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The Dubna quark confinement model is applied to the study of electromagnetic polarizabilities of
the 7r and A mesons. Within this model it is found that the effect of quark confinement reduces the
value of the pion polarizability from that obtained in such approaches as chiral quark loop and linear
cr models. In the chiral limit our result coincides with the one found in chiral perturbation theory. For
the charged kaon we find the electric polarizability considerably larger than the chiral prediction.
This is due to the strong meson-mass dependence not expected from the pointlike interaction in
eR'ective meson Lagrangian approaches.

PACS number(s): 13.40,Fn, 12.40.Aa, 13.60.Fz, 14.40.Aq

I. INTRODUCTION

The electric and magnetic polarizabilities of hadrons
are two basic parameters which, together with their elec-
tric charges and masses, characterize the low energy
photon-hadron amplitudes. In this respect these quan-
tities must be considered as fundamental as electromag-
netic mean square radii, static magnetic moments, etc. ,
and are expected to give us useful information on the
internal structure of hadrons. See the several review ar-
ticles [1—4]. Our interest here is the electromagnetic po-
larizabilities of the pion and kaon.

As is well known, these mesons are members of the
pseudoscalar octet which is characterized by its Gold-
s/one nature: they emerge from the spontaneous break-
ing of the SU(3)1. x SU(3)1r chiral symmetry to SU(3)v.
At this stage all members of this octet are massless. In re-

ality, they acquire finite masses due to the explicit break-
ing of chiral symmetry caused by the nonzero current
quark masses. This breaking is small for the pion, re-
sulting in its very small physical mass (on the hadronic
scale), but is not quite so for the kaon. The consequence
is that when one wants to calculate any quantity associ-
ated with the low-energy pion (kaon), one must, adopt a
theoretical model which respects the (spontaneously bro-
ken) chiral symmetry. The study of the electromagnetic
polarizability of the pion and kaon that we are interested
in just falls into this category.

Theoretical investigation in this subject (mostly on the
pion electromagnetic polarizabilities) has been pursued

'Permanent address.

since the early 1970s [5—ll] by employing various models
embodying chiral symmetry: current algebra + PCAC
(partial conservation of axial-vector current) [5], the lin-
ear o model and its variants [8, 9], the nonlinear cr model

[10], etc. In the exact chiral limit where the mass of the
pion vanishes, one found (independently of the model dif-

ference) the following relations between the n (electric)
and P (magnetic) polarizabilities:

cr +P =0, u 0=0,

when the eA'ect of the pion loop was not considered for the
latter. Some models [6, 9] took into account corrections
arising from the nonvanishing pion mass, while others [8,
10] included the effect of the pion and even the baryon
loops. With those corrections,

but often with a negative sign relative to the charged-
pion polarizability. Furthermore, all the models except
one predicted a value of the electric polarizability within
the range

40x10 &o + &60x10 cm,

in Gaussian units. We note that models not based upon
a chiral Lagrangian, i.e. , dispersion relations and finite-
energy sum rules, also obtained the polarizability within
this range of values [12, 13]. In the rest of our discus-
sion we shall call these models and/or their results large-
valued results (LVR's).

The exception to LVB.'s is the current algebra+ PCAC
approach of Terent, 'ev [5], which related the polarizability
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to the ratio, p—:h~(0)/hy(0), of the vector and axial-
vector form factors in radiative pion decay n ~ yev. For

0.46 from recent data [14], one finds

28x 10 cm,

which is roughly a factor of 2 smaller than LVR's.
In the meantime, this quantity was deduced from ra-

diative pion-nucleus scattering [15] to be

o.~+ = (6.8 + 1.4«~& + 1.8,~«) x 10 cm,

with the assumption n + p = 0, and

P + = [—7.1 + 2.8(stat) 6 1.8(syst) x 10 cms,

n + + P + = [1.4 6 3.1(stat) + 2.5(syst)] x 10 cm,
without the above assumption. Apparently this result
is consistent with LVR's but not with the result of Ter-
ent'ev.

Recently, there has been extensive work in the low-

energy realization of quantum chromodynamics (QCD)
called chiral perturbation theory (CHPT) [16], in which
the QCD partition functional with external sources is
represented in terms of a nonlinear realization of chiral
symmetry. In particular, it was shown that the low-

energy effective Lagrangian for the basic pseudoscalar
octet may be systematically constructed in inverse pow-
ers of (4zF )z, where F (= 93.3 MeV) is the pion de-
cay constant, or equivalently, in powers of the exter-
nal momentum squared pz and the meson (or quark)
masses. The leading order, conventionally denoted as
Z2, is nothing but a nonlinear 0 model. The next order,
Zq ——O(1/(4z'F )~), contains several parameters. By ad-
justing these empirically, this theoretical model has been
very successful in correlating a large body of low-energy
quantities as well as in giving accurate predictions. %e
note that there have been interesting attempts in deriv-
ing these parameters by integrating the non-Abelian axial
anomaly in the QCD Lagrangian, see for example [1?].

CHPT was applied to the pion polarizability by
Donoghue and Holstein [18]. Its prediction for a + was in
perfect agreement with that by Terent'ev [5], thus smaller
than the experimental result [15] and LVR's by about a
factor of 2. In view of the complete consistency between
current algebra + PCAC and the effective La'grangian in
CHPT [at least up to 0(p4)], the agreement of these two
model predictions may not be a surprise. To simplify our
discussion we call these predictions small-valued results
(SVR's) in what follows.

Donoghue and Holstein then argued that approaches
like linear o models, which predict large values for the
charged pion polarizability, viz. , LVR s, are not trustwor-
thy in view of their poor prediction on the coefFicients in
the Z4 contribution. To test their prediction, they urged
experimentalists to remeasure o.

It is this apparent conflict between the data and the
most recent (and supposedly most reliable) CHPT pre-
diction that has motivated us to study this subject from
a somewhat different angle. Our theoretical basis is the
quark confinement model (QCM) developed at Dubna
[19]. Like the effective Lagrangian of CHPT, this model

may be inferred from the study of QCD partition func-
tionals. But in QCM the implementation of chiral sym-
metry is not the main guiding principle; rather, the em-
phasis is placed on quark confinement and the composite
nature of hadrons, with the aspect of chiral symmetry
imposed later. %e think that at least one merit of the
present approach is the possibility to handle more easily
the situations where chiral symmetry breaking is strong.
This should then facilitate the calculation of the electro-
magnetic polarizabilities of the kaon, the mass of which
may not really be regarded as vanishingly small in the
low-energy domain of our present interest.

We should mention that QCM has already been ap-
plied to the pion polarizability problem [20]. However,
the authors were not informed of the result of Ref. [18]
and, thus, not much aware of the conflict discussed above.
In addition, to simplify the calculation, contributions in-
volving quark loops were evaluated with a vanishing mass
for the external pions. One cannot apply this work di-
rectly to the kaon polarizability where the finite-mass
effect is expected to be important. Furthermore, there
are some errors which are rather serious. So here, we

carefully correct and extend this previous work.
Our principal findings may be summarized as follows.

(1) For charged pions, o. + 3.6 x 10 4s cms, which is
smaller than LVR's, but larger than SVR's. Particularly
in the exact chiral limit our result practically coincides
with the latter. We attribute the origin of our lower value
(than LVR) to the effect of quark confinement.

(2) For charged mesons, quark loop contributions have
a strong mass dependence, which may not be inferred
easily from other existing models. As a consequence, the
charged kaon polarizability becomes considerably larger
than what chiral models predict. This gives us hope that
it may be measured experimentally without much diffi-
culty.

This article is organized as follows. Section II gives a
brief account of the QCM applied to our present calcu-
lation. In Sec. III we first outline how the electromag-
netic polarizability of a scalar (or pseudoscalar) particle
may be extracted from the Compton amplitude. Then
we present the invariant Compton amplitude from our
model, and the polarizabilities extracted from it. Some
details of the calculation of the amplitude as well as def-
initions of certain functions appearing in this section are
relegated to the Appendixes. Finally, Sec. IV is devoted
to presenting our numerical results and discussions in
comparison with other model predictions. In order to
minimize the shuttling back and forth between this and
other related articles, we have tried to make this article
as pedagogical and self-contained as possible, except for
Sec. II where, to contain the size of this section, only
some rudiments of the QCM necessary for our present
objective are presented.

II. THE QUARK STRUCTURE OF MESONS
IN QCM

In the present section we give a brief account of the
Dubna quark confinement model (QCM) which is em-
ployed in the present study of meson electromagnetic
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polarizabilities. A particular emphasis is placed on how
to describe the scalar-meson sector. A similar approach
originating from a chiral-invariant four-quark interac-
tion to arrive at a generalized o model (often called the
superconducting-type model) may be noted [21]. How-
ever, the aspect of quark confinement is not considered
therein.

A heuristic bosonization procedure starting from the
QCD generating functional is the basis of our meson-
quark interaction Lagrangian in the QCM. Since our
present objective is the application of this Lagrangian to
actual physical problems, we refer the interested reader to
Ref. [19]. There he (or she) will find how our Lagrangian
may be reached within this type of approach.

The interaction Lagrangian for the meson octet 4; is

written as
8

IM = ) C';ql MAiq
i=i

Here, A, (i=1,.. . ,8) are the Gell-Mann matrices (Ao

g2/3I), and I'M are the Dirac matrices: ip5 for pseu-
doscalar P()r, Ii. , rt, )I'); p& for vector V(p, I~",~, P); p "p
for axial vector A(ai, I%i, fi). For the coupling to scalar
mesons S(ao, Iso, fo, s), our I'M takes a form which con-

tains a derivative. It will be given where we discuss the
QCM description of scalar mesons later in this section.
The relation between the octet fields C; and the physi-
cal meson fields (M's) together with the relevant flavor

matrices is the standard one, and is listed in Table I.
The difI'erence between the actual and ideal singlet-octet
mixing angles is denoted as bM (the ideal mixing angle

is defined as cos81 ——g2/3). For example, bt ——0'
and b~ ———46', are adopted for vector and pseudoscalar
mesons, respectively. We shall discuss the value for the
scalar mesons later.

In the QCM we assume that mesons are bound states
of qq, which is expressed in the compositeness condition
that the renormalization constant for meson M is equal
to zero:

S = dr„„Texp
~

i f dz LM(z) ~

.

Here, the T product is the ordinary Wick time ordering
for the mesonic and quark fields. The quark propagator
in the presence of the gluonic vacuum background B, ,
has the form

S(zi z21B. ) = «IT[q(»)q(z2)][»
= (/+0-)-'~(. -*) (4)

We then assume [19] that an average over B„,of the
quark loops generated by the S matrix provides the quark
confinement and make the theory ultraviolet finite. This
averaging takes the form

do„ tr[M(zi)S(ziz2~8„) M(z„)S(z„zi~B„„)],

where o, , is a set of variables characterizing B„~,. Our
confinement ansatz is then to replace this equation by

do.„tr[M(zi)S„(zi —zg) M(z„)S„(z„—zi)].

tive coupling constant and IIM(p2) is the derivative of
the (renormalized) meson-mass operator, see Appendix
8 and Fig. 1. Physically, this condition means that the
probability to find the meson M in a bare state is equal
to zero. It is important to remark here that (i) our inter-
action Lagrangian together with the compositeness con-
dition has been shown to be equivalent to the one ob-
tained by the QCD bosonization procedure [19], and (ii)
the compositeness condition allows one to determine the
coupling constant hM (or gM) as a function of the phys-
ical meson mass. In fact, meson masses are the input to
our model.

Mesonic interactions in the QCM are defined by dia-
grams involving closed quark loops which can be obtained
from the S matrix:

ZM = 1+ hMII'M(mM) = 0.

where hM —N, g~~/(2)r)~ with N, = 3 is the effec- Here,

(6)

TABLE I. SU(3) nonets. The names are from the recent Particle Data Group compilation.

0
0

1

1
—1
—1

0
0

1 +1

1
2

1
2

2
1
2

0 0

S T T3 Name (PDG)
Ref. [14]

K+, (I")+,I +, K+
K (K'), Ko, K,
K', (K')s, A, K,'
K, (K'), Ks, K,

I
g )(d)K)D
p) 4 fo fi

Physical
field

~+ =(O'~ C')/~2
M

m+ = (e' —e')/~2
M.' = (C' —iC')/~2
M, =(4 +iO)/~2
M, = (C'+iC')/~2

M' = C) cos8 —4I) sin 8
M = C) sin8+ C) cos8

P hysical
A matrix

A+ = (A' + iA )/+2
A

A. = (A'+ iA')/+2
A. = (A + iA )/~2
A, = (A —iA')/~2
A+ = (A' —iA )/V2

AMI ———A sin8+ A cosH

AM ——A cosH+ A sinH

AsIi = diag(cosh, cos b, —~2 sin h)

Am = diag( —sin b, —sin b, —~2 cosh)
8 = 8 —HI, cosHi = ~~, Hi = 35'26'
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FIG. 1. Typical mass (or self-energy) operator.

g ( )
-sp (zg-zg)

which describe various basic constants quite well, as
found in Table II.

With these parameters fixed, one may be able to de-
scribe the basic characteristics of various mesons (see, for
example, the second reference in [19]). Of particular in-
terest in our present context is the success of the model
in describing the pion electromagnetic form factor both
in the spacelike and timelike regions. The corresponding
mean-square radius is found to be

is a quark propagator with the scale parameter A charac-
terizing the size of the confinement (or it may be viewed
as something equivalent to the constituent mass), and the
measure do„, which is essential for quark confinement, is
defined to provide the absence of singularities in Eq. (7)
corresponding to the physical quark production:

" —= G(z) = a(—z')+zb( —z') (8)

We shall call G(z) the confinement function. It is an
entire analytic function which decreases faster than the
inverse of any polynomial of z in a Euclidean direction
zz ~ —oo. We further assume that G(z) is a universal
function, i.e. , independent of color and Bavor. In other
words, G(z) is common for all quark diagrams defining
the hadron interaction at low energies. Otherwise, there
is no other constraint on it. In practice, it has turned
out [19] that low-energy physics depends only on those
quantities which involve the integral of a(u) and b(u)
together with u+ (N = 0, 1, 2), but not on the detailed
shape of these functions. We thus have made a simple
choice:

The parameters a;, b, , and A have been determined from
the best model description of data in low-energy pro-
cesses. The following values are found:

ap = bp = 2, aq —1, bq ——0.4, and A = 460 MeV,

a(u) = ao exp( —u —aiu), b(u) = bo exp( —u + biu).

(9)

(r ) = 0.43 fm,

as compared with the data [22]:

(r ~)expt = 0.44 + 0.03 fm

Agreement of the model prediction with experiments
was however not reached in the scalar meson sector with
a simple form of the scalar quark current: I'M oc qq [20].
Since scalar mesons are essential ingredients in the con-
text of our present study, we shall summarize and sup-
plement here the issue discussed in [20].

Scalar mesons play an important role in low-energy
physics, but are at the same time rather controversial
both theoretically and experimentally. First, they facil-
itate the description of low-energy processes, especially
in implementing chiral symmetry [23]; recall the linear
cr model. Also, it is important, in the phenomenological
studies of xx, xlV, and NN scattering processes, to in-
clude intermediate scalar meson exchanges either in the
s or t channels [23, 24]. The medium range attraction in
the nucleon-nucleon potential is a good example in which
the light scalar meson s (or cr), with the mass of 600—
700 MeV, is often introduced [24]. The problem is that
to date this light scalar meson has not been confirmed
experimentally.

There are scalar mesons which are established exper-
imentally, so that one is then tempted to classify them
as belonging to an octet of pure qq content. This octet
however appears to be rather unusual: (i) the fo(975),
assumed to have a certain s-quark content, is lighter
than the ap(980) which is often assumed to have no s-

TABLE II. Main fits of low-energy quantities in the QMC.

Process

A JER~(p')
+2R~~(p')

A +3R~ (p, lg)
FC =

s +2R~i (p'„)
1 Rv(pp)
s +8Rvv(p. 2p)

Ravv(p )
g7rgg =—

A s +3R~~(p')
1 ~6R~vv(p')

g4/7l' f A /Ri ~(p')Rvv(p')
rrE8Rv pp(p2p)

gpvrn
R~~(p' )QRv v (p~p)

QCM

132 MeV

158 MeV

0.18

0.26 GeV

2.09 GeV

6.0

Expt.

132 MeV

157 MeV

0.20

0.276 GeV-'

2.54 GeV

6.1
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r(M s) —I —~H P /A. (10)

Together with parameter H in this current, the angle for
the singlet-octet mixing b~ (bs —= Hs —~I ~r—:ideal
mixing angle) for fp and s, and the mass m, were taken
as adjustable parameters. In Ref. [20] there are some
errors in the equations used to find the best values for
those parameters. We have corrected them and made a
refit in the present work.

There are three quantities used for this objective. Two
of them are the xx ~ mar and year ~ p7t. amplitudes in

the chiral (zero energy, zero mass) limit for which they
must vanish: the Adler consistency condition [23] as il-
lustrated in Fig. 2. The corresponding equations read

Pi = Bp —2A (Ap —4HB&) [cos bs h, D, (0)
+ sin bs hI, DI, (0)] = 0,

(11)

quark contribution (note however that there is a model
in which both of these mesons are assumed to be the
molecular states of IVI& [25]), and (ii) the fp(1400), pre-
viously called s (1300), appears to be a little too heavy
to be classified as in the same lowest octet as the fp and
a0 discussed above. Thus it is often assumed that this
fp(1400) is a scalar with radial excitation. These unusual
features suggest that, in fact, scalar mesons should have
a more complicated structure than that arising from the
simple quark current (oc qq). There are suggestions that
they may be qqqq states [26], or of hybrid glueball nature
[27], but it is very difficult to construct a realistic model
with a concrete prediction based upon such pictures (for
example, there are quite a lot of four-quark currents if
one allows the color-nonsinglet contributions).

In the previous QCM approach [20], it was found that
with the simple scalar quark current given above, the
matrix element describing the decay S ~ xz goes to zero
when the scalar meson mass is equal to 1070 MeV. It is
thus impossible to describe the observed decay fp(975) ~
xvr. To remedy this trouble and to model the complicated
inner structure of scalar mesons in a simplest possible
manner, an auxiliary contribution with derivative was
included in the scalar quark current:

&(0) —2A'a(0)(Ap —4H Bg )

l
x

~

cos b~ h, D, (0) + sin bs hI, Df, (0)

sin bs cos bs [h, D, (0) —hI, Df, (0)] ~

= 0,

(12)

where

Ap = du a(u) = 1.09, Aq = duua(u) = 0.45,

Bp = dub u = 2.26 Bi = duub u = 1.45.
0 0

In order to obtain these conditions, one calculates the
amplitudes which are quite similar to those for obtain-
ing the electromagnetic polarizabilities of pseudoscalar
mesons described in the next section. Here we have only
to calculate what are called the box and the scalar meson
exchange contributions in the limit where the pion mass
vanishes. As it has turned out, the scalar meson contri-
butions in Eqs. (11) and (12) are rather insensitive to the
change in bs, which may be understood since the masses
of fp and s (hence the values of their coupling constants)
cannot be very different. However, these contributions
are quite sensitive to the change in H, and moderately
so to the change in m, .

The third quantity is the pionic decay width of the
fp(975), for which I'(fp ~ zx) = 24 k 5 MeV experi-
mentally. The scalar-meson pionic decay width [see Fig.
3(a)] is written as

r(s 3
327K

4 Q
2 ~s

DM(p') =
hM IIM(p') + mM'

with IIM(p~) being the renormalized meson-mass oper-
ator in a single-quark loop approximation which is an
entire function in the QCM, and

with

Vyy Vip

hs 2Az hx+5&w +sPP(pg, 0, 0), (14)

S

P

P

S

V2i V2g

(a) (b)

FIG. 2. Consistency conditions used to constrain the
scalar-meson parameters.

FIG. 3. Diagrams describing scalar-meson decays (a) S ~
PP, (b) S ~ pp.
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where the function Fs~I (z, y, z) and the SU(3) factors
Cs are given in Appendix C. In the above equation
ps = ms/A. Note that this definition applies to other
mesons throughout the rest of this article I.t is then clear
that I'[fo(975) ~ z ir] is proportional to sin bs and, thus,
sensitive to bg. It is also sensitive to the change in H,
but does not depend on rn, .

In our present study, the best fit to the consistency
conditions and the decay width for fo ~ irir has been
achieved with

H = —0.15, sinbg ——0.3, m, = 1040 MeV.

The fitting results are [recall Eqs. (11), (12)]

(15)

Pi ———0.1, Pg = -0.33,

and

I'(fo sir) = 20 MeV.

The calculated decay width is in good agreement with
the experimental value quoted above.

With these parameters determined above, we have cal-
culated (i) the isospin zero and two rrx scattering lengths
and (ii) other decay widths of scalar mesons. By neglect-
ing the pion mass in the quark loop integrals, we find the
s-wave xx scattering lengths

ao = 0.11, ao = —0.05 (units m = 1).

Experimentally, they are [28]

Qp: 0.23 + 0.05 Qo: 0.05 + 0.03

(units m = 1).
The model predicts the decay width

I'(s ~ z ir) = 180 MeV.

1 /6hs
( ')

This is consistent with that of fo(1400). However, our s
mass is not really close to 1400 MeV. There is another
scalar meson fo(1260) identified in the phase shift analy-
sis of the I~&I~& system, but the details of its properties
are not well known [14].

Further, we have calculated the radiative decay of
scalar mesons. This decay is defined by the diagram Fig.
3(b). The matrix element corresponding to this diagram
reads

h'fs~q = e Gsq~&i&2(g""qiq~ —qi q2),

where t.'&, ~2 are photon polarizations and

III. COMPTON AMPLITUDE AND THE
POLARIZABILITIES

A. Preliminaries

First, as pointed out, for example, by Friar [2], it is im-
portant to keep in mind that while physical amplitudes
describing electromagnetic processes are independent of
the system of units adopted, this does not apply to
the electromagnetic polarizabilities. Theorists prefer the

TABLE III. Decay widths of scalar and axial-vector
mesons.

Mode QCM

20 MeV
180 MeV

Expt. (Ref.14)

24+ 5 MeV
140—360 MeV

for fp(1400) meson

The numerical results are shown in Table III.
It should be remarked here that to determine the

scalar-meson parameters H, b„and rn„ it is possible to
use the irir scattering phase shift and/or the correspond-
ing scattering lengths. This has actually been done [29]
and the result indicates that the c mass should be around
1000 MeV. On the other hand, the calculated phase shift
appears rather insensitive to the value of H. So it is
important to retain one of the equations from the consis-
tency condition: Eqs. (11) and (12).

Concluding this section, we reiterate that our model
for scalar mesons is a rather simple-minded one, but the
objective of this article is not to explain the bulk of the
scalar-meson properties correctly: this itself would be a
formidable task in quark models. Our scalar propagators
do not contain the contribution from the decay widths.
This treatment is in line with the zeroth order in the
I/Nc expansion upon which our present model is based,
and will be touched upon in the next section (see also
Ref. [19]):the propagator whose mass operator properly
includes the meson decay width effect can only be ob-
tained by including the terms of at least 0(1/Nc) in this
expansion. Thus a naive estimate is that our treatment
in the scalar mesons sector is correct within 30Fo. How-

ever, we note that (i) we have constrained our three pa-
rameters by two self-consistency conditions, (ii) we have
obtained a reasonable prediction for the available scalar-
meson decay widths, and (iii) the same treatment of the
scalar mesons has given an adequate description of the

nphase shifts -[29]. Also, the consistency conditions
are for the soft pion, and we shall deal with the zero
energy Compton amplitude needed to extract the polar-
izabilities. For these the meson widths may not play an
essential role. This gives us some confidence that pre-
sumably for the present purpose our model is relevant
and its effective accuracy to be less than 30%.

The function Fs~7(pzs) and the SU(3) factors Cs~~ are
given in Appendix t . Finally, the decay width is

I'(S ~ py) = —cr msGs „.

fo n
Yl

'Y7

Qy ~ 7CQ

2.4 keV
2.4 keV
6.4 keV

300 keV 640 + 246 keV
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Heaviside system in which (in natural units: c = Ii = 1)
e /4z' = 1/137 = n, where e is the unit charge. On the
other hand, in Gaussian (cgs) units, liked by experimen-
talists, e~ = n. Thus the numerical value of the electric
(magnetic) polarizability in the Heaviside system is 4z
that in the Gaussian system. In what follows, our calcu-
lation relies upon the Heaviside system, but the obtained
polarizabilities mill be presented in Gaussian units, in or-

der to conform to tradition.
Second, for the sake of clarity and in order to facili-

tate the comparison with other works, we shall outline
how one obtains the electromagnetic polarizabilities of
pseudoscalar mesons from the Compton amplitude. See,
for example, Feinberg and Sucher [30] for a somewhat
different approach to this point.

Let us consider low-energy photon scattering by a spin-
less scatterer with unit charge e and mass rn. We charac-
terize the incoming (outgoing) photon with energy ~ (cu'),
momentum k (k'), and polarization e (e'). Then, the cor-
responding amplitude reads [31,32], in Gaussian units,

FNR = —e E —+ e e (did Qp + (e X k) ' (e X k )p+&m

(17)

where n~ and P~ are the electric and magnetic polariz-
abilities, respectively. The first term in the amplitude is
due to the Thomson scattering which is zero for a neutral
scatterer, while the remainder is essentially the Rayleigh
scattering which contains the information on the polar-
izabilities. We note that what is called the form-factor
contribution is included in our definition of np and Pp
[4, 11,33].

Next, we write the general form of the invariant ampli-
tude for the photon scattering by a pseudoscalar meson
of unit charge e, and try to extract the expressions for the
polarizabilities. This may be done by taking a very-low-
energy limit of the amplitude, then comparing it with
the nonrelativistic form given above. We adopt the fol-
lowing notation throughout the rest of this article: p», p2
are the initial and final meson momenta, q», q2 the ini-
tial and final photon momenta, e», e2 the initial and final
photon polarizations, and s = (pi+qi) = (pq+q2), t =
(pi —pq) = (qi —qq) . On mass shell we have

2 2 2 2 2 n
P» =P2 ——mP& q» q2 0 1 ql ~2 q2

We adopt the normalization convention found in Itzyk-
son and Zuber [34] and express the (elastic) Compton
scattering amplitude F~ in terms of the corresponding
invariant amplitude M:

M pvFc = M =E'» &M c2 V.
8m s'

Then M"' may be decomposed as

M"" = M"",-„,+ M,",", ,

where the first term is due to scattering from a (struc-
tureless) point charge (see Fig. 4), and the second term
arises from the inner structure of the meson (including
the effect of coupling to other mesons in the intermediate

Mpojgl + + CROSSED

FIG. 4. Compton scattering by a point charge correspond-
ing to Mp, in the text.

states). Each of these contributions may be written as

M",,„,= 2e
~

g"'+ p v 1

P» 'q1 P2 'q1

and

M,"„". —:4z [fi(s, t)T,""+ fg(s, &)T,""], (21)

and

g""(P—i qi ) (Pg qp), (22)

Tz"" = g""(qi q2) —qzqi, (23)

where P, = p;/mp. Note that the first of these tensors
is somewhat different from the often used T;"" [30]: the
relation between them is

, Tz""(4qi pi —qi q2), (24)
P

and

T,""= T,"". (2&)

Now we take a very-low-energy limit of our amplitude
Fc to compare with FNR of Eq. (17). We adopt the
transverse gauge in which the time component of the po-
larization vector vanishes, so e; = (0, e, ). One then
finds

and

P, V
&» pT» &2 v &» ' &2 q»0q20 (26)

T& cg „—&i ' &z q10q20 + (el x qi) (e~ q2)

(27)

In a similar manner one finds that in the low-energy limit

» 9 point »
8z.+s

Then one obtains
rn& and t 0

6» . E'2e 2

4xmP
(28)

(in the Heaviside units) for s

e2o ei ' e2 qiOq20[fi(mp~ 0) f2(m+~ )]+
mP gap

(ei x qi) (ez x e2) f2(mp 0) (29)+ )
2mP

sa by comparing this with Eq. (17), the fallowing identi-
fications result:

where the reason for the extra 4m factor in the above
definition will become clear later. In the last equation
above, the two gauge-invariant Lorentz tensors take the
forms

Ti q2 2 (qi Pi) + Pi" q& (P2 ' q2) Pi Pz (qi . q2)
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We note that because of the extra factor 4x in Eq. (21),
the values of the electromagnetic polarizabilities, calcu-
lated in the above expression using Heaviside units, are
given in Gaussian units. From the last equation, one
obtains

fi(rn~~, 0)
(31)

2mp

As mentioned in our Introduction, this combination of
polarizabilities vanishes in the chiral limit, so one finds

~p+ Pp =

fi(0, 0) = 0,

for pseudoscalar-octet mesons.

(32)

B. Calculation of the Compton
amplitude and polarizabilities

The Compton scattering amplitude for a pseudoscalar
meson in our QCM obtains contributions from the follow-
ing processes (or diagrams): (1) the photon scattering by
a point charge (Fig. 4), (2) diagrams which involve only
one quark loop (either E, O, or CI shape, see Fig. 5) and
pseudoscalar meson lines, (3) the t-channel scalar me-
son exchange [Fig. 6(a)], (4) the s- and u-channel vector-
and axial-vector meson exchanges [Figs. 6(b) and (7)].
These contributions may be regarded as the leading- (or

the zeroth-) order terms in the I/Nc expansion where
Nc (= 3) is the number of colors, and correspond to
those from the tree approximation in effective Lagrangian
approaches such as the linear and nonlinear o models.
However, the presence of quark loops in QCM diagrams
introduces nontrivial momentum dependences which, of
course, do not exist in the effective Lagrangian scheme
with only meson degrees of freedom.

In the present approach, meson and baryon loop contri-
butions illustrated in Fig. 8 enter as O(1/Nc), so their
effects are expected to be at most 1/3 of what we
are calculating. In principle, we could go up to this or-
der. However, for consistency basic meson and baryon
quantities must also be recalculated up to O(1/Nc): for
example, the compositeness condition, Eq. (2) must be
satisfied to this order. So we shall stay at the level of
the leading order here. See discussions on this subject in
Sec. IV.

Before presenting the resultant amplitude, it is worth
emphasizing that since our confinement function guaran-
tees the ultraviolet convergence of the loop integration,
no regularization is needed, with the consequence that
electromagnetic gauge invariance is manifest at any stage
of the calculation.

Let us give the contributions to the Compton scatter-
ing amplitude from separate diagrams. Some details of
the calculation may be found in Appendix C. The expres-
sions given below are for photon scattering near thresh-
old.

(1) Scattering by a point charge [Figs. 4 and 5(c)]
This arises entirely from the minimal substitution

BOX1 =— BOX2 —=

Mp.mt + ----I — = Zp Mpoint=O

(c)

+

+ 5/9 BOX1 — 2/9 BOX2

FIG. 5. Triangle, bubble, and box (TBB) contributions to the Compton scattering of pseudoscalar mesons: (a), (b) box
diagrams; (c) the consequence of the compositeness condition; (d) contribution to charged mesons. Crossed contributions are
implicit.
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$
I

I

V

(a) (b)

FIG. 8. Typical one-hadron-loop contribution to the px
Compton amplitude. II is a hadron, either a meson or baryon.

FIG. 6. (a) Scalar- and (b) vector-meson contributions
to the Cornpton scattering of pseudoscalar mesons. Crossed
contributions are implicit.

: 8„—ieA„

in the free meson Lagrangian and, of course, vanishes for
neutral mesons. The result is M"",„, of Eq. (20). How-

ever, the composite nature of our pseudoscalar mesons
manifests itself as an additional contribution to this term
from the self-energy bubble in the external meson line
evaluated on mass shell [Fig. 5(c)]. Because of the com-
positeness condition, Eq. (2), the sum of all these contri-
butions can be shown to vanish.

(2) Triangle (form factor), self energy b-ubble, and bog
diagrams: TBB [Fig. 5(d)]

These contributions arise from single-quark loops form-
ing the pion (kaon) electromagnetic form factor, pion
(kaon) self-energy bubble, and the box diagrams. The
box diagram has two topologically distinct contributions
as shown in Figs. 5(a) and 5(b). We call them TBB in the
following. They collectively respect gauge invariance for
charged mesons, but not separately. For neutral mesons
only the box diagrams Figs. 5(a) and 5(b) contribute.

(a) Neutral mesons:

2

M»&..=
A2 [P.W1(P.) 1 +W2(P.)» ]

(33)

T}1e functions W; '+(z) are given in Appendix C. It is

amusing to find that the point charge contribution, once
canceled by the compositeness condition, is perfectly re-
stored here. Note that it, of course, does not contribute
to the polarizabilities.

(3) Scalar mesons (S) in t channel -exchange [Fig. 6(a)]
The contribution to the invariant amplitude reads

2

M$ —T2 2A2
CsPP FsPP (0 Pp PP)'

x Cs~~ Fs~~ (0)hs/ps (37)

The structure functions Fs's and the SU(3) factors
t g's are given in Appendix C.

(4) Axial vector -and vector meson excha-nges in the s
and t channels [Figs. 6(b) and (7)]

(a) Axial vector me-sons (A). The axial-vector mesons
contribute only to the Compton scattering of charged
particles. The net contribution is

where, as defined in the preceding section, p~ = mp/A.
(b) Charged mesons. For charged mesons all the dia-

grams in Fig. 5(d) contribute:

pp
TBB ™point+ +SD &

with the inner structure-dependent term being

e2h
M+» =, [PPW1 (PP)T1""+W2+(PP)T""]

(36)

and
2

MTBB Ko —
A2 [PKW1 (P'K) 1 + W2 (PK) 25A~

-„„eh~2

A2 P~ ~~~(PP~P~ ) 2 2 +
~p

(38)

The structure function I"~I» is given in Appendix C.
(b) Vector mesons (V). The vector-meson contribution

is obtained as

A 2

MV [T1 + 2 l A2 PPCv PyFPv v (PP PP )4A2
(a) (b)

hv hv&
X 2 2 +

t Pv Pp Pv)
(39)

A A

(c) (d)

FIG. 7. Axial-vector meson contributions to the Compton
scattering of pseudoscalar mesons. Crossed contributions are
implicit.

The structure function F~~i~ is given in Appendix C.
From the different pieces contributing to the invariant

Compton amplitude presented above, and from Eqs. (21)
and (30), we can extract the electromagnetic polarizabil-
ities from each individual contribution: TBB, the ex-

change of scalar, vector, and axial-vector mesons. They
are given in Table IV, in which one finds several inter-

esting points. First, vector meson exchange contributes
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only to the magnetic polarizability, whereas axial-vector
exchanges give 6nite contribution only to the electric
polarizabilities. Second, these two contributions are of
O(pp), so they vanish in the zero mass (chiral) limit of
the pseudosc alar mesons:

: 0 (P = rr and I&)

[note that mp in the denominator of each separate contri-
bution to the polarizability is not subject to this limiting
procedure: its origin is the defining relation, Eq. (30)].
Third, the surviving contributions in this limit are the
scalar exchange and a part of TBB which are found to
satisfy the well-known relation [recall the discussion in

Sec. I, and Eqs. (31) and (32)]

~p + Pp o& fi(0, 0) = 0. (40)

IV. DISCUSSION AND CONCLUS ION

Contributions listed in Table IV are evaluated numer-

icallyy

and are presented in Tab le V . From the table one

Thus, ou r result explicitly shows that th is relation is v i-
olated to O(pp). This must result from any reasonable
model (see, for example [6, 9]).

Any further discussion needs concrete numerical re-
sults which will be relegated to the next section.

TABLE IV. Analytic expressions for pseudoscalar-meson electromagnetic polarizabilities in the
present model.

CR'0

PK

I&+

PK+

TBB

[—I4r~"'(~'-) + ~'-~i"'(~'-)]

I4/ (P)
(

~
)2A2 m

[—~2 "(~'-) + ~'-~r"'(~'-)]
rr ~(+)( g

)

5A,
" [-14f'"(~K)+ ~f&lf(fr (~~-)]

nhK (p)

[-~&+'(uK) + 4~i '(VK)]
Q'hK ~(y)( 2

)2A~ m~
Vector

0

lr'rrFPV V (Prrr Prr r 0)IV9A2 m

1
rp P-

0
4h~ 2 2 2 2 K

l KFPV V (lf'Kr l4Kr 0)IVgA2

4 Pi&p

Scalar

Fspp(o, V', W' )Fsv, (o)Is9A2 m

F»p(0 fj sc &s' )Fsvv. (0)Is8+2mI
—Gy. o

eh K 2 2 s' +F»p (0 fr f& fr f - )Fs (o)Is'
1SA& mI;

~++

Axial vector

h
fr rr FA p v (p rr r par 0)IA'

Il m~
0

2 2 2 2 K
A2 . lr K FAPv (lr Kr lr K r 0)IAm Ig

0

Is = 5[cos bsh, D, (0) + sin bsh f0D f0(0)]A
—~2 sin 6's cos 6s[h, D, (0) —hf Df, (0)]A

sc'Is —3[cos bsh, D, (0) + sin bsh fp Dfo (0)]A
+{2[h,D, (0) + hf, Df, (0)] —3ho, D, (0)}A
—6~2 sin bs cos bs[h, D, (0) —h f, Df, (0)]A2

Is ——3[cos bsh, D, (0) + sin bshf, Dfo(0)]A
+{2[h,D, (0) + hf, Df, (0)] + 3ho, D~, (0)}A
—6~2 sin bs cos bs[h, D, (0) —hf, Df, (0)]A

Iv = s [huDrr(m ) + hrrDrr(0)]A
Ifr =

2 [hK. DK (mK) + hf&. Df&~ (0)]A

I~ = s [h D (m ) + hoD(0)]A
I~ —

& [hKr DKr (m~f&) + hKr DKr (0)]A



1S90 M. A. IVANOV AND T. MIZUTANI 45

TABLE V. Numerical results for polarizability in the
Gaussian system. The unit is 10 cm .

0.5

P 0

Q'~+

P.+
CJ o

Pl,.-o

TBB
—3.013
2.951

—0.140
0.295

—0.283
0.162
0.678
0.045

3.755
—3.755
3.755

—3.755

0.610
—0.610
1.543

—1.543

0
0.506

0
0.051

0
0.741

0
0.185

A

0
0

0.0187
0

0
0

0.061
0

Total

0.74
—0.30
3.63

—3.41

0.33
—0.29
2.28

—1.31

0.0

(P = s. , It, z = 2, 5),zg2rn p
(41)

as in Table IV. However, there is a very interesting ex-
ception to this tendency: the TBB contribution to I~+ is

about five times larger than that for x+ and with oppo-
site sign. The origin of this may be traced to the 6'~+~

function for np+ (see Table IV):

(42)

which arises from the quark loop eA'ect. The p& depen-
dence of this function is plotted in Fig. 9. Clearly, for
small p&2 (p~ = 0.09) the first term is dominant and
the whole expression stays small and negative. But for
large p&2 (as in the case of n~+ . p2~ —1.2) the second
term grows rapidly and becomes dominant. Also plotted
in Fig. 9 is the corresponding function 8'& & for neutral
mesons. This is rather Bat as a function of pP, so unlike
for charged mesons nothing peculiar happens for nP(0).

For the contribution to the m and K polarizabilities
from the scalar-meson exchanges, the ratio

(
nlrb rn~

2m' (43)

may be expected to hold as for the TBB contribution
above (see Table IV). This is roughly so for the neutral
mesons, but for the charged mesons the ratio is quite
larger. The origin of this enhancement is in the factor
K+

I+ in Table IV: suppose that all the scalar mesons be-
come degenerate (in fact this is the exact chiral symmet-

immediately observes certain trends. The first is that
for both pions and kaons, the axial-vector contribution is
almost negligible and thus may safely be omitted. The
vector-meson contribution also has relatively small mag-
nitude, particularly for the pion polarizability. Next, one
sees that the major effect (in magnitude) comes from the
scalar exchanges. For neutral mesons this is largely com-
pensated by the TBB diagrams due to the consistency
condition (recall Sec. II), which is however not quite ob-
vious for the case of I~ . In any event, it is this cornpen-
sation which makes the role of the vector exchange visible
in the magnetic polarizability of the neutrals. Lastly, the
TBB contribution to the kaon polarizability is about an
order of magnitude smaller than that for the pion. This
arises primarily from the ratio of the coefficients in the
TBB contribution:

-0.5
0.0 0.2 04 0.6 0.8 1.0

X
1.2

FIG. 9. Functions W& i(z) —= —Ws~ l(x) y xWi~ l(x) (I =
0, +) (see Table IV) appearing in the TBB contribution to
the polarizability. Not shown are the minimum W;„—0.4
at x ~ 2.0 and the maximum W „~1.6 at x ~ 4.5.

ric limit in the context of our present model, which will
be discussed later). Then because of the coherent contri-
bution of s, fo, and ao, this factor becomes twice as large
as the corresponding factor I& for the pion, and about

Ktwo and a half times larger than the fact, or I+ for the
neutral kaon. Actually, taking into account Eq. (43), the
relative magnitudes of the scalar-meson contribution in
Table V can be understood well. Note that this indicates
the smooth variation of Fsp~(0, pp, pp) (Table IV) as a.

function of p, &, which we have actually confirmed.
Summarizing the result in Table V, the total contribu-

tion to the charged pion is

which is between the LVR's and SVR's. The sum of the
electric and magnetic polarizabilities is

n ++P + =0.22,

consistent with 0.39 + 0.04 from the pion total photore-
action cross section [1,35]. For the kaon we find

n~ = 2.3, nlrb + ply —1.0.

Here the eKect of chiral symmetry breaking is appreciable
as, otherwise, the second quantity would be close to zero
while the first one should satisfy

m~ I"~ 1

mKFK 5

(see, for example, predictions from chiral models [3, 4,
9]). This rather large charged-kaon polarizability gives us

hope that it could be measured without major difficulty
(relative to that for the pion) at a future kaon factory.

As for the polarizabilities of the neutral pion and kaon,
our result presents rather small values which are basi-
cally dictated by the low-energy consistency condition.
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FF a(" )
(44)

Our a 0 is found to be positive as compared with several
model results with a negative sign [8, 9]. In any event, it
appears to be rather difFicult to measure the electromag-
netic polarizabilities of the neutral mesons if one accepts
the result of the existing models (including our present
one).

In our present approach the largest model dependence
may be found in modeling the scalar mesons which give a
major contribution to the polarizabilities. Then how reli-
able is our prediction here? In this respect we stress that
within the context of our model, viz. , the leading order in
the I/Nc expansion, the parameters in the scalar-meson
sector are well controlled by two equations due to the
Adler consistency condition, and by the scalar-meson de-
cay widths, and therefore may not vary much. As stated
in Sec. II, we cannot change either bs or H very much
from the present values. A mild shift in rn, may be toler-
ated. A preliminary numerical test has indicated that the
scalar-meson contribution could vary within 10% or so,
mostly towards the direction of reducing this contribu-
tion. Therefore, our principal conclusion may not change,
especially for the charged-kaon electric polarizability. A
more reasonable way of determining the scalar-meson pa-
rameters may be to use (i) the consistency condition, (ii)
the scattering lengths, and (iii) the phase shifts, all in the
xx scattering channel, together with the scalar-meson de-
cay widths. One may then constrain those parameters by
y2 minimizations. In this case, fit to the phase shifts will
principally constrain the c meson mass. Note that to
consistently carry this program out, one needs to go up
to O(1/Nc). We shall try to do this in our future study.

In order to understand the consequence of our model
somewhat better, we shall analyze the predictions of
other (chiral) models (in a somewhat different context
there is a comparison of various chiral model predictions
[18] which the interested reader is referred to), For this
purpose it should be sufficient to discuss only o. + and
e 0. Also it may be useful to introduce a physical con-
stant characterizing the size of the polarizabilities: we
denote this quantity as ~, defined as one-half the value
of what is called the (electromagnetic) form-factor con-
tribution, viz. , the finite-size effect, to the polarizability
[1,2, 4, 11]:

from the single-pion loop, and C comes from the single-
baryon loops. A typical contribution for B and C is
illustrated diagramatically in Fig. 8. Table VI should be
useful to see which of these contributions is taken into
account in each of the models discussed below as well as
its prediction.

Contribution C was included only by Volkov and Per-
vushin [10] in a nonlinear o model. The loop structure is
similar to that for the quark loop contribution for A as in

Fig. 5. They found that for charged pions this occupies
more than 90'%%uo of the total: 1.7g&ic/3 where the factor
1.7 is the effect of including all the octet baryons (accord-
ing to Ref. [7] this factor should be about 2.1). For the
neutral pion this contribution was found to be zero. It is
interesting that this result is quite similar to the contri-
bution A found in [7—9]. However, the approach of [10]
was shown to give a poor prediction of the pion electro-
magnetic radius [18). We thus think that it should not
be taken seriously. Yet the treatment of the pion loop is
adequate in this reference, so we quote it here and below.

As for the pion loop contribution B, it was considered
in a linear 0 model by, for example, L'vov [8], and in a
nonlinear 0 model by Volkov and Pervushin [10]. It was
also discussed in the context of CHPT by Donoghue and
Holstein [18],and by Holstein [3] based upon the calcula-
tion of the pp ~ mx processes [36,37]. Irrespective of the
model adopted, this contribution is finite and is found to
be negative (or zero) as long as all the participating di-
agrams are properly included. Thus, unlike in [11], no
regularization of the integration is needed.

The results of the above models are summarized in
Table VII. The prediction of the linear o' model [8] was
obtained by taking the limit m~ —+ oo, which is often
regarded as the result corresponding to the nonlinear re-
alization of chiral symmetry [23]. For the prediction of
Ref. [10],case 1 is the original one in which the coefficient
of the direct xx interaction in the effective Lagrangian is
chosen to be 1/3 (the Giirsey choice); it is 1/2 (the
Weinberg choice) in case 2 [8, 10]. Since the latter is
found to be consistent with the linear o model and also

TABLE VI. Pion electric polarizability from various mod-
els. Tree, pion loop, and baryon loop contributions are indi-
cated by A, B, and C, respectively. The unit is the same as
in Table V.

Then with the aid of the vector-dominance hypothesis
and the Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin
(I&SFR) relation as in [11], the above expression may
be rewritten as

(45)

where the appearance of a typical chiral expansion pa-
rameter 1/(4m. F )~ is to be noted.

Now we split the total contribution to the electric po-
larizability into three parts:

a(tot) = a(A) + a(B) + a(C),

where A is the tree contribution, B is the contribution

Model

Chiral quark loop
Ref. [7]

Nonlinear o model
Ref. [10]

Linear 0' model
Ref. [8]

Superconducting, type
0 model Ref. [9]

Chiral perturbation
theory Ref. [18]

QCM

ER'ect included

AB

5.8

5.0

4.3

5.1

2.8

3.6

—0.7

—0.7

—0.8

0.7
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TABLE VII. Pion loop contribution to the pion electric
polarizability from several models. The unit is K [see Eqs.
(44) and (45)].

Model

Nonlinear cr model
(Case 1) Ref. [10]

Nonlinear u model
(Case 2) Refs. [8,10]

Linear o' model
Ref. [8]

Chiral perturbation
theory Refs. [3,18,35,36]

a y(B)
—1/18

-1/3

a o(B)
—1/9

1/12

—1/12

—1/12

(z = 1 for 7ry, = 0 for vr ), (46)

with CHPT, we will disregard the former. We then find
that all three models give an identical contribution to the
neutral pion polarizability. However, for the charged pion
only the linear o model predicts a nonvanishing contri-
bution. We then recall that, as stated in Sec. I, the linear
o model gives an inadequate prediction of the coefficients
in the Q4 part of the chiral Lagrangian. So we rely on the
results from [10] (case 2) and CHPT, and conclude that
the pion loop effect vanishes for the charged pion. A cou-
ple of remarks may be adequate here in passing: (i) by
inspecting the formulas in [36,37] together with the result
of case 2, it appears that the kaon loop gives no contribu-
tion to either the charged or. neutral pion polarizabilities
(because one might interpret the discussion in [18] such
that only the combination of the pion and kaon loops
gives the vanishing contribution to the charged-pion po-
larizability), and (ii) the particular choice of gauge in [36]
is somewhat confusing for our purpose: it might lead one
to find the vanishing pion loop contribution also to the
neutral-pion polarizability, which is not correct.

As discussed in Sec. III, a naive expectation would
be that the pion loop contribution B could become as
much as 0(1/N, ) or 30% of A: the tree contribution
t, o be discussed in the following. So the fact that this loop
effect vanishes for the charged pion is quite gratifying for
those calculations which include only A [7, 9, 18] and our
present one. As for the neutral pion, the tree contribution
vanishes in the chiral limit, so the loop correction, even
being small ( —0.5 in our unit) becomes important.
From Table V (see also Ref. [9]) this is comparable to
the effect of finite (pion) mass correction to this quantity
at the tree (TBB) level. In any event the (total) neutral-
pion polarizability looks quite small in comparison with
the corresponding quantity for the charged pion.

Apart from the nonlinear 0 model of Volkov and Per-
vushin [10] where there is no such piece, the tree effect
A is the principal contribution. In the CHPT approach
this arises from the gq part of the effective Lagrangian;
the result is

4n
~-(A) =,(Ls+ Lio)~m F2

where L& and Lio are two of the twelve (renormalized)
coefficients in l:4 which are fixed by fit to several low-

energy quantities [16]. Within the same approach these
coeKcients are related to the ratio of the vector and axial-
vector form factors in the x ~ eve amplitude:

= 32m (Ls + L",u).
h~ (0)
hv 0

In fact I yo has been determined from the experimental
value of p. Then

u (A) =
&

pz=zyz
8x~rn~ F2

and

n .(A) = L+ S, — (48)

n +(A) = L+S,
10

(49)

where L and S are the quark loop and scalar exchange
contributions, respectively. In the chiral limit, the tree-
level contribution to the neutral-pion polarizability van-
ishes, so that L = S, and

9 o.
n +(A) = L=—

10 8~ ~.I. (50)

The difference between this and the CHPT prediction is
just the factor 7 [see Eq. (47)], which is around 0.5 exper-
imentally [14]. Apparently, even after applying nonzero-
pion-mass corrections, the prediction of [7—9] still stays
about a factor of 1.5—2.0 larger than that of [5, 18].

In order to understand the origin of the difference be-
tween the model predictions leading to LVR's and SVR's
(recall Sec. I), we take the exact chiral limit in the context

(z = 1 for m'y, = 0 for z ). (47)

As mentioned in Sec. I, this gives the value n, ~ 2.8,
which we have termed a SVR. An expression identical to
Eq. (47) is obtained within the current algebra + PCAC
approach [5].

In CHPT the effect of the subhadronic degrees of free-
dom (as well as the effect from those mesons outside the
pseudoscalar octet) is implicit in the coefficients L, (or in

p). Calculations exploiting the chiral quark loop model

[7], linear 0 models with an explicit coupling to quarks
[8, 9], and our QCM all have tried to obtain the tree
contribution from a more microscopic point of view. To
simplify our discussion, let us take the chiral limit where
there is no contribution from the s- and u-channel ex-
changes of vector and axial-vector mesons (recall our dis-
cussion towards the end of Sec. III). Then the contents
of the tree contribution in those models are the quark
loops (which we have termed as TBB in the preceding

section), and the t-channel scalar exchanges: the latter
may be considered as equivalent to the e exchange in the
linear o model of [8], or to the triangular loop created by
the direct pion-quark point interaction in the chiral quark
loop model [7]. The pion electric polarizability may then
be written as [7—9]
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of our QCM. Here again the surviving contributions are
TBB and the scalar exchanges. Furthermore, the scalar
mesons become degenerate [9],

m, =mj, ——m«=my,

and

nh~ t' hs1
n~o =

~

—b(0) + 2a(0)(Ap —4HBi)27A'mz & Ps)
(52)

np+ —
Az ~

b(0) + 2a(0)(Ap —4HBi)
5nhp ( 1 hs1

54A&mp ~ 10 &sl
(53)

which show a basic structure identical to that in Eqs.
(48) and (49).

Then, from the fact that the neutral-pion polarizability
vanishes, we also find the vanishing of the neutral-kaon
polarizability. Furthermore, we get expressions for the
charged-meson polarizabilities which are completely free
from the scalar-meson parameters:

nh b(0)
12A2m

m h~ng+- n~+
mg h

(54)

In the zero-mass limit for the pion and kaon, one finds

2h~—
G

N, g~~ +2AAp
(2~)~' P gpB, ' (55)

which may be obtained from the compositeness condition
[Eq. (2)], and the expression for the meson decay constant
in Table II, both of which require RP(P&~) and RPP(Ppz)
listed in Appendix B, with p„~ 0. Then, Eq. (54)
becomes

with

N, n
2 y (= ~y for P = ir),3 x 8x~mI I'p (56)

2

y= b(0)
I (57)

and their coupling strengths become identical, too. This
yields

n o =
2 (

—b(0) + 2a(0)[Ap —4HBi]
5nh t' hs&

54A2m. & Vs)
(51)

are apparently not related at the present stage. That
is, within the QCM this latter quantity is found to be
p = 0.78 [19],which is larger than the world average value
of 0.46+ 0.02 [14] (remember, however, that this average
contains a recent measurement [38] y = 0.7 + 0.5). It
has been known that this is rather a controversial quan-
tity from the point of view of model predictions (various
models have given predictions for p between zero and
one) [39&2]. Thus it is likely that the QCM treatment
of this quantity has to be improved. This is what we will
pursue in the near future.

From what we have found above within our QCM ap-
proach, the following observation emerges: when no con-
finement is imposed, the tree contribution gives a large
value of n y, as in chiral quark loop and linear o mod-
els. Once quark confinement is implemented, this value
is reduced and in the strict chiral limit it virtually agrees
with the small value from CHPT.

Now we summarize our results.
(1) For the charged pion, we find a small electric po-

larizability ( 2.8), in agreement with the CHPT re-
sult when we take the limit of the vanishing pion mass
(the chiral limit). Within our QCM we attribute this
small value to the effect of quark confinement. Once the
finite-pion-mass correction is included, together with the
SU(3)-breaking effect in the scalar-meson sector, we get

n+=3.6, P+= —3.4.

This value is still small in comparison with the existing
data.
(2) The finite-mass correction is found to be surprisingly
large for the charged-kaon electric polarizability: it takes
nor+ from 0.8 (chiral limit) to 2.3. This is due to the
strong mass dependence of the TBB (quark loop) contri-
bution.
(3) We have found small and positive values for the elec-
tric polarizability of the neutral x and K. They appear
to be about an order of magnitude smaller than their
charged-meson counterparts, due to their vanishing na-
ture in the chiral limit (with no meson loop). It is thus
difBcult for models to give a definite prediction of their
signs although many models predict them to be negative
(with or without the pion loop contribution). Experi-
mentally, it is also diKcult to determine the sign because
the Thomson contribution to the Compton amplitude,
which may be used as a reference for this purpose, is
absent.

To conclude, we urge experimentalists to measure n +
and n~y with the best precision available to unravel the
existing puzzle.

Adopting the values of these constants found in Sec. II,
we find y 0.47. So in the exact chiral limit we obtain

n + ——28 x 10 cm, n~+ ——0.8 x 10 cm,
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which is just the prediction of the SVR [5, 18].
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unlike in CHPT [Eq. (47)] and in the current algebra +
PCAC approach [5], y in Eq. (57) and 7 in the QCM

One of us (T.M.) would like to thank A. Fonseca, G.
C.-Branco, and members of CFNUL and GTAE at Lis-
bon, Portugal, for their warm hospitality. He is also
grateful to 3. Goity and G. Ecker for their instruction



1594 M. A. IVANOV AND T. MIZUTANI 45

in the rudiments of chiral perturbation theory, and to
J. Villate and T. Girard for preparation and critical
reading of the manuscript. The other (M.A.I.) would

like to thank the Physics Department at VPI L SU,
Theory Group at CEBAF, and CFNUL for their kind

hospitality. Both of us acknowledge the partial sup-

port by the United States Department of Energy under
Grant, No. DE-FG-ER40413, Portuguese JNICT Grant
No. PMCT/C/CEN/66/90, and CERN fund.

APPENDIX A: CALCULATIONAL TECHNIQUES

Let us consider the vector-vector quark loop (Fig. 1)
to demonstrate certain calculational techniques of the di-

agrams in QCM. Here, we understand that the momenta
are measured in units of A, and hence dimensionless. The
integral corresponding to this diagram is

d4k
Ilvv(p) = . do„ tr[p" S„(k)p'S„(ky p)]

(A 1)

By using the Feynman o, parametrization, one obtains
1

dt( j 2n(1 —n)(~""p' —p"p")
[v2 —k2 —n(1 —n)p~]'

0

= [g""p' —p"p"]11vv(p').

ilv"v(p) =

(A2)

VVe stress here that our confinement ansatz respects
gauge invariance at each step of the calculation. The
four-dimensional integral is evaluated by first going to the
Euclidean region k0 ~ ik4, k ~ —k&2 = —u, then ap-
plying the prescription for the confinement ansatz [Eqs.
(7)-(9)], in Sec. II. We thus find

Iivv(p ) = —2 dnn(1 —n) udu — do„2 = d 1

du
"v2 + u —n(1 —n) p2

0 0

2 —1=2 an 1 —n dub u —o. 1 —o. p2 = -Rv p2
3 (A3)

where

OQ 1

Rv(u) =f du(t(u) + —
J d (—ut(tt-) u 1 —tt (1+—

)
0 0

where

R~ &(z) —B() + — du b — (1 + u/2) O'I —u,SS 0 4 4
(84)

= 80+ — dub —u — 1 —u 1+ — . A4
2

0

APPENDIX 8: QUARK-MESON COUPLING
CONSTANTS and

R( 1(u) = d + — du u (
— ) (1+u/2)t/1 —u),

—1hp' ———Rpp(pp) t

2
(Bl)

In this appendix the effective coupling constants hH ——

3g&~/4w for various mesons appearing in Sec. II are

given. They are obtained from the compositeness con-

dition [Eq. (2)], together with the derivative of mass

operators obtained in a way similar to the example given

in the preceding appendix. Here again, pp = mp /A.

(1) Pseudoscalar mesons J = 0 +, P = (7r, I~, rl, rl'): 1
hv' —-Rv v(p2v),

3
(B7)

1

R(u'u) ( u) = 8 t ——/ u du (t (
— ) (1+u/2) t/1 —u.

0 (B6)

(3) Vector mesons JP+ = 1,V = (p, Ii". , u, P):

where

g uz 1 —u/2
Rpp(z) = Bp + — du b

4 1 —u
(B2)

1
2uz (1 —u/2+ u /4)

Rvv(u) = Ru+ — du1t (— )4 gl —u

(2) Scalar mesons J = 0++, S = (ap, Iip, fp, c):

(0)"s' = -[Rss(I s) +4 Rss(&s) —4H'R'ss(I s))s 2 ss
(4) Axial-vector mesons J = 1++, 2 = (alt I~i t fi):

—1h ' =-R»(sA) (89)
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where

1

R„~(z) = Bq y — du 5 (
—

) (1+u/2)V 1 u.
4

(B10)

sented in Sec. III. The amplitude is defined by diagrams
in Figs. 5—7.

1. TBB diagrams

APPENDIX C: QCM CALCULATION
GF THE INVARIANT COMPTON A.MPLITUDE

We give below some details of the calculation of the
invariant Compton amplitudes, the result of which is pre-

The most cumbersome calculations are required for
box diagrams. Here again, we assume for simplicity that
all the momenta are given in units of A. The structure in-
tegral corresponding to the diagram Fig. 5(a) is written
in the form

4

Ioa = &. do„ tr[y"S„(k)y"S„(k+qz)y S,(k+ qi + pi)y S„(k+qi)] + cross terms
4vr2i

2 dv ( @pl v,„„v-„„= g"'Rpp(pp) + b
~

—v
~

-Ic""——-T,""
gl —v ( 4) 4 8

dv, ( pp) 1 „„v' ( ppb'
I

—v
l

—I&" ——
I qi q~+ (q,"p,"+p", q", —2p", p2)/1 —v ( 4) 12 16 ( 2

2

+ PpT + Pl ' 'ql(P1 ' qi —qi q2) + (qi q2)' + qi q~ I

g""
64 16 2

(C1)

where Tz" is one of the two gauge-invariant Lorentz tensors found in the defining equation of the Compton amplitude
in Sec. III [Eqs. (22) and (23)], whereas

(C2)

and

L"" =qzp~pi qi+Piqipi qi —Pip~qi q2 g (Pl 'ql)

&""=—qi q2(q2P2+Plql —2plp2) —g""[Pl qi(pi qi —qi q~)+(ql qz)']

(C3)

(C4)

The function Rpp(z) is found in Appendix B.
The structure integral corresponding to diagram Fig. 5(b) is written as

4

Io))
—— 2. do„ tr[y" S„(k+pi)y S„(k)p"S„(k+q2)p S„(k+pi + qi)]+ cross terms4' i

dv ( p~p ) (v „3v -„,)
2g""Rpp(S p)+-b I

-v
I I

-~~""+—T2"v'I- & 4) E2 4 '&

8 I qi q~+
2 1( 2 q2P+ l Pl qP1P2)

2 / 2 28 r I"P „, 5V 2 -pu
8

——
l pi ' qi(pi ' qi —qi q2) + (qi q2) + qi q2 g + ppT2

2 32

+P,'
41 —v 4) 4 192 96 ) '

where I&"",1.4", N~" have already been defined above.
For neutral mesons the invariant Compton amplitude receives contributions only from these two box diagrams. The

resulting amplitude is
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MTnn ~. = e2hi C'I (2Io"."+ Igg), (C6)

where C~ is 5/18 for x, and 1/9 for I~0, respectively.
For charged mesons the Compton scattering is represented by diagrams in Fig. 5(d). Here the first three triangle

+ bubble (TB) diagrams give the contribution,

~T"B —M"",„g
—2e g" + M~B SD, (C7)

where the first term is for the scattering by a point charge [identical to the expression in Eq. (20)], whereas the third
term, which is structure dependent, we write as

MTB SD =e (C8)

In the above expression

2

V'1 —
& 4 4 4 '

V2 2

gl —v t, 4 ) 16 16 2
——L""+—qiq2+ (q2P2+ piqi 2pip2)

2 2 V2

~ piqi(piqi —qiq2)+(qiq2)'+ qiq2 l

g""+ ppT—2"
16 2 j 32

2 v3 V
+p, ~p b" (—u —

i

— L""+ N"") .
Ql —v ( 4 192 192

(C9)

The total TBB contribution to the charged-particle
Compton amplitude is then written as

MTBB+
——M"";„, 2e g""+e —hp(I&&+5/9'; 2/9Io& ). —

(C10)

With a little algebra and by recovering the correct di-

mension, we obtain the invariant Compton amplitude at
threshold from TBB.

(i) Neutral mesons

e2h

(C11)

The W(z)'s are

with

1

0

1

t II

0

(C15)

and W, (0) = ——b'(0),

(ii) Charged mesons

(C12)
W2(z) =—

TBB+ po&nt + " +SD (C13)
QZ

Ql —u 4 2

Here, as before, the first term is the point charge contri-
bution while the second is structure dependent and may
be written as

e2h
+SD A2 ~P i Wi (PP) + T2 W2 (O'P)]

(C14) with

1

de II

'tlat

Q" 1 —Qb"
i/1 —u 4 3

(C16)
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W (0) = —b(0),

1

0

1

+- b" — u 1 ——
0

(C17)
with

W,+(0) = —b(0).
54

2. The scalar mesons

(C18)

and

Wi+(0) = b'(0),
7 /

270
The contribution of t-channel scalar-meson exchanges

to the Compton amplitude is defined by the diagram in

Fig. 6(a). The invariant matrix element is written in the
form

1
Ms = e IiPIis ~sPP+sppFsPP [(pi —p2)', pi, p2]Ds[(pi —pi) ]Fs'„(—qi, q2) + cross terms. (C19)

Here the function FsPP corresponding to the decay S -+ PP is written as

FsPP(p;p&, pz) =
4 2. d~r„ tr

~

1+—(2 g+ gs —Ili) ~S„(k —pi)T S„(k)p S„(k+p2)
d4k ( H 5 04'' "

i, A

t'p' pi (C20)

wile re

FSPP(~, y ) —= FSPP(z, y, z) —4HFSPP(z, y, z).(i) (0)

(C21)
The expression for this function is rather lengthy, but
for our present purpose the following particular cases are
sufFicient:

Fspp(* 0 0)(1)

FSPP(0 ~ &) = ~0 + — a
(1) du gg

4 gl —u 4

and

(C24)

1

= A0 —— d'Q Q

(I I+ gl —u
x

(

—ln — 1 —u /,(2 1 —/1 —u

SPP(» )
(2)

(C22)

FSPP(0 z, z) = Bi+ B0+— du b
(2) uz 1 —3u/2

4 4 4
0

(C25)

Here we adopt the free propagator for the scalar field:

1

= B1 + — dt's 'Qh'

0

l 1 1++1—u
x —ln —gl —u l, (C23)

1 —gl —u

Ds(p') =,„2S

The function I"s~z defining the decay S ~ pp is writ-
ten as
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d4& H
Fg„;(ql, e) = . d~. «1+—(2 R+ !6—gl) s.(I- —ql)7"s.(k)7"~.(&+ q2)4s'i "

~
A

= A(q" qi q~ —q", q2)Fs» (C26)

where

F„,(~) = F&,",(*)+HF,",', (~), (C27)

where A is the diagonal quark charge matrix. Finally,
we obtain the contribution at threshold:

—e2h
Mpv Tpv P

2A

and

Fs (z) = — du u — (1 —u)ln(,) 1
'

& *) 1+g1-
4) 1 — 1 —u

0

(C28)

1

Fs~~(z) = — du b — u(1 —u) ln
(2) 1+gl —u

4p 1 —/1 —u'
0

(C29)

«»pF»p(0 Pp ~p)C»~F»~(0)he'll s
(C31)

3. Axial mesons

First of all, let us consider the decay A ~ Pp. This is
defined by diagrams Figs. 10(a)—10(c). The contribution
of the triangle diagram [Fig. 10(a)] may be written as

M ' (A Pp) = ieghzhp—(&Cap~)A&g&~Fgpy(P, q),

(C32)

n(0)
Fsp~(0) =

3

where cg and e& are the polarizations vectors of the axial-
vector mesons and photon, respectively. For the axial-
vector meson on the mass shell we have

Next we collect the SU(3) factors Cspp and Cs~&, pg = (p+ q), 2 2 2
P~

(C33)

Capp = tr[A (A, (A ) j], q =0, (ew pA)=(e~ q)=0.

and, more concretely,

4 cosby (e'),
—4 sin bs (fo),

2 (cos bs —~2 sin bs) (s),
—2(sin bs + +2 cosbs) (fo),

+aoK+K =
~ aoK K = —2.

The SU(3) factors are

C», =tr(A"[(A )t A~])

=t,(Aq[A", (A )t)) = ' (""')
0 (neutral).

The structure function F&py(P, q) is equal to

The factor Cp~~ is equal to
A

& (5 cos bs —~2 sin bs) (z),

Cs» ——tr[A (A~) ] = &
—o(5 sinbs+ K2 «sbs) (fo),

(a) (b) (c)

1
3 (a, ),

FIG. 10. Diagrams describing axial-meson decay A

Py.
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d4X
F~g,y(p, q) = —'

2. do„ tr[p y S„(k—p)y S„(k)y"S„(k+q)]

2 q 2 p ~ Ap(pA)»(pp) ~ p ap pARpvv(pA) ppRpvv(pp)
2 2 )

mA mp mA mp

(C34)
where

and

1

F»(z) = As+ — dua —u — gl —u
4 4

0

(C35)

(C36)

The contribution of the diagram in Fig. 10(b) is

M~ l(A ~ P7) = iegh—ghp&c~c~[ (p+—q)"Dz (p) p"D~—(p)+ g" (p+q)"D~ (p)+ p DA (p)] AP(p)

(C37)

where the structure integral Fzpp(p) is equal to

FAP(p) =—,. «. «[7 7 S.(k)7 S.(k+ p)] = p F» i

p 1 d k p s s p (p
A 4m2i gA') '

and the free axial propagator is

D~p( )= g +p p irnA
A ~ m2 p2

The contribution of the diagram in Fig. 10(c) is written as

M~'l(A ~ Py) = 2iegh~h—pAc&e" [(p+ q)~p"]
PP PA

which vanishes when the axial-vector meson is on its mass shell.
Finally, we get the gauge-invariant form for the invariant matrix element

M(A ~ Py) = ie
2 c„e"(g —"pq —q p"),

. G~p~

A

where

G ih h A s ~ 1 2 2[FAp(pg) FAp(pp)] —[pgRpvv(pg) ppRpv v(pp)] ~
App V A p pA 2 Ap p'p + 2 2

(C38)

(C39)

(C40)

(C41)

1
V h&hJ ~pA g F»(pp) + F»~(pA& pp) (C42)

Here function Fz»(z, y) is defined as glected because I/pz~ 0.1. In this approximation we
have

~R~p~(~) —y R~p~ (y)F~» &, y =
Z —g

where

(C43)
GAp~ = ghghpApgF»~(p~) pp)

= ghAhJ Ap„'R», (pA) (C45)
1

1 z
R»~(~) =—

4

(I+ gl —u
x 2+1 —u —ln

~(I-&1-u

(C44)

The first term in the expression for GAP& can be ne-

2

I'(ai ~ sy) =—
24 m. ,

(C46)

In the above expression, we have neglected the
pseudoscalar-meson mass relative to that for the axial-
vector meson.

We next calculate the radiative decay width for a~ ~
~y. This is equal to
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The numerical result is shown in Table. III.
Now, let us consider the contribution of intermediate

axial vector mesons to the polarizabilities of pseudoscalar
mesons. As mentioned above, we will neglect the terms
proportional to I/pAg which come mainly from the dia-
grams containing two or more axial vector meson propa-
gators. In this approximation only the diagrams of Figs.
7(a)—7(d) are important.

The invariant matrix element corresponding to these
diagrams is written in the form

MA" ——e hphA[F„pv( —p&, —q&) —g "FAp(p', ))

xD (pi+ qi)

x [FA~pv (Pg, qg) —gp" FA p(Pg)] + cross terms.

(C47)

With the symmetry property of this function,

Fpvv(q& q&) = Fpvv(q2 qi)

it may then be written as

Fpvv = ('/~)~""'vp~tr~~~ (
(C52)

The function I"Pvv for general arguments takes a rather
complicated form, but for our purpose the following par-
ticular cases are sufhcient:

Fpvv(&, 0, 0) = Rpvv(z)
1

4 4 1 — 1 —v

This can be calculated from what we have obtained
above. The Anal result for the axial vector meson contri-
bution to the threshold Compton amplitude is

-„„ehP 2 2 2 2 t hA hAI
A & g lJP Ap~(ljp&PP) ~ 2 2 + 2A

(C48)

4. Vector mesons

The contribution of vector mesons to the Compton am-
plitude is shown in Fig. 6(b). The invariant matrix ele-
ment for the s-channel exchange is written in the form

&Rpvv (&) y+pv v(y)
PVV(+& & ) =

S —g

1

prvv(z, z, o) = f a (
—v —

)
0

The free propagator of vector field is

p( )
g +p p lmv

V —
m2 p2

The SU(3) factor Cvp~ is equal to

(C54)

(C55)

(C56)

Mv~ = —e hphv(4Cvp )Fi~vv

x( —qt; pi + qi)DV (S i + qt)

x Fpv v ( —(p2 + qg); q2) + cross terms.
(C49)

Here, the function F""(qt,qg) corresponding to the decay
P~VVis

p, p d k
Fpvv(qt qz) = . do„tr [y S„(k —q, )4x2i

x y"S„(k)7"S„(k+ q2)].

(C50)

Cvpp —tr[AQ(A (A )t)]

In particular, we obtain

1C~~=g 1 ~ 4
C4Jsp —1) Cf(~ +Q+p —

g )
' f(

otiose

—
g

~

2

Mv" ——(T,""+ T2"")
4Ag pPCvpyFPVV(@Pl'P 0)'

hv hv
2 2+2

k&v ljp Pv
(C57)

Performing the convolution of antisymmetric tensors
and taking into account the cross diagram, we obtain the
final result
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