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We prove a cosmic no-hair theorem for Bianchi models in power-law inflation. Provided that the po-
tential of an infiaton P is exp( —

A,aP) with 0 A, & &2/3, we find that the isotropic power-law solution is
the unique attractor for any initially expanding Bianchi-type models except type IX. For Bianchi type
IX, this conclusion is also true if the initial ratio of the vacuum energy to the maximum three-curvature
is larger than one half.

PACS number(s): 98.80.Cq, 04.50.+h

Inflation is definitely a great idea in modern cosmology
[1], but unfortunately, so far there has been no natural
model based on any fundamental high-energy physics. In
order to look for such a model, a new approach has been
proposed [2—4] by modifying the Einstein gravity. One
attempt in this approach is the so-called extended
inflation originally proposed by La and Steinhardt [2].
They adopted Jordan-Brans-Dicke (JBD) theory and
reanalyzed the old inflationary scenario, finding that the
phase transition can complete, in contrast with old
inflation in the Einstein theory. It was, however, found
that the bubbles lead to unacceptable distortions of the
microwave background radiation. So Steinhardt and Ac-
cetta proposed an improved version, hyperextended
inflation [3], in which they took into consideration
higher-order couplings of the JBD scalar field to the sca-
lar curvature, and showed that their model gives an al-
most model-independent bubble distribution. Another
method is soft inflation, proposed by Berkin, Maeda, and
Yokoyama [4]. They considered new and chaotic
inflationary scenarios in generalized Einstein theories
(GET's), which include induced gravity, R theory, and
Kaluza-Klein theories as well as JBD theory. Taking ad-
vantage of the equivalence between GET's and the Ein-
stein gravity via a conformal transformation [5],
inflationary models were systematically investigated in
the conformal frame. They found that new inflation as
well as chaotic inflaton with a massive inflaton allow not
only natural initial data but also natural coupling con-
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stants. Such approaches may hence give us a natural
inflationary model.

Apart from the naturalness of inflationary models, we
have another question about naturalness in inflation,
namely whether an inflationary solution is the unique at-
tractor in the most general spacetime. In the discussion
about inflation, we usually assume Friedmann-
Robertson-Walker spacetimes. Since we have not so far
learned anything about the initial state of the Universe,
the ansatz of isotropy and homogeneity of the Universe
should be also justified by inflation. We have to investi-
gate whether or not inflation really occurs even in aniso-
tropic and/or inhomogeneous spacetimes and whether
the spacetime is isotropized and homogenized during
inflation. This problem is related to the so-called cosmic
no-hair conjecture.

In the most general inhomogeneous case, the proof is
very difBcult, and hence a numerical approach may be
the only way to show whether or not it is true [6], except
for perturbation analysis [7]. However, in an anisotropic
but homogeneous case, we have the cosmic no-hair
theorem proved by Wald [8], which tells us that all ini-
tially expanding Bianchi models except type IX approach
de Sitter spacetime in one e-folding time if a positive
cosmological constant exists. In old or new inflationary
models, the vacuum energy is almost a constant, and thus
behaves as a cosmological constant. This theorem is,
hence, applicable. This theorem was also extended to
chaotic inflationary models [9]. For type IX, however,
since some spacetimes may recollapse, more study is
necessary [10,11].

A natural question may arise, namely, whether or not
this theorem is extendable to a power-law inflationary
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model [12]. This problem becomes more important in the
above new approach, because such an inflation in GET's
usually shows a power-law expansion (including hyperex-
tended inflation, in which the cosmic expansion is
power-law at the initial stage of interest). In fact, using a
conformal transformation, we can show that such a mod-
el is equivalent to the Einstein theory with a scalar field
whose potential is an exponential type, and thus leads to
a power-law inflation [4]. Hence, if we believe either
(hyper)extended or soft inflation, we have to worry about
the cosmic no-hair conjecture in these scenarios, because
only a small set of initial data may lead to an isotropic
inflationary solution.

So far, there are a few previous works on this problem,
both numerically and analytically [13]. In this Brief Re-
port, we prove a cosmic no-hair theorem for Bianchi
models. This theorem is just a simple extension of Wald's
theorem [8] into the power-law inflationary case.

Our model Lagrangian is

S=Jd x&—g 2R ——(Vp) —V(p)+L «„,
1 1

K

'2

O=G,bn'n ~—— + V(p)+T (n ), (6)
1 d

and the other is the Raychaudhuri equation,
2

0 R yga~b ~2
ab

d —V(P)+ T, (n )
dt

dr=exp( A~//2—)dt, (8)

rather than the cosmic time t. In an isotropic and homo-
geneous spacetime, the attractor (a power-law
inflationary solution) becomes a time-independent fixed
point with this time coordinate [15]. Hereafter, an over-
dot denotes differentiation with respect to w.

The above two equations and the scalar-field equation
are then rewritten as

K =3m. ( —,'P + Vo)+ ', cJ,bo' ", —'R+3a —T—(n),

(9)

where n' is the unit vector orthogonal to the homogene-
ous hypersurfaces and t is the proper cosmic time.

For our purpose, it is convenient to use a new time
coordinate ~, which is defined by

where tc =8nG, P is an inflaton field and L,«,„ is the
matter Lagrangian aside from P. The potential of the
inflaton is assumed to be an exponential type,

K=a ( —P +Vo)+(Ax/2)KP ,'E o—,b—cJ' —Ic T, (n)—,

(10)

V(P ) = Vo exp( —
A,zP ) (2) P=(Aic/2)P K/+ A~V—o,

where Vz and 3, are positive constants. In order for
power-law inflation to occur, A, must be smaller than v'2.
However, here, we restrict our discussion to

0&A, &g—' (3)

(5)

for a mathematical reason. This restriction corresponds
to co )—', for JBD theory [4], which is consistent with ob-
servations (co) 500). We will comment on this point
later.

Assuming a Bianchi-type homogeneous spacetime, we
investigate whether or not a power-law inflationary solu-
tion is the unique attractor and such an anisotropic
spacetime is really isotropized in finite time. The Ein-
stein equations are written as

(4)

where T,'f' and T,b are the energy-momentum tensors of
the inflaton and of matter. Here we assume that the
matter fluid satisfies the strong and dominant energy con-
ditions [14]. The latter condition implies the weak ener-
gy condition. The strong and weak energy conditions are
described as

T, (t)=(Tb —,'Tg, b)t't )0 and —T (t)=Tbt'tb&0

e'b —-""R+3~'Zab W (12)

This equation is nothing but the constraint equation (9).
Because of ' 'R ~ 0 and the weak energy condition, S~0.
The time derivative of S is derived from Eqs. (10) and
(11),and then is estimated by K )0 and the strong energy
condition as follows:

where we introduced a new variable K defined by
E =K exp(Avg/2), where K is the trace of the usual ex-
trinsic curvature with respect to time t. The other vari-
ables with tilde relations are defined similarly, e.g., shear
o.,bo' =o.,bo' e "~ and three-curvature ' 'R =' 'Re "~.
Our proof is always reduced to Wald's by setting A, =O
and /=0. The terms with EP in (10) and with P in (11)
appear due to the new time coordinate and new variables.
We assume that the Universe is initially expanding, i.e.,
K & 0 K & 0 at an initial time.

First we consider all Bianchi models except type IX.
In this case, spacetime has nonpositive scalar curvature:
' 'R &0 [8]. From the constraint equation (9) and the
weak energy condition, we get K & 0 and then find K )0
forever if the spacetime is initially expanding. Now we
shall define a function S, which plays the same role as
(K —3A) in Wald's paper [8] and —,'S in Moss and
Sahni's [9],as

S=K —3~ ( —,'P + Vo)

for all timelike vectors t'. Following Wald [8], we con-
sider two components of the Einstein equations: one is
the Hamiltonian constraint,

S=—
—,'(2K 3A,leg)S 2K(o,bo'—+Ic T, )—

& —
—,'(2K —3A,~Q)S . (13)
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From Eq. (12}with S & 0,

K2 3K2$2 & 3K2V (14)

and then from this inequality with K &0 and the ansatz
0&A, &Q—,', we find

~ 3
2K —3i i~) &

1SO

where

1so 3

—1/2

(15)

(16)

is a given positive constant. Inequality (13) is then

1SO

S+0. (17)

Integrating this inequality, we find

0 S Sp exp
(r—ro)

1SO

where ro is an initial time and SO=S(ro) Sdec.ays to
zero exponentially with respect to time ~. Within one e-

folding time ~;„, the expansion rate of the Universe is
dominated just by the inflaton energy density [16].

As for the shear, the three-curvature and the energy
density of matter, we see

S So
x' T (n)«— expN 3 3

7 7p

1SO

(19)

from Eq. (12). Thus the shear and the three-curvature of
the homogeneous hypersurfaces and the matter energy
density rapidly vanish, and hence all components of the
energy-momentum tensor of matter fluid vanish too, be-
cause of the dominant energy condition, just as in Wald's
case. In particuhr, the decay of anisotropy leads to an
isotropic and homogeneous spacetirne. We can thus
show that a power-law inflationary solution is the unique
attractor in spacetimes with non-negative curvature [15].
Tllus fol ( r ro ) » r;so, anisotropic spacetimes except
for type IX are isotropized, and a power-law inflationary
solution is realized.

One may want to know the time scale of isotropization
in terms of the cosmic time t rather than ~. Since ~ de-
pends on P, the isotropization time scale also depends on

P, for which we have to solve the equation of motion.
However, since an isotropic power-law inflationary solu-
tion is realized rapidly in the ~ time coordinate, we may
probably estimate it using the isotropic attractor solu-
tion. The attractor solution is given by

a =ao(t/to) ~ (20)

(22}

' 'R ' 'R,„~exp( —2a}, (25)

where exp (3a):—[det(h, b)]' is the volume element of
the spatial metric h, b =g,& +n, nb. We require the addi-
tional condition that

A,g

(3)~ max

A.a
(3)

max

(26)

is initially satisfied as in %aid s theorem, where
A s —K V(P}=ir Voe

" ~ is an effective cosmological
constant, and A,~:—A,~ '~ =~ Vp. Setting

A.a
(') 2

—:—(1+5)o- exp(2a —Ai~g),
~ max

(27)

the ansatz (26) reads 50= 5(ro) & 0.
From the Hamiltonian constraint (9) with 0 & A. & Q —', ,

if K) 0 and 5&0,
2K —3Airp & 2K —v'6v~p~ & 0, (28)

while

d A,aln(1+5}= ln

1SO
P.

exp
1SO tp

where p;„—=4[(1—3A, /2)(1 —k /6)]'~ /A. . This gives
us the following results in terms of t [17];

~ isoS, o,bo', ' 'R, and T (n) ~(t/to) "", (23)

K' and p&~(r/r, ) (24)

where S:—Se ~ and p&=(dp/dr) + V(p). Thus, the
additional power p;, in (23) guarantees the anisotropy to
vanish and allows us to ignore contributions from matter
and the three-curvature. The remaining isotropic contri-
bution from the inflaton field P provides a power-law
inflation.

Next we turn to the Bianchi-type IX case. First we
show the upper bound of S. Although S is not positive
definite, it might be non-negative initially, i.e.,
SO=S(ro) &0. In that case, as long as S(r) &0, the in-

equality (17) holds as in the non —type-IX case, S is
monotonically decreasing and hence S is bounded from
above by Eq. (18). Thus, for general initial conditions, we
find the upper bound as S &max{0,Soexp[ (r ro)—/—
r;„]j.

As opposed to the non-type-IX case, however, S is not
bounded from below. We hence have to estimate the
lower bound as well. In the present model, we can give a
vanishing lower bound as follows. In this closed model,
fixing the proper volume, the three-curvature has its
maximum positive value when the spacetime is isotropic
[g]

~P = irido+ (2/A, )ln( t /ir ), (21) maxln" 'R = —(2K —3A,x.g ), (29)

where to is some constant and ago=—( I/A, )in[A, ir Vo/2(6 —
A, )) [15]. Using this solution,

we can obtain the relation between t and ~ to find

where I( =3'. Hence, if K & 0 and 6 & 0 initially, we can
prove that the following two inequalities are satisfied for
all w~ ~p.
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2E —3Atc) ~

where
+iso, IX

' 1/2

+iso, IX +iso 1+ g
Up

&.a
5 5o and then (3) )—,

2
' (30)

(31)

(32)

~;„,the convergence time in type IX is longer by the fac-
tor +1+ I/5o than that in other types. As for the time
scale in terms of the cosmic time t, p;„should be re-

placed with p;~ &x ——p;„+5~/( I+5c). The physical vari-
ables change with time t as Eqs. (23) and (24) and

(3)g ( g t ~iso Ix
(35)

A,e- A,e. to

with r;„defi ned previously. Inequality (31) is obtained in

a similar way to the non —type-IX case.
From Eq. (12) with the weak energy condition, we find

S & ——"'Z
msx (33)

while ' 'R,„vanishes faster than exp[ —(r—ro)/r;„ tx]
from Eq. (29) with (31).

Finally, we get

——' 'R,„(ro)exp3
(r—ro)

+iso, IX

S max O, Soexp
(r—ro} I

ISO

(34)

and can verify S vanishes [17]. From Eq. (12),
—2S/3 ~ ' 'R +' 'R,„,and then ' 'R damps to zero just
as Sand' '8

The initially expanding Bianchi type-IX universe is,
hence, also isotropized within one ~;„Ix, if
(A,a/' 'R,„)& —,

' initially. Because r;so tx is larger than

Note that in type IX, the initial time scale of
convergence depends on the initial data
5o=2(A, tr/' 'R,„)(rc)—1 ( )0). The nearer 5c ap-
proaches to zero, the longer the convergence time be-
comes, but the speed of convergence grows to the same
value near the attractor as that for other Bianchi types.

The cosmic no-hair theorem in power-law inflation
presented in this paper is just an extended version of
Wald's theorem. We can generalize the initial condition
in type IX in the present cosmic no-hair theorem to a
wider class both in conventional inflation and in power-
law inflation, and also find the similar cosmic no-hair
theorem for Q —,

' ~A, (&2, although the time scale of
convergence now depends on initial conditions for all Bi-
anchi types. This will be presented elsewhere.
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