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Note on discrete gauge anomalies
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We consider the problem of gauging discrete symmetries. All valid constraints on such symmetries
can be understood in the low-energy theory in terms of instantons. We note that string perturbation
theory often exhibits global discrete symmetries, which are broken nonperturbatively.
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I. INTRODUCTION

Global discrete symmetries have been considered in
particle physics in many contexts. While no theoretical
argument convincingly rules out the existence of such
symmetries, like all global symmetries they are viewed
with a certain skepticism. Apart from the question of
how such symmetries might arise, it is not at all clear
that symmetries of this type would survive gravitational
efFects such as wormholes [1]. Thus, as for continuous
symmetries, it is natural to consider the gauging of global
discrete symmetries. Discrete gauge symmetries were in-
troduced into physics by Wegner in the context of lattice
theories [2]. They appear quite frequently in
compactifications of string theory, where they are often
re1ics of higher-dimensional general coordinate invari-
ance or spontaneously broken gauge symmetries [3].
Discrete world-sheet gauge symmetries play a role in the
construction of orbifolds. In this context it is particular-
ly clear that a discrete gauge symmetry coincides with
the ancient mathematical procedure of constructing new
spaces by modding out a manifold by the action of a
discrete group. Krauss and Wilczek [4] pioneered the
study of discrete gauge symmetries in four-dimensional
physics. They showed that such symmetries would give
hair to black holes and would be immune to violation by
quantum-gravitational effects such as wormholes.

More recently Ibanez and Ross [5] have derived con-
straints on low-energy theories by requiring that all
discrete symmetries be gauged. These constraints arise
because of the possibility that the discrete symmetries
may be anomalous. Their argument involved embedding
the low-energy discrete symmetry in a continuous group
which is spontaneously broken at some high-energy scale.
The anomaly constraints on this continuous symmetry,
combined with the constraints of discrete charges of fer-
mions which gain mass upon spontaneous symmetry
breakdown, give the Ibanez-Ross (IR) constraints. IR
found that, applied to low-energy supersymmetric mod-
els, these constraints are quite restrictive.

Somewhat later, Preskill, Trivech, Wilczek, and Wise

[6] (PTWW} pointed out that discrete gauge symmetries
are constrained by the requirement that the 't Hooft in-
teraction induced by instantons of any continuous gauge
symmetry in the theory be invariant under the discrete
symmetry transformation. '

The question immediately arises whether the Ibanez-
Ross constraints are related to those of PTWW. The IR
constraints are stronger, but they were derived by postu-
lating an embedding in a particular high-energy theory.
If the constraints depend on the method of embedding,
they are not useful constraints on a low-energy effective
theory. If not, one would expect to be able to derive
them without any reference to the high-energy embed-

ding theory. Since the only low-energy constraints
presently known are those which follow from requiring
that instantons of the low-energy group not break the
symmetry, the IR constraints might suggest some new

low-energy phenomena. In the present paper we will

study this question. We find that those Ibanez-Ross con-
straints that are nonlinear in the discrete charges can be
violated in many embedding theories. Therefore, they
are not required for consistency of the low-energy theory.
Failure of these constraints at low energy implies only
that a subgroup of the full unbroken discrete gauge sym-

metry of the model leaves all the low-energy fields invari-
ant. Correspondingly, it predicts constraints on the spec-
trum of certain massive "fractionally charged" states.
The linear Ibanez-Ross constraints are not affected by
this ambiguity. They follow simply from the PTWW cri-
terion that instantons of the low-energy theory not
violate the symmetry. They are thus required for con-
sistency of the low-energy discrete gauge theory.

'The possibility that discrete symmetries can be broken by in-

stantons has been appreciated for some time; it was mentioned

to one of the present authors by E. Witten (private cornmunica-

tion). Anomalies in discrete symmetries have also been dis-

cussed by Weinberg and others in the framework of technicolor
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II. FRACTIONAL CHARGES
AND NONLINEAR DISCRETE ANOMALIES

The IR derivation of the cubic discrete anomaly con-
straints is easy to recapitulate. Suppose for simplicity
that we have a Z& discrete symmetry in a low-energy
theory. %e imagine that the theory arose from the spon-
taneous breakdown of a U(1) gauge symmetry by a Higgs
field of charge N. Assume that the ratio of any two U(1)
charges in the theory is rational. Then there is a charge q
(not necessarily carried by one of the fields in the theory)
such that every charge is an integer multiple of q. Nor-
malize the U(1) generator so that q = l. If we arrange the
spin- —, fermions in the theory into a collection of left-

handed doublets, then the anomaly cancellation condi-
tion may be written

r

g qL
= —g q + g q,'+ g q,

' (2.1)

2q, =0mod%,

q;+q; =OmodN .

From this it follows that

Ng qj =rnN+n
8

(2.2)

(2.3)

(2.4)

where m and n are integers. There is nothing incorrect
about this equation or its derivation. However, it does
not refer solely to information about the low-energy
theory. The integer normalization of charges may impli-
citly imply things about the high-energy theory in which
the light particles are embedded. In particular, suppose
that in the above normalization all of the light particles
have charges that are multiples of an integer L which
divides N. Then the e+ectiUe symmetry group of the
low-energy theory is Zz&z. The anomaly constraint is
nonlinear in the charges and the cubic anomaly con-
straint for Zz&L is not satisfied. Similar remarks apply to
bilinear constraints involving two Zz charges and a low-
energy U(1) generator.

On the left-hand side of this equation we sum over the
U(1) charges of all the states in the theory which are left
massless after spontaneous symmetry breakdown. The
heavy states on the right-hand side are divided into those
which get Majorana masses q, and those which pair up
with another left-handed field to make a Dirac mass
term. Since the mass terms must be made gauge invari-
ant by multiplying them by a single-valued function of
the Higgs field, the charges of the heavy fields satisfy

Models in which the effective symmetry group of the
full theory is larger than that of the low-energy theory
are rather common. In string theory, models constructed
by "modding out" a conformal field theory by the action
of a discrete symmetry have sectors twisted under the ac-
tion of the discrete group. These sectors need not con-
tain any light particles (as is the case, for example, when
one mods out a Calabi- Yau space by the action of a freely
acting group). The symmetry acting in this sector can be
larger than that of the original conformal field theory.
For example, if the original conformal theory had a
Z~XZM symmetry, and one mods out by the action of
the ZN, the twisted sectors may exhibit a Zz„~ symme-

try.
The nonlinear IR constraints are not totally devoid of

interest. If we believe that a given low-energy discrete
symmetry must be gauged, then their failure implies the
existence of new fractionally charged states and an en-
larged symmetry group at high energy. However, we
have not found a way to rewrite the constraint so that it
throws much light on the nature of these states. In gen-
eral, there will be many ways to satisfy the constraint by
adding different high-energy sectors to the theory. For
example, we can always make a ZN symmetry consistent
by embedding it in a Z 2 theory in which all the low-

energy fields carry a Z 2 charge which is equal to
0 modN.

III. INSTANTONS AND DISCRETE
GAUGE SYMMETRIES

The linear IR constraints do not suffer from the
difBculty that we encountered in the previous section.
The rescaled constraints of the ZN theory are precisely
those appropriate to the low-energy Zz&L theory. It is
easy to see that the linear constraint involving low-energy
non-Abelian gauge groups is almost identical with that of
PTWW, namely, that the 't Hooft effective Lagrangian
[8) is invariant under the discrete group. It is perhaps
worth stressing that if this condition is not satisfied, not
only is the symmetry broken in the one-instanton sector,
but gauging the symmetry would give an inconsistent
theory. This follows from 't Hooft's argument [8] that
the effect of a dilute instanton-anti-instanton gas on
low-momentum fermion Green's functions in any topo-
logical sector can be summarized by insertion of this
effective Lagrangian.

The PT%'% constraint is stronger by a factor of 2 than
that of IR, but we can extract this extra factor from the
IR method as well. Indeed, the source of the extra factor
of —,

' in the IR equation is heavy Majorana fermions. All

We use terminology appropriate to an Abelian discrete group.
As we will see later, the correct constraints can be stated in a
way which does not depend on the nature of the group.

In order to demonstrate this correspondence between PTWW
and IR we have had to correct a factor of 2 in one of the linear
IR equations, which makes the constraint somewhat stronger.

4As remarked by Ibanez and Ross, these constraints are ren-

dered uninteresting anyway by the ambiguity in normalization
of U(l) charges.

5Here we assume that there is some scale at which we can con-
sider the discrete symmetry to be embedded in a four-
dimensional continuous gauge group. Since we have shown that
the nonlinear constraints depend on the nature of the high-
energy theory, it is not clear that their implications are the same
when the symmetry comes from geometrical considerations, as
in Kaluza-Klein theories.
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such fields must transform as real representations of the
low-energy non-Abelian gauge group. The Dynkin index
of any such representation is an even integer (in the nor-
malization in which the Dynkin index counts the number
of fermion zero modes in an instanton with topological
charge 1), and this gives an extra factor of 2 on the right-
hand side of the equation that precisely cancels the —,

'

coming from the discrete gauge charge of a Majorana
field. Thus, the corrected IR condition coincides exactly
with the low-energy PTWW condition and is valid in-
dependently of the manner in which the theory is
modified at high energy.

This derivation of the discrete anomaly constraints
makes it clear that they probe only nonperturbative
gauge dynamics, a fact which is obscured by the IR
derivation. Indeed, from the low-energy point of view,
any discrete global symmetry can be gauged in perturba-
tion theory. It is the dilute instanton gas which violates
anomalous discrete symmetries in weakly coupled
theories. The PTWW derivation also shows us that we
should only expect anomalies in discrete Abelian groups
that act by the same phase on all fermions in the same
representation of the low-energy non-Abelian gauge
group. Any other transformation can be written as such
a "flavor blind" phase times a transformation which
leaves the 't Hooft interactions invariant.

Similar considerations apply to the linear gravitational
anomaly of discrete symmetries. The linear IR constraint
on discrete-gravitational anomalies can be derived by not-
ing that the minimal gravitational instanton which is a
spin manifold (so that fermion fields are well defined) has
two fermion zero modes per Weyl field. There is one
weak point in this argument for the discrete-gravitational
anomaly. As for gauge instantons, the PTWW argument
demonstrates the existence of a problem in a particular
topological sector. In the gauge case we were able to pro-
mote this into an argument of inconsistency for the full
theory by considering a dilute gas. We do not know if a
similar dilute-gas argument works in the gravitational
case [9]. The mathematical classification of four-
dimensional gravitational instantons, which might satisfy
cluster decomposition, has not yet been carried out.
Even if we were to find such instantons, it is not com-
pletely clear that Euclidean considerations make sense in
quantum gravity, where the action is unbounded from
below. On the other hand, we have examined many
field-theoretic and string-theoretic models with gauged
discrete symmetries and have not been able to find any
which violate this condition. We have not been able to
find consistent high-energy embeddings for low-energy
theories which violate the linear gravitational IR con-
straint, as we were able to do for the nonlinear con-
straints. Thus, we believe that it is probably correct as it
stands.

If we accept this argument, our considerations make it
easy to generalize the linear IR conditions to discrete R
symmetries in supergravity. Such symmetries arise, for
example, in Kaluza-Klein theories and string theories,
where a surviving discrete subgroup of the higher-
dimensional Lorentz symmetry will in general transform
spinors nontrivally. To determine the linear condition,

we need only count the number of gravitino zero modes
in the background instanton field.

Gauge instantons have no gravitino zero modes, while
a minimal gravitational instanton with signature 16 has
precisely 2. Thus, the discrete non-Abelian gauge anom-
aly condition will remain the same for R symmetries.
The anomaly constraint for the gravitational anomaly of
discrete R symmetries will be modified to

2 g q;+2q3&x =0modN, (3.1)

where the sum is over all of the fermionic fields belonging
to chiral or gauge multiplets of supersymmetry, and q3/2
is the discrete charge of the gravitino. We emphasize
that from our point of view the latter equation depends
on an assumption about the spectrum of zero modes in
allowed gravitational instanton backgrounds. Since we
do not have a classification of clustering instantons in
four-dimensional supergravity, this analysis must be re-
garded as provisional. The true gravitational anomaly
constraint will be that the 't Hooft effective Lagrangian
for quantum-gravitational instantons be invariant under
the discrete symmetry that one is proposing to gauge.

IV. DISCRETE SYMMETRIES IN STRING THEORY

We have mentioned string theory several times to illus-
trate the issues discussed in this paper. String theory
provides numerous examples of gauged discrete sym-
metries. One might try to turn the reasoning amund and
ask whether discrete gauge symmetries in string theory
are ever anomalous. Our interest here is in string models
which are free of perturbative anomalies, i.e., modular in-
variant. We know of no general argument that ensures
that discrete gauge symmetries in such models are
anomaly-free. On the other hand, we have explained
above that such an anomaly would signal an inconsisten-
cy. Thus, it is possible that there is an additional con-
sistency condition for string models that is nonperturba-
tive in nature.

We have examined a number of models for this possi-
bility, and have, indeed, found numerous examples where
the linear IR conditions are not satisfied. However, in all
of these cases, it is possible to cancel the anomaly. String
compactifications always contain at least one axion field,
usually called the "model-independent axion, " which
couples to the topological charge of the various gauge
groups. In all of the examples we have examined, it is
possible to cancel the anomaly by assigning a nonhomo-
geneous transformation law to the axion under the
discrete symmetry. In other words, an instanton in these
theories gives rise to an expectation value for a fermionic
operator 8, which is not invariant under the discrete
symmetry. However, because the axion couples to the to-
pological charge, 8 is multiplied by a factor of the form
e", where a is the axion field (in a suitable normalization}.
If we assign a transformation law to the field a of the
form a ~a+2m.q/N {in the case of a ZN symmetry}, the
full instanton amplitude is gauge invariant. Such a non-
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linear transformation law means that the gauge symme-
try is spontaneously broken at a high-energy scale (of the
order of the Planck scale). Perturbation theory, on the
other hand, exhibits an unbroken discrete symmetry to
any finite order; this symmetry (which is not a gauge
symmetry) is explicitly broken by nonperturbative effects.
This in itself may be phenornenologically interesting,
since it suggests that it is natural to postulate approxi-
mate discrete symmetries.

It is perhaps worthwhile to give one example of the
phenomenon we are describing. For this, consider the
O(32) theory compactified on a textbook [3] example of a
Calabi-Yau compactification, described by a quintic po-
lynominal in CP . At a special point in the moduli space,
this model has a large discrete symmetry group, includ-

ing four Z5 symmetries. It is straightforward to check
that these symmetries all satisfy the linear IR conditions.
Now mod out this theory by a freely acting discrete sym-
metry. In particular, Ref. [3] defines a Z5 symmetry
called A. Include also a Wilson line. This Wilson line
can be described as follows. In the fermionic formulation
of the heterotic string, there are 26 free, left-moving fer-
mions in this compactification. Group them as 6 corn-

plex fermions and 14 real ones. If a is a fifth root of uni-

ty, the Wilson line rotates three of the complex fermions
by a, three by a, and leaves the rest untouched. This
choice is modular invariant. It leaves an unbroken gauge
group SU(3) XSU(3)XO(14)XU(1) . It also leaves un-

broken the four original Z5 symmetries. A straightfor-
ward calculation shows that, for an instanton embedded
in any of the three gauge groups, the appropriate opera-
tor 8 transforms as a under each of the Zs symmetries.
Since the model-independent axion couples in the same
way to each of the gauge groups, letting a~a+6n/5.
cancels the anomaly.

V. CONCLUSIONS

It is sometimes argued that any discrete symmetries
which might play a role in low-energy physics will be
gauge symmetries. Following Ibanez and Ross, we have
considered the constraints which must be satisfied if this
is to be the case. We have seen that only conditions
which can be derived from low-energy considerations
(i.e., instantons of low-energy gauge groups and possibly
gravitational instantons) hold independent of assump-
tions about the high-energy theory.

On the other hand, we have also provided some evi-
dence that it makes sense, as in the work of Preskill,
Trivedi, Wilczek, and Wise, to postulate discrete sym-
metries that are broken only by small, nonperturbative
effects. Indeed, we have seen that this is a common
phenomenon in string theory. This is analogous to the
situation with Peccei-Quinn symmetries. In field theory,
in both cases, it seems somewhat unnatural to postulate
the existence of symmetries which are broken "a little
bit." In string theory, this is a common occurrence.

Finally, we have noted that the anomaly conditions
may provide a nonperturbative constraint on string
compactifications, but we have not exhibited a modular-
invariant model which fails to satisfy these conditions.
Similarly, we are not aware of any perturbatively con-
sistent string vacuum whose low-energy field theory
suffers from a nonperturbative SU(2) anomaly. Perhaps
in string theory perturbative anomalies are the whole sto-
ry.
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