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The decay q~~+m y is analyzed using two different approaches that incorporate vector mesons in

the chiral Lagrangian, one which treats vector mesons as massive Yang-Mills bosons and one which

treats them as dynamical gauge bosons of a hidden symmetry. From these approaches a common way of
adding vector mesons to that decay emerges. A rate and photon spectrum are generated which compare
reasonably to the experimental data. The procedure is then adapted into a simple pole model and used

to calculate the more complicated decay EI ~m ~ y. Notwithstanding some uncertainties in the mod-

el, a rate that matches the experimental one is obtained with reasonable values of SU(3)-breaking param-
eters.

PACS number(s): 13.40.Hq, 11.40.Fy, 12.40.Vv

I. INTRODUCTION

In recent years there has been much work on effective
chiral Lagrangians that include the Wess-Zumino non-
Abelian anomaly. In particular, different models have at-
tempted to incorporate vector rnesons in an efFort to pro-
vide a more detailed description of "intrinsic parity" odd
processes, such as m. —+yy and co —+3m. Among the im-
portant questions has been the extent to which vector-
meson dominance should be assumed for the photon cou-
pling to hadrons. These efForts have been part of the
larger endeavor to describe low-energy hadron physics in
terms of effective chiral Lagrangians. A picture has
emerged whereby low-energy QCD can be adequately de-
scribed in terms of mesonic degrees of freedom instead of
quarks and gluons when one incorporates correctly the
underlying symmetries and anomalies of QCD.

There have been two fundamental approaches in devel-
oping these models, one based on treating the spin-one
particles as massive Yang-Mills bosons and the other
based on hidden symmetries. In the former approach, as
developed by Schechter and collaborators [1—3], the
chiral U(3)L XU(3)z symmetry is gauged by replacing the
derivatives in the spin-zero Lagrangian according to the
prescription

a„U a„U—ig A„,U+ig UA„, ,

where g is a gaugelike coupling constant. Early efforts [1]
attempted to determine the parameters in the anomalous
action by introducing the vector mesons as external
gauge fields and gauging the strong Lagrangian. This
procedure led to good predictions for the processes
co~3~ and co~+ y. However, the model did not con-
serve chiral symmetry without the introduction of addi-
tional terms [2]. Subsequent refinements led to a version
which correctly satisfies the anomaly low-energy con-
straints, and the latest effort [3] has been the investigation
of the most general wpco Lagrangian of that type, which
includes three parity- and chiral-invariant terms for the
anomalous action. Combinations of the unknown con-

stants were determined from the decays to~3m. , P~3n, .
and /~pe Alth.ough there have been other develop-
ments along similar lines [4], here we will deal specifically
with the model described in Ref. [3].

In the second approach, the vector mesons are
identified as the dynamical gauge bosons of a hidden local
symmetry in the nonlinear chiral Lagrangian. Bando
et al. [5] first suggested the p meson, and later Meissner
and co-workers [6,7] expanded H~„,&

to include the to
meson. A form of the Wess-Zumino action in the pres-
ence of vector mesons was developed by Fujiwara et al.
[8]. Here there are various ways in which gauge invari-
ants can be included in the Lagrangian. A particular
choice was made in Ref. [8] which yields the proper rate
for co~3m, and other processes such as m. ~2y and
co~m y are then correctly predicted.

The values of the parameters in these models deter-
mine the relative importance of the contact and pole
terms, and also the extent to which vector-meson domi-
nance is present in radiative processes. The symmetry
principles limit the number of parameters quite drastical-
ly in both approaches. Moreover, aside from the numeri-
cal values of the parameters, the equivalence of the gen-
eral structures of both schemes has been demonstrated
[3,9]; there really seems to be little arbitrariness in the in-
troduction of vector mesons in the effective theory.
Indeed, in our case we find that radiative processes of the
type g~mwy can be described in a unique way by either
method: the necessary requirements turn out to be that
the anomaly constraint be met and that the combination
of terms be such that the experimental rate for co~3vr be
matched, and both requirements are met in either ap-
proach.

In this paper we first provide a brief outline of the
models just mentioned. We then analyze the decay
g~m+~ y as a test of these models. This decay is par-
ticularly suited for that purpose because it does not in-
volve the complications of weak interactions and the
analysis is clean and straightforward, yet is not properly
described by earlier vector-meson-dominance models
[10,11]. We then calculate the rate for the decay
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ECL ~m+m. y. This process had been previously calcu-
lated [12] using the earliest version of the massive Yang-
Mills model [1] but, as already mentioned, that version
did not properly satisfy the anomaly constraints and
therefore is not reliable for this decay. Indeed, the

y amplitude, which is itself an integral part of
the Kl ~a+~ y calculation, was not adequately de-
scribed [13]. In contrast, we find that both present ap-
proaches correctly predict the rate and spectrum for
g~m+m y and also yield a result which matches the ex-
perimental rate for EL —+~+m y with reasonable values
of SU(3)-breaking parameters.

II. CHIRAL LAGRANGIANS

For completeness we give a brief outline of the models
involved, emphasizing the results needed for our calcula-
tions. For a full description one may refer to the original
papers or the excellent review by Meissner [9].

A. Massive Yang-Mills

Following Ref. [3], the scalar nonet is denoted by P
and the linearly transforming matrix is

U =exp 2l

F (2)

where F =132 MeV. The vector-meson nonet p„ is re-
lated to the gauge fields by

A„'=gpss'+ —'ga„4',

A„' =g'pg+ —'g'a„g,

where g= U' . The action is written down as

I =f (X,+X,)d'x+ I, .

(3)

+ fTr ic, (Ar. a )

+c2(d A~a Az —AL a Al. + Al a Al. a)

l+c —3iA a+ —
AL, a ALa

3 L
(5)

X, is a gauge-invariant kinetic term for the vectors, and

X2 is a generalized mass term which breaks the strong
gauge invariance. The third term I 3 contains terms pro-
portional to the antisymmetric symbol e„&z, and it is pri-
marily this one that concerns us here. One may write a
general action which contains the Wess-Zumino (WZ)
term plus all the possible chiral-invariant combinations.
If one eliminates the axial-vector meson [2,3,9] and con-
siders only the chiral-invariant terms which conserve C
and P, what is left is

I'3=1 wz( U}

where I ~z is the Wess-Zumino term, and
a=(B„U)U 'dx„. The constants c&,c2,c3 are deter-
mined from the strong decays. This can be done by ex-
tracting from Eq. (5) the terms that describe the vector-
pseudoscalar and vector-pseudoscalar couplings. Using
Eqs. (2) and (3), we can expand I 3 as follows:

I =6 pf d x[ ig yTr(8+ 8+7p)

—h Tr(p„B„QB ((}BP+ )],
where

4lC2
gvvy= F

—4i

F„
2c

2C2 C3

Electromagnetic interactions are included as follows: un-
der an infinitesimal local U(3)XU(3) transformation, a
nonstrong gauge field BL z with coupling constant k
changes by

~Br,a =
[.Bl.,x E—l., z ] dE—I.,

—
~

Tr(a&a2a&az) =Tr(P,P2P,P2),

Tr(a, a2 —a&a, ) =Tr(P~&P2 —Pg~, ),
Tr{F(AL )[a&,az] }

=Tr{F(As )[Pi Pz]]

Tr{F(BL)[a„a2]+F(B~}[P„Pz]],

(9)

where

F(AL )=dAI igA~, —

a& =a —ig AL +ikUB+ U

a2=a+ I'g AL —ikBI

p]2=U a, 2U .

(10)

To see how these terms in Eq. (9) participate in the ac-
tion, set B to zero to find the linearly independent corn-
bination of the c, , c2, c3 terms in Eq. (5) that they corre-
spond to. The fourth term vanishes. The proper action
is then found to be

To include electromagnetic interactions we let
Br a~egA„, where A„ is the photon field and

Q =diag( —'„——,', —
—,'). I wz(U) is gauged and becomes

I wz(U, BI,Ba ) [3]. Then the other terms in I 3 are re-
quired to be gauge invariant. This is done by construct-
ing gauge-invariant terms out of the field-strength tensor
and covariant derivatives of the field U. Four terms con-
serve P and C and are locally gauge invariant. They are

C)
I wz(U, BL,Bz)+fTr — (a&a2 —a&a&} —. {F(AL}[a&,az]]

+
2

+
3 Tr(a&a2a, az)+d& [F(BI)[a„az]+F(Bz)[p, ,p~]],

g g g3
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where d, is a new constant.
The anomaly constraint requires that, in the low-

momentum limit, all the terms in Eq. (9) vanish except
for the contribution coming from I wz( U, Bi,Bz ). The
values of c„c2,c3 are determined from strong-interaction
experiments. In particular, the authors of Ref. [3] used
the processes co +3m—r, P~3n. , and /~pm. In our case, in
order to calculate the rate for g~m+m y, the individual
values of these parameters are not needed but certain
conditions must be met, as will be elaborated later. In-
cidentally, while the low-energy expression for the arnpli-
tude is totally given by I (U, BL,B„)[14], the correc-
tions from the other parts of Eq. (11) are substantial at
the momentum values involved in g~m+~ y; in fact,
I wz( U, BI,Ba ) alone [13] does not come close to match-
ing the experimental rate.

B. Hidden symmetry

We follow the work of Fujiwara et al. [8], whereby the
scalar and pseudoscalar nonets are represented by 3 X 3

matrix fields and the vector nonet by V„. They transform

accordingly under [U(3}L X U(3}a ] &,b, &
X [U(3}v]&„,&. U

is written in terms of the Nambu-Goldstone pion fields as
U= ex p(2im /f ), where f =93 MeV is the pion decay

constant. The matrix variables gz and gR are defined

such that U =gz~ ga. The full group is gauged with exter-

nal fields AL„and AR„ including, in particular, the elec-

tromagnetic field B, in which case alone we would have
p, P

AL&= A+„=eB&Q, with Q the quark charge matrix. By
expanding the Lagrangian and picking off individual

terms, it is possible to relate the gauge coupling g and f„
to m v, the vector-photon coupling gv, and gv~~. In par-
ticular,

and

gv 1

mv g2

(12}

g v~~
2mv

1

2fm

I =I wz+ pc;X;, (14)

where I ~z is the original Wess-Zumino term and the X;
are gauge-covariant terms which are homogeneous solu-
tions of the original Wess-Zumino action. There are four
terms which can be made C and P invariant, and they are

To deal with the anomaly including vector mesons, one
defines the building blocks

L R =d(L RgL R, AL R =fL R AL RgL R

+L,R +L,R ~g~+~ AL, R

Fv dV igV, FI. z=k—i, NFL„akL, R

where a=(B„U)U 'dx". Then the general form for the
anomalous action is

X& =Tr(a L, aR —a zaL ),
X2=Tr(aL a„al a„),
J4=i Tr[Fv(ar. ag

/6=i Tr(PL aL a~ —P~a~ar ) .

(15)

As shown in Ref. [3], when the last term is made C in-
variant these four terms correspond exactly to those
given in Eq. (9). Thus, all the X; vanish in the low-

energy limit, and I converges to the old I ~z as required.
Different values of c; will then determine the extent of
vector-meson dominance and the balance between con-
tact terms and those which contain intermediate vector
mesons. The constants c; can be fitted to the data, and
the authors in Ref. [8] chose c, —cz= —1, c„=c6=1.
One may see the effect of this choice by expanding the
terms in Eq. (4) and picking off the contributions to a
particular coupling. Then, in the notation of Ref. [8],
this particular choice of constants yields

I = [3(VV@ )—2(ym )+ ] . (16)

For comparison, I wz alone would generate terms of the
form

(17)

while a different choice of constants that would corre-
spond to "complete vector dominance" would yield

[3(VVn ) —2( Vm )+ ] . (18)

The particular combination in Eq. (16) chosen by these
authors makes ~ ~2y proceed entirely via ~ ~p+co
followed by p~y, co—+y, and also makes the contact
term in the decay co—+3m vanish. With this choice they
calculated I'(co~3m. ) =9.1 MeV compared to the experi-
mental value 8.9+0.3 MeV. On the other hand, Eq. (18)
leads to the "bad" prediction I'(co~3m. ) =6. 1 MeV. By
contrast, Jain et al. [3] determined the combination of
terms in Eq. (5) by doing a simultaneous fit of co~3rr,
/~3m. , and /~pm. That way they determined their c2
and the linear combination of their c&,c2, c3 called h. A
vanishing h would correspond to no contact term in
co~3m. Instead, these authors found

gvvy=gvvP~=+1 9~ h =hF =+0 4 . (19)

In other words, they used a broader set of inputs and
found a combination of terms that satisfies the co—+3m
rate which is somewhat different from the combination
used by Fujiwara et al. [8]. The rate for m ~2y is
guaranteed in any case by the anomaly constraint when
the intermediate vector mass is zero.

III. THE DECAY g~m+m y

The two models described above have been found to be
fundamentally equivalent [3,9]. Furthermore, the
difference in the linear combinations used in the two ap-
proaches does not affect the rate for g~~+m. y. The
reason for this can be seen by looking at the three contri-
butions to that process, shown in Fig. 1. Figures 1(b) and
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1(c) are intimately related to the decay r0~3n-, by erasing
the photon lines one gets essentially the two graphs that
can contribute to that process (with external co, m. instead
of p, g). Therefore, any combination of the two that will
match the co~3~ rate will give the same result for

y. The balance required to satisfy the anomaly
at zero momentum is supplied by the graph in Fig. 1(a).
The correct contributions are ensured by the relations
given in Eq. (12). The particular combination in Eq. (16)
makes the contribution from Fig. 1(b) vanish.

To calculate g~m. +~ y, we use the mixing prescrip-
tion

C
U

Vl
40

lg
OJ

E c

2

I

50 100 150 200

2] 3 mp

m —pP P

1 2

&3fs
cosO—

' 1/2
1

sin8
0

lg & =cose[vg'& —sine[rl'&,

fey'& =sine(rl &+cose[rl'&,

with 0= —20.6'. The amplitude is then given by

A (rl~n+n y)= e"" ~p„+p„k e&
ie

(20)
Photon Encl qg (MeY)

FIG. 2. Prediction for g —+m. +m. y compared to the experi-
mental spectrum of Gromley et al. [16].

source of uncertainty in SU(3) breaking by using the
physical values fs=1.25f and f0=1.04f, taken from
Donoghue et al. [15]. The contact term interferes
significantly with that generated by the pole diagrams,
and thus the resulting rate is quite different from those of
earlier attempts [10,11] to use simple vector-meson domi-
nance to describe this decay. A numerical integration
over phase space yields the decay width

(21) Prl~~+my) =62 .eV (22)

where e& is the photon polarization. We parametrize a compared to the experimental result [16] I (expt) =6426
eV. In stressing the effect of the propagator, the authors
of Ref. [16] demonstrated that the rate obtained with the
simplest gauge-invariant amplitude (without the p propa-
gator) does not match the experimental photon spectrum.
Figure 2 shows our result (with the detector efficiency
folded in) compared to the experimental spectrum of
Gromley et al. [16].

IV. THE DECAY KL, ~m'+m y

The rate of CP-violating inner bremsstrahlung was cal-
culated in Ref. [12] in a straightforward fashion. These
authors studied the direct emission term as well, using

K, K

[b)

K K g'

(c) (c)

FIG. 1. Graphs for g~~+m y. FIG. 3. Graphs for EL ~m. +m y direction emission.
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the model of Kaymakcalan et al. [1], with the hope of
finding a substantial CP-violating contribution which

might afford an opportunity to study direct CP violation.
However, for reasons mentioned above, that approach
was unsuitable [13]. We now calculate the direct emis-

sion term using the models described here. The relevant
diagrams corresponding to the scheme in Eq. (16) are
shown in Fig. 3. The graphs in Fig. 3(d) were not includ-

ed in the earlier analysis [12], but they are important in

ensuring consistency with the predictions of the anomaly
at low energies, and they affect the rate and spectrum
significantly. We assume that the vertices Ez ~~,
Ez —+g, EI —+g' can be related by nonet symmetry. Fol-
lowing Ref. [15], we describe SU(3) breaking and the in-

clusion of the singlet via the parameters j and p. Then
we have

5.

(qs L. E, & =v'1/3(1+ g),

& q'/L/E, ) = —2v'2/3p .

(23)

1.0 0.& 0.8 0.7

FIG. 4. Branching ratio 8 (KL ~~ n y) for direct emission

as a function of the singlet parameter p. The dotted lines

represent the experimental result [17].

A(EL~n+~ y)=-
mx' —m' 8' f'

X e"" ~p „+p„k e&( A „+A „+A„)~

1 1

m2 —(p++p )~ m —(p++k)

1

m —(p +k)

A = 1— 3m'
m —(p++p )

1+/ 2cos8+2
3 3

m —mK m'

—mK
1/2

p sin8

This approach, although not uncommon, may introduce
some additional uncertainty in our treatment of g'. The
amplitude generated by the graphs in Fig. 3 then becomes

The parameter g was calculated [15] at one loop in chiral
perturbation theory, obtaining /=0. 17. p cannot be
similarly calculated, but the authors of Ref. [15] found
that the rate for EL ~yy is consistent with a value for p
close to but noticeably smaller than 1. In Fig. 4 we show
the branching ratio 8(EI ~m. +m y) for /=0. 17 for
different values of p. The latest experimental result [17]
8 (expt) (2.98&0.08) X 10 can be easily matched with
a value p=0. 83. One should note that for EL ~m+m y,
as was the case [15] for EL ~yy, the rate is sensitive to
small changes in these parameters. It should also be
pointed out that the calculation only includes weak tran-
sitions on the external kaon leg, as shown in Fig. 3, and
does not include any direct weak amplitudes. Here, as in
previous similar calculations of kaon decays, we are con-
strained by our incomplete understanding of weak in-
teractions. There is evidence, for example [18] for the
case EL ~m.yy, that direct amplitudes may interfere
significantly with external weak transition amplitudes.

f. 2X cos8-
v3f, 3

1/2 f
sin8

0
V. CONCLUSION

3' NlK Nl

mz —(p++p ) mx —m „.
' 1/21+( . 2X — sinO —2 — p cos0v'3 3

A ~
= 1—

rl'

f. . 2 f.X sin8+ — cosOv'3f,

To be consistent with the choice of parameters [15], we
use (m ~L~EI ) = —0.035 MeV . The branching ratio is
obtained by a numerical integration over phase space.

Two recent chiral models that incorporate vector
mesons in the Wess-Zumino anomaly have been reviewed
with the aim of analyzing the decay g~m. +m y. g de-
cays are, in principle, easier to analyze in chiral theories
because weak interactions are not present. We found
that both types of approaches, one based on massive
Yang-Mills bosons and one based on the hidden local
symmetry of the nonlinear chiral Lagrangian, generate
the same amplitude for this kind of decay and lead to a
reasonable comparison with the experimental rate and
photon spectrum.

We then similarly analyzed the decay EL~~+a y.
The amplitude was obtained by assuming that the transi-
tion is mediated by EL ~m, g, g, with these particles de-
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caying into the 6nal state as in g~m. ~ y. Notwith-
standing the uncertainties inherent in this approach, we
found that we can obtain a rate which matches the exper-
imental one with reasonable values of SU(3)-breaking pa-
rameters, consistent with those used [15] for the analysis
of Ei ~yy.
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