
2271
2499
2552

Experiment
(Me V)

2979
3097
3415
3511
3556
3686
3770
4040
4159
4415
1869

2007

2424
2459

Tensorial coupling.
Spin-orbit coupling.

The bound-state equation (36) for nucleons and the b,
has been solved using the variational method (Appendix
B).As a test for the variational method we have used it in
charmonium (for those cases with only one channel) giv-
ing good agreement with the results in Table III. Figure
2 shows the results for the N-4 masses as a function of
the variational parameter n, for the case of massless cur-
rent quarks. The numerical results for several values of
the current quark mass are given in Table I. Notice that
for reasonably small values of m the results are, within
numerical errors, identical to those of m = 0.

Regarding the relationship between the x-p and N-
6 mass diR'erences and in order to complete the discus-
sion at the end of Sec. V A, it is important to notice
that baryons do not possess negative-energy spin wave-
function components. Therefore, in this sector, the hy-
perfine interaction can only act, in contrast with light
mesons, between positive-energy spin wave functions.
This is why we can accommodate, with any prescribed

6

/
/

/
/

/
/

/

/

r
rrr

r

:Nucleon

Delta

4
0.6 0.7 0.8 0.9 1.0 1.2

FIG. 2. Results of the variational method for the masses
of the nucleon and the A. The mass M and the variational
parameter a are in dimensionless units as described in the
text.

microscopic potential supporting chiral-symmetry break-
ing, the low mass of the pion together with the "usual"
results for baryonic spectroscopy.

The results for the N xmas-ses (Table l)are reasonably
good, considering we have not included coupled channels.
Coupling to mesons plays an important role in baryons;
namely, a physical nucleon is surrounded by a cloud of
virtual mesons. Consequently, it is expected that the
bare masses in Table I move down significantly when
coupled channels are included. In this context and al-
though we lack a detailed calculation, our model pos-
sesses all the features of a genuine coupled-channel equa-
tion [3]. Therefore we adhere to the conclusions of the
model-independent analysis of Thomas and Miller [13]:
namely, the N and the 6 masses will move down around
300 MeV, the proportion of the N-6 mass diA'erence due
to pion coupling ranges between 100 and 200 MeV, and
it is erroneous to expect a larger 6 mass shift, due to
pion coupling, than that of the nucleon.

So, it is to be expected that coupling to pion channels
will improve the bare 4-N result of 234 MeV. Finally
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we v ould like to stress that with only one parameter Ko,
which determined the chiral angle p, not only was the
X-6 hyperfine splitting reproduced, but also their bare
radii (Table I). These will increase as a result of coupled
ch a,n nels.

VI. CONCLUSIONS

In this work we were able to obtain, at the BCS level
and with some degree of success, the charmonium mass
spectrum together with reasonable values for the nucleon
and 6 masses. In addition to color confinement, this
model predicts, for hadronic physics, a unified origin of
t, he hyperfine, spin-orbit and tensor forces. All of these
interactions stem from products of Valatin-Bogoliubov
rotated spinors and hence contain, through the chiral an-

gle, the information on the extent of the vacuum chiral
condensation.

The hyperfine interaction was shown to account for
the m-p mass difference provided we have an extra de-
gree of freedom, called E spin. This degree of freedom
comes naturally when using Dirac spinors in the frame-
work of the Salpeter equation. For mesons other than the
pseudoscalars, and especially for baryons, the negative-
energy wave-function component is negligible or nonexis-
tent and the physics involved becomes Schrodinger-like,
with interaction strengths given by appropriate functions
of the chiral angle.

Our results for the masses of mesons with charmed
quarks follow the same ordering as the experimental ones.
Our theoretical mass shifts are dominated by radial and
spin-orbit splitt, ings. Radial and angular excitations dis-
tort as expected the spectrum and suggest that a linear
potential (possibly together with a Coulomb potential)
would yield good results. Spin-orbit results seem to be
of the correct, order. The chiral angle correction is fun-
damental to understanding the D mesons.

That this vacuum condensation strongly affects the
mass results, it is suKcient to see for instance that if
in charmonium we had set the light-quark chiral angle to
zero, we would have parity doublets which are not ob-
served in nature, very small angular excitations, and the
masses for D mesons lowered by hundreds of MeU's.

At this point it should be emphasized that we had
no control on this chiral angle which is not a parameter
but the solution of the associated (nonlinear) mass-gap
equation.

Another point of interest lies in the spin-orbit force. It
was shown to contain, for unequal qq masses, an "anoma-
lous" term which is responsible for the mixing between
the 1++ and 1+ states causing the D mesons not to
have a definite charge conjugation.

Despite the obvious need t,o incorporate coupled chan-
nels we were able to accommodate the N-4 and the z-p
mass differences with the same hyperfine microscopic in-

teraction. This fact alone allows us to hint that, had we

used this effective hyperfine potential, as deduced from
our model, the interplay between Pauli principle and this
hyperfine force would have led, along the lines of Ref. [14]
(which linked the A Nma-ss difference to the N Ns--
wave repulsion) also to a sizable N Nre-pulsion.

It will be interesting to verify if the obtained chirally
induced hyperfine force is strong enough to produce a
sizable N-N repulsive force.

Finally, the relative success of these results and the
qualitative new effects it suggests should prompt fur-
ther research using a more realistic covariant potential,
presumably linear, together with post-BCS (coupled-
channel) physics. This is a large program of which this
work constitutes just a. beginning,
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APPENDIX A

with

4I~ () A„„„„(k)yg, y„„„, (Al)

A. ..„„„(k):—7' [ P(k —q) u„(k)u, , (k —q)

x v, (k —q) v„(k)]q Q (A2)

From the definition of the spinors u, and v, given in
Sec. II, we see that

u„(p)u, (p'} = v, (p')v„{p),

u,. (p)u, (p) = v„(p)v, (p) = b. . .

(A3)

which leads to

In this appendix we derive the mesonic and baryonic
bound-state equations for the potential (15). In the case
of mesons, the general form of the bound states was given
in (29); with the potential (15) it becomes

[M —E(k) —E(k)] zf f „p(k)

A, „„„,(k) = {b„„b„„V'+ b„,,u„ (k)V' u„(k) + b„„u„(k)V' u„ (k)

+ 2[b„„u„ (k)V'u„(k) + b„„u„(k)V'u„(k)] V' + 2u„ {k)V'u„(k) . u„(k)V'u„{k))P(k) . (A4)

The gradient and the Laplacian of the spinor u„are &'u. (p) = f" + +
l

u" +2f t ii 29 ~9 — 0

V'u. (p) = f'p+-~+ u' —— (~ P)p u,',
p p

(A5)
(AG)
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and their product with the Hermitian-conjugate spinor
ut gives

u„(p)Vu, (p) = p x o„, ,
2g'(P)-

2p

(A7)

t(p)7' .(p) = —~'
l 4v "(p)+ p'

The notation o „, stands for the vector whose three coor-
dinates are the (r, s) elements of the three Pauli matrices.

We have made use of the relations

ff'+ gg' = o,
I2

ff"+ gg" = —
2

With the results (A4) and (A7) we can now calculate
the expression A„„„„y„„.We will also change our
notation to keep the equation more compact: instead of
writing flavor and spin indices explicitly, we write y(1, 2)
for the quark-antiquark function, and S& ——0~/2 stands
for the spin of the jth particle. The result is

2 ~2 P( ) +V ( ) g ( )+g ( )

+—g'(k) 21+ g (k) Sg L —
g (k x S,) (k x Sg))k(1, 2) gf(k) .

2 s 2 . 2 g'(k) g2(k)-
(A9)

The second term is the spin-orbit interaction. The operator L = iV't, x k is the total angular momentum. The last
term can be simplified with the help of

&~gm&a~ = ~g~~mn —~g~~im,

which implies

(k x Si) (k x S2) = s(Si Sq) —[(k Si)(k S2) —
s Si S2] .

(Alo)

(Al 1)

Since the function g is an eigenstate of total spin S and of the spin of one of the quarks S~, the scalar term is easily
evaluated:

2S) Ssg(1, 2) = [S(S+1) —2]y(1, 2) .

The quantity A can thus be written as

A(k)2(1, 2) = ('V — + + — (k) Sg+ (k) Sg L

2 g'(k) g'(k) S ]—(S+ 1) —[(k Sg)(k S2) ——S) Sp] y(1, 2) (t)(k) .k2 3 3

(A12)

(A13)

This result is now introduced in (Al) to obtain the bound-state equation for mesons. First notice that the spherical
symmetry of (Al) implies that the angular part of the function P is given by the spherical harmonics and the wave
function can be written as

(M Ms Mg)
1

The bound-state equation becomes

d
M &(&) &(&)

L(L+ 1) i(2' (k) + y' (k) sing(k) sin()2(k) —1 2
[ 2(k) S

~

~

(A14)

2 g'(k) g'(k) S—(S+ 1) + (k . Sg)(k S2) ——Sg S2 v(k) = 0 . (A15)k2 3 3

The factor 4Iios/3 does not, appear because we are now measuring all momenta, energy, and masses in units of
(4/3)'I K().

Let us consider now the case of baryons. The eigenstate equation (35) becomes

[M —3E(J)i)] y»gkg, g(pi, p~, ps) —2KO y»gg» B»»»gg —0,
with p&+p2+p3 ——0, and

)(t'(p) —q p2+q ps)u„(pi)u" (p) —q)u. , (p2)u. (»+g)t t
- q=O

(A16)

(A17)
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Expanding the Laplacian gives

„,,„,, = (b„„b„,„V'~„+b„,, u, (p1)V' u„(p1) + b„„u, (p2)V' u„(p2)

+2[b„,„u, (p1)V'u„(p1) —b„„u, (p2) Vu„(p2)] V'n„

. (P1)«..(P1) u. ,(P2)«..(P2))@(P1,P2, P3) (A18)

The simplification of B„,„„„is very similar to what was done for the function A,„„„,in the meson case and
the final result is

W"(S») 2g'(p1) g'(p1) g'(I»)
2 p, p1p2 9 2

2g'(p1) g'(p2) 1
(P1 ' S1)(P2 ' S2) ——(P1 P2)(S1 S2)

PlP2 3

4g'(P1)
S 1

' l

Bx(1,2, 3) = [Vp„

2g'(p1)
(S, + S,) (iVi, x p, ))X(1,2, 3)i3(p, , pi, pi) .

P1

And the bound-state equation for baryons, in units such that (4/3) / I~o ——1, is

3E( ) I 3&2 3~"(s») 3g'(p1) g'(p1) g'(p2) 3 I
& &+ I

(A19)

3g'(p1) g'(p2)+ (p, S, )(p2 S2) ——(p1 p2)(S1 S2)
PlP2 3

6g'(P1) 3g'(P1)S, L, +, (S, + S,) (iV„x p, ))i(i(p„p„px) = 0. (A20)
pl pl

APPENDIX B

In this appendix we solve the bound-state equation (36) for baryons, using the variational method. From (36) we

have

31 sing pl

1 P=O

+ ——-&(~+ I) [I —s)n P(pl)][I —»» P(»)]
3 1 ~ . Pl P2
4 3 PlP2

where the following notation has been introduced:

(BI)

(f(P1 P2 P3))P=o = d p b(P1+P2+P3)f(P1 P2 P3) IM(pl P2 P3) 1

(B2)

For the ground state we use a Gaussian trial wave function:

3/2

Q(p p p )
— e (Pl 2++P3)/P (B3)

The variational parameter n is of the order of the rms radius of the baryon, and is in units of the inverse of the
potential parameter (4/3)'/3Iio. It should be clear that the four-component nature of the single-quark wave functions

is contained in the vertices 8; this g(p1, p2, p3) contributes to the "radial" part of the nucleon wave function.
For functions depending only on one of the three momenta p;, the integral (B2) can be written as

(f(p)))p=o = dz z f(i)e
(B4)

With this relation we can first verify that the trial function is normalized:

(I)r =o ——1.
The Laplacian V'2, of the trial wave function is

„@(P1,P2 P3) [Ls (Pl P2) 6Ls @(Pl P2 P3) .

(B5)

(B6)
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And the quark energy (10) for the harmonic potential we use in this paper is given by [1,5]

E(k) = m sin p(k) + k cos rp(k)—
p'2 (k) coss p(k)

2 k2

The last two equations allow us to write the first term in (Bl) as

(B7)

Qa2 4 V6F.T. = + dz z cosp-—
2 7r p A

( z Qa Qcr2
(pe) +

~

3mz — + singe ~

sin ape e

This last integral cannot be calculated analytically because we do not have an analytic expression for the chiral
angle y. A useful numerical algorithm to compute this kind of integral is [15]

f f(z) e dz = ) ~, f(z;),
0 i=p

(BQ)

where zu ——0, and (zi, . . . , z„) are the positive zeros of the Hermite polynomial Hs„+i. The coefficients to; are certain
weight factors which are tabulated in Ref. [15].

The second term in (Bl), which is the hyperfine splitting, can be calculated using the general expression

6
dz dy f(z) g(y) sinh(zy) e i +" l

p p
OO CO

d dy zy f(z) g(y) cosh( y) e &* +" &,
7l p 0

(B10)

The result we obtain for the second term in (Bl) is

24cr2,~ 12' 3a 2 sin h(zy)S.T. = dzsinip- e * + dz dy [1 —2sin @~+sing-sings]
0 0 0 Zg

2+ 2—cosh(zy) sin ice sin spy e +" l (B11)

The first integral can be calculated using (B9), while for the second integral we have

lIt P dZdp~ 4P&4)g Z& P Zj
0 0 i=p j=p

(B12)
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