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We propose an extended definition of the regularized Jacobian which allows the calculation of
anomalies using parameter-dependent regulators in the Fujikawa approach. This extension incorporates
the basic Green's function of the problem in the regularized Jacobian, allowing us to interpret a specific
regularization procedure as a way of selecting the finite part of the Green's function, in complete analogy
with what is done at the level of the effective action. In this way we are able to consider the effect of
counterterms in the regularized Jacobian in order to relate different regularization procedures. We also
discuss the ambiguities that arise in our prescription due to some freedom in the place where we can in-

sert the regulator, using charge-conjugation invariance as a guiding principle. The method is applied to
the case of vector and axial-vector anomalies in two- and four-dimensional quantum electrodynamics. In
the first situation we recover the standard family of anomalies calculated by the point-splitting regulari-
zation prescription. We also study in detail an alternative choice in the position of the regulator and we
calculate explicitly all the currents that generate the families of anomalies that we are considering. Next
we extend the calculation to four dimensions, using the same prescriptions as before, and we compare
the results with those obtained from the point-splitting calculation, which we also perform in the case of
the vector anomaly. A discussion of the relation among the results obtained by different regularization
prescriptions is given in terms of the allowed counterterms in the regularized Jacobian, which are highly
constrained by the requirement of charge-conjugation invariance.

PACS number(s): 11.15.—q, 11.40.Ha

I. INTRODUCTION

Since their discovery in the late 1940's, anomalies have
played an important role in the consistent construction of
quantum field theories (QFT's) [1]. Nevertheless, their
study based on the path-integral formulation of QFT's is
rather recent and practically was started with the work of
Fujikawa in 1979 [2]. Subsequently, most of the known
results have been rederived using his method and a great
deal of new discoveries have also been made.

In this paper we only consider anomalies arising from
the fermionic sector of the theory, which means that all
the bosonic fields will be considered as external ones.
Anomalies arise when a symmetry present at the classical
level can no longer be maintained after the theory is
quantized. This is a consequence of the fact that QFT's
need further specification: one must provide a prescrip-
tion for regularizing them. Then, it might happen that
no regulator exists which preserves all the original classi-
cal symmetries.

The basic ingredients of the Fujikawa method are as
follows. (i) The independence of the effective bosonic ac-
tion of the theory upon arbitrary changes of the fermion-
ic integration variables. This naturally introduces into
the method the corresponding Jacobian associated with
such transformation of integration variables which en-

(l. la)

d„J"„= (1+a)e""B„A„, (1.1b)

in Euclidean space, where JP =Tr(y"S) and
J"„=Tr(y"ysS) are the respective currents. Here, S is a
shorthand notation for the Green's function of the opera-
tor (i8—eA), regularized in the standard manner of the

sures that the path integral remains, in fact, unchanged.
(ii) The use of the specific local transformation of the fer-
mionic variables which generate the corresponding
Noether currents related to the symmetry under con-
sideration in the classical action. These two basic points
allow Fujikawa to relate the mean value of the divergence
of the symmetry current with the change of the corre-
sponding Jacobian to first order of the transformation pa-
rameters.

Our work has been motivated by the present status of
the discussion of the one-parameter family of vector and
axial-vector anomalies in two- and four-dimensional
QED, from the point of view of the Fujikawa method.
The existence of such a family in two dimensions has
been previously established, for example, by point-
splitting calculations [3,4] and is given by
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point-splitting method. Equations (1.1) incorporate the
basic feature which characterizes any true anomaly: no
choice of parameters (a in this case) can make both
currents simultaneously conserved. In this case the vec-
tor current is coupled to the photon field so that the
physical requirement of charge conservation forces us to
choose a =1 and, consequently, the axial-vector anomaly
appears. The family (1.1) has been previously obtained
using the Fujikawa approach by heavily relying upon
very specific properties of the two-dimensional Dirac ma-
trices [4,5].

The main issue to be discussed in this paper is the pos-
sibility of obtaining correct results in the path-integral
calculation of anomalies by using parameter-dependent
regulators. Our point of view here is that the anomaly is
completely given in terms of the Jacobian which only
needs to be regularized appropriately. This can be done
by extending the Fujikawa results for the calculation of
the relevant Jacobians [6,7]. In particular, we shall be
concerned with regulators constructed from the operator
8, =8+ieaA where the parameter a is real to ensure
Hermiticity in Euclidean space.

The freedom introduced by parameter-dependent regu-
larization has proved to be very useful in the consistent
definition of models lacking a gauge symmetry principle
as in the case of the chiral Schwinger model, for example
[8]. Recently, the authors of Ref. [9] have also con-
sidered the problem of obtaining the family of anomalies
(1.1) in the path-integral formulation of QFT. Following
a different route than us, they expand the action in terms
of the eigenfunctions of g„derive the corresponding
Ward identities for the currents, and subsequently regu-
larize such expressions. Their results, which only include
the two-dimensional case, coincide with those of Refs.
[6,7]. A detailed comparison of their method with the
one discussed in this work, especially in the four-
dimensional case, would be of much interest, and it is de-
ferred for future work.

This paper is organized as follows. Section II contains
a review of the proposed generalization of the regularized
Jacobian, which naturally includes the possibility of using
parameter-dependent regulators. In Sec. III we discuss
two kinds of ambiguities present in our method: the first
one has to do with the freedom of selecting the position
of the regulator to define our regularized Jacobian and
the second one is analogous to the freedom that appears
at the level of the effective action, where the possibility of
adding counterterms which are local in the external field

and its derivatives allows for the possibility of relating
two different regularization prescriptions. Great em-

phasis is given to charge-conjugation invariance in eluci-
dating these questions. In this section we also calculate
the regularized currents that give rise to each family of
anomalies that we obtain. Since our prescription can be
direct1y generalized to higher dimensions, we have per-
formed the analogous calculations for four dimensions in
Sec. IV, where two families of anomalies are obtained.
The relations among them and also with the standard
family of anomalies obtained by the point-splitting
prescription are discussed. Finally, there are two Appen-
dixes: Appendix A deals with the point-splitting calcula-

tion of the vector anomaly in four dimensions and Ap-
pendix B contains some details of the calculations includ-
ed in Sec. IV.

II. EXTENDED DEFINITION
OF THE REGULATED JACOBIAN

Quantized Dirac fermions coupled to a background
electromagnetic field in Euclidean space are described by
the generating functional

Z(A)= f&J(2)yexp f (dx)pity (2.1)

(2.3)

where we have kept in the action only terms to first order
in the parameters, and 8(rl) stands for the Jacobian of
the transformation. The explicit calculation of the terms
in the exponential leads to the identification of the
currents in the form

Z(A)=8(q) f2)$2)/exp f (dx)Pig/

—f ( dx )j"(x)B„rl(x)

(2.4)

The Ward identities are obtained by functionally
differentiating both sides of (2.4) with respect to g(x).
The result for Z '[5Z/5g(x)]=0 is

)
5 ind"(g )

5q(x) „=p
' (2.5)

where J„(x) = ( j„(x)) is the usual average value of
j„(x). We have gone through the derivation of the well-

known expression (2.5) in order to introduce our notation
and conventions.

Now we concentrate on the Jacobian 8(g) which is

where 8 =y"D„=y "(d„+ieA „) Ou. r y matrices are
anti-Hermitian satisfying [y",y"] =2g"" with
g" = —diagI. The Dirac operator is Hermitian and we

pass from Minkowski to Euclidean space using the con-
ventions of Ref. [2].

In order to obtain the Ward identities related to a sym-
metry of the classical Lagrangian appearing in (2.1), we
follow the standard steps. Let us consider the fermionic
part of such an infinitesimal symmetry transformation
which we write as

X=[I+K(r))]e 7=0[I+&(9)] (2.2)

where E and L are operators depending on infinitesimal
local parameters which we call g =g(x) in compact nota-
tion. The transformations (2.2) are such that they leave
the Lagrangian invariant when the parameters are in-

dependent of position. Now we use the transformations
(2.2) as a linear change of variables in the generating
functional obtaining

Z( A) =8(rl) f2)$2)/exp f (dx)Pi(9+ 8K+LB )g
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g(ri) =g&M&(ri) =1 Tr(K—R, +LR2) . (2.7)

Some comments regarding expression (2.7) for the partic-
ular case of the vector [K = L=ia(x—)] transforma-
tions are now in order. In the first place we remark that
(2.7) is indeed able to produce a nonzero vector anomaly
as appropriate to the family (1.1). Nevertheless, one
would be faced with the rather embarassing situation of
obtaining a conserved vector current in all cases where
R, =R 2 with a parameter a A 1. This would mean that
gauge invariance is maintained in spite of regulating the
theory in a non-gauge-covariant way (a%1). The case
a =0 is even more dramatic because this regulator will
also give a zero value for the axial-vector anomaly [10].
The previous comments point to the fact that, when we
want to regularize a theory in a parameter-dependent
way, a more careful definition of the Jacobian is required
in order that the results obtained Inake sense. This is ex-
actly the point of the extension of the regularization pro-
cedure previously presented in Refs. [6,7]. The basic idea
in such references was to start from the definition

fg)$2)/exp f (dx)QPQ —=det(P), (2.8)

usually calculated by defining the path-integral measure
in (2.1) via the expansion of the fermionic fields in terms
of an appropriate set of complete basis functions and sub-
sequently using the transformation (2.2) to calculate the
changes in Sg and 2)y separately [2]. Because we are in-
terested in studying the parameter dependence of the vec-
tor and axial-vector anomalies, we could perfectly well
take our basis [P'„} as the eigenvectors of the operator
8, =8+ieaA, for the part of the measure corresponding
to Sy. Following the standard steps and regulating the
divergent trace by inserting the factor exp[ —(A,'„/M )],
with A, '„being the eigenvalues of g„we obtain

d"&(ri) = 1 —Tr[K exp( 8,—/M )]—:1 Tr(K—R
& ), (2.6)

for the contribution to the Jacobian 8(g) arising from the
change of variables (2.2) in the corresponding measure.
The symbol Tr denotes the trace over Dirac (labeled by
tr) as well as spacetime indices. The contribution to the
Jacobian of the remaining variables can be calculated in
an analogous way. In principle, we could use a different
regulator R2, as is done, for example, in the case of non-
Hermitian regulators where g8 and 8 g are, respec-
tively, used. The final result for the Jacobian is

and we recall that K,L are first-order quantities in the
infinitesimal parameters. Up to now all manipulations
starting from (2.1) have been only formal and in order to
properly define expression (2.10) it is necessary to adopt a
suitable regularization scheme. The prescription

ln/z(g)= —Tr[g (gK+Lg)R]—:T, (2.11)

was proposed in Ref. [6]. Now we make some remarks
upon (2.11}. The first thing we notice is that 8z(g} does
not coincide, in general, with the standard calculation
where the dependence upon 8 does not appear. One can
recover from (2.11) the current expression for the Jacobi-
an

ln/(g) = —Tr[(K +L)R], (2.12)

which corresponds to the use of Eq. (2.7) with one regula-
tor R =R, =R2, only if the further condition [R,g]=0
is imposed. This essentially means that R =f (9), which
says that in using (2.12) we are also forced to set a = l.
In other words, we now understand that expression (2.12)
is a good starting point to calculate the vector and axial-
vector anomalies only when the gauge-covariant regulat-
ing operator 8 is used, instead of an arbitrary regulator
as might appear to be the case from the expression (2.7).
The basic difference between the standard Fujikawa ex-
pression (2.12) and the one proposed in (2.11), when con-
sidered as a regulated definition of the naive form (2.10),
is that, in the former case, the cyclic property of the trace
is used directly in the unregulated expression, which is
subsequently regularized, while in the latter situation one
first regulates (2.10) and then uses all properties of matrix
algebra. In order for both expressions (2.7) and (2.11) to
be equal, it is necessary that Rz =BR,8 ' in the former.
This property is relevant to the calculation of anomalies
in systems having non-Hermitian Dirac operators [4,11].
The particular choice R I =exp( —8 g/M ) in our gen-
eral expression (2.11) together with

R2=g exp( —8 g/M )ji) '=exp( gg /M ), —

explains the specific choice of regularization used in those
references.

Finally we give a short description of the calculation of
the family (1.1) in two dimensions using the regulating
operator g, =8+iea g Our c. onventions are y "y
=g" +d'"y5 with e' = —i and y5=+1. To this end, it
is more convenient to rewrite the corresponding expres-
sions for T in (2.11) in the following way:

together with the fact that the Jacobian is precisely the
extra factor that produces a coordinate-independent in-
tegral. Thus, using (2.8) and setting (2.1) equal to (2.3) we
obtain

T =i Tr(g a[8,R]},

T"= i Tr(2Py5R +—8 'Py5[g, R]) .

(2.13a)

(2.13b)

@( )
det(8 )

det(g+ @K+LB)

which can be rewritten as

8(g) =det[1 —4 (BK +L@ )]

=1—Tr[4 '(4K+LB)], (2.10)

where g ' denotes the Green's function of the operator
2i Tr(Py5R)= f (dx)P(x)d'"B„A„. (2.14)

Here the superscript V refers to the vector case, while A
labels the axial-vector case. Again we see from (2.13)
that only in the case [4,R]=0 are the usual expressions
for both anomalies recovered.

The first term in (2.13b) corresponds to the standard
Fujikawa calculation with A„~aA„and reduces to
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The remaining pieces are incorporated in the expression [B,R]=ie(1—a)[A, R] (2.16)

X =Tr(8 'Q[B,R]), (2.15)

where Q stands either for iaI or —iPy5 .The commuta-
tor is now rewritten as [B=g, + ( 1 a—)ie A ]

and a plane-wave basis is used to calculate the trace.
Operating the regulator upon the corresponding plane
waves produces the usual shift 8,~8, ii—/ giving

X=ie(1—a)f (dx)(dy}exp[ik(x —y)]exp(k /M )tr[G(x y)Q(y}[exp(i[i', P, ] &,—)/M, A(y)]],
(2~)

(2.17)

where G(x,y) =—(x ~g ~y ). The finite contributions to
X come from the free Green's function together with the
leading power of k/M in the expansion of the exponen-
tial in the commutator of (2.17). After rescaling k ~My
and taking the limit M ~ ~ we are left with

X= f (dx}tr[y"Q(x)y']B„A„(x) (2.18)

from where the vector and axial-vector contributions are
easily recovered. The final answer for the anomalies cor-
respond exactly to the family (1.1).

III. REGULARIZATION AMBIGUITIES
AND COUNTERTERMS IN TWO DIMENSIONS

T, = —Tr(g RBK+B LBR)

together with

T2 = —Tr(KR +8 'LBR )

and

T3 = —Tr(P 'RBK+RL) .

(3.1)

(3.2a)

(3.2b)

These alternative possibilities of defining the regulated
Jacobian remind us that in order to completely define a
quantum theory we must incorporate the largest possible
set of symmetries that can be compatible with the system.
Up to now we have completely overlooked the discrete
symmetries of quantum electrodynamics. In particular,
let us consider the invariance under charge conjugation,
defined by the transformation g~ C f',
A „~—A „, where the charge-conjugation matrix C
satisfies C 'y„C = —y„' and the superscript t means tran-
sposition in the space of Dirac matrices. In even dimen-

Before going to the four-dimensional case, we would
like to discuss how regularization ambiguities can be un-
derstood in the Fujikawa approach. We will focus on the
simpler two-dimensional situation but many of our obser-
vations will be valid for the general case.

The prescription (2.11) possesses a further ambiguity
that is produced by the choice of the position of the regu-
lator R in Eq. (2.10). As we can easily see, there are nine
regularized extensions of (2.10) after the cyclic property
of the trace is used; four of them correspond to the ex-
pression (2.12) which we have already rejected because it
produces a zero vector anomaly even though the regula-
tor is not gauge covariant (a%1). The remaining expres-
sions are

8 JP— (3.3)

under charge conjugation. In order to maintain such a
symmetry at the quantum level, the logarithm of the re-
gulated Jacobian should transform accordingly. This re-
quirement will allow us to select an adequate combina-
tion of the expressions (3.1) and (3.2) to define a con-
veniently regulated Jacobian. To this end we have to
consider the transformation properties of the correspond-
ing operators. Under charge conjugation they transform
as

8~8, R ~R
Kv~Kv (Lv Kv)

K„(—1)"K„(L„=K„),

(3.4a)

(3.4b)

(3.4c)

where the superscript T means the transposition opera-
tion that includes spacetime as well as Dirac indices. For
the sake of definiteness, let us consider the vector case.
Here we can easily verify that under charge conjugation
T

&
~ T

&
while T2 ~—T3 . The analogous calculation

for the axial-vector case leads to T i" ~ (
—1 )"T,",

T2"~( —1)"T&". This means that, in principle, any ap-
propriately weighted combination of T, and ( T2 + T3 ) /2
could be taken as a good candidate for a definition of the
logarithm of the regulated Jacobian. We discuss the two
separate cases in the following paragraphs.

In two dimensions, the calculation of the previous sec-
tion showed that the terms that could possibly violate
charge-conjugation invariance in T2 vanished in the limit
M ~ ac. As we shall see later, this is not the case in four
dimensions.

Now let us consider the alternative prescription (3.1)
which can be rewritten in the convenient way

r iv =Xv( A„) X'( A„), — — (3.5a)

T, = —2i Tr(gy~R)+X "(A„)+(—1)"X"(—A„),
(3.5b)

where X ( A„),X"(A„) are defined in terms of Eq. (2.15)
with the corresponding choices of Q. We have also made
use of the charge-conjugated version of Eq. (2.15), which
states that

sions d =2n one has the transformation property
C" 'yd+iC =( —1)"yd+, for the generalization yd+, of
the matrix y5. The above properties imply that the vec-
tor and axial-vector currents transform as
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X~( —A„)=—Tr(QP '[8,R]),
X"(—2„)= —

( —1)"Tr(gu [&,R] } .

(3.6a)

(3.6b)

In this way, the results of the calculation according to
Eqs. (3.5) with the usual regulating operator
R =exp[ —(g, /M) ] are

B„JP=—(1—a)P'A„, (3.7a)

(3.7b)

It is a rather surprising result of this choice of regulariza-
tion that the axial-vector anomaly turns out to be in-
dependent of the parameter a and also that the physical
value is obtained. These features will show up again in
the four-dimensional calculation, and deserve further dis-
cussion.

Our next task is to understand the family of anomalies
(1.1) and (3.7) in terms of possible counterterms which
would, in principle, allow for the possibility of relating
different regularization prescriptions. Usually, local
counterterms, which are polynomials in the external field
and its derivatives, appear as a freedom in the effective
action of the theory. They account for the different pos-
sibilities of extracting the finite part of an otherwise
divergent quantity. In the construction of the anomalies
that we have presented here we do not have at our dispo-
sal such an effective action from where the currents are
calculated as functional derivatives with respect to the
external fields.

In the present calculation, the expression for ind'(u}
given by any regularized extension of Eq. (2.10) plays the
role corresponding to the change of the effective action
and each of these expressions, for the vector and axial-
vector cases, are also defined up to local polynomials in
the external field A„which arise from the need to regu-
larize the short-distance behavior of the Green's function
G(x,x)={x~8 '~x) that appears in our definition of
the Jacobian. These ambiguities arising from the Green s
function induce some freedom in the calculation of the
divergence of the respective currents, and should allow us
to connect one regularization scheme with another.

In the two-dimensional case, the Green's function 6 is
defined up to the local polynomial 5G=py" A„(x) [12],
which induces the counterterms

the physical value for the axial anomaly. One can gen-
eralize this sequence in order to move from one value of
the parameter in the family to any other and we will refer
to this as the group property of the family. In fact, the
family (1.1) possesses such a group property because the
anomalies corresponding to any two different parametriz-
ations labeled by a and a' are related by counterterms of
the type (3.8} with parameter p=( —e/4m)(a' —a). In
this way, starting from any a it is possible to move the
vector anomaly to zero (which is the physical value) by
adequately choosing p=( e/—4n)(1 —a). Then, the cor-
responding counterterm in the axial-vector anomaly will
indeed change its value to the physical one. Notice that
this is an alternative procedure to the direct choice a = 1

in Eqs. (1.1) and provides a consistency check on the reg-
ularization prescription (2.11).

Now we consider the family of anomalies (3.7) which is
obtained from the regularization prescription (3.1). In
this case the only way to achieve the physical result is to
choose a =1 in (3.7a). Any efFort to set A "=0by adding
a counterterm would spoil the correct result (3.7b) for
A ". In addition, it is not possible to relate both families
(1.1) and (3.7) by means of the allowed counterterms
given in Eq. (3.8).

In order to understand better the differences that have
arisen between the regularization procedures (3.1) and
(3.2), we would need to go one step behind and try to
identify the corresponding regularized currents which
produce the divergences that are directly calculated in
the Fujikawa approach. The identification of the corre-
sponding regularized currents in the Fujikawa method is
not a direct operation since we do not have at our dispo-
sal the effective action of the system; instead we depend
on the logarithm of the Jacobian. Thus, the currents may
be identified from their divergence, which introduces a
further indeterminacy in the problem.

The regularization prescription (2.11) considers the
combination (9K+LB) as a unity. This is very con-
venient for our purposes because this term leads to
iy"B„a(x) or iy"y~dP'(x) in the vector and axial-vector
cases, respectively. Then, from expressions (2.5) we can
identify the regularized current as

J"{y)—:—lim tr J(dx) e '""G(x,y)r"R e'"~,
M —+ oa (2m }

(3.9)

EA =2p&"A„,
LA = —2pe""B„A„, (3.8}

as the freedom in the explicit form of the anomalies.
Here our notation is A =B„J~. In particular, this means
that the members of the family of anomalies (1.1) can be
reshufBed among themselves. This property is related to
the question is it possible to obtain the physical value of
our family of anomalies by the following method'? (i)
First regularize using whatever convenient value of the
parameter a, say a =0, for example, (ii) then change the
value of the vector anomaly to zero (physical require-
ment) by choosing a suitable counterterm, and, finally,
(iii) using the previously determined counterterm, obtain

eJP=-
7T a2

1+a gl" A

(3.10)

in the Euclidean case [8]. It is a simple matter to show

where rP=iy", r"„=iy"y~, respectively, and R„ is such
that {y~R =R„{y~. The above identification is such that

f (dy }J"(y}B„g(y)exactly reproduces the regularized ex-
pression for the integrated anomaly obtained from Eq.
{2.11) or {3.2a). Notice also that the naive limit of (3.9) is
the formal expression J"(y)=tr[G(y, y)r" ] as it should.
Expression (3.9) is valid for arbitrary dimensions and can
be exactly calculated in the two-dimensional case giving
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—f dy dx 8"J(y)bo(y, x)B„g(x), (3.12a)

or

+f dy dx J(y)So(y, x)y„B"ri(x), (3.12b)

where J(y) denotes the remaining pieces of the above-
mentioned first term, and 60, and So are the Green's
functions of the operators 8 and e), respectively. Then
we have at least two possible currents which we can asso-
ciate to the regularization prescription (3.1). They are

;J"=;J" +J" (i =1,2)

with

,J"„(y)= hm tr f dx dx'dk

(2m )'

(3.13)

that the currents (3.10), which coincide with those ob-
tained in the point-splitting calculation, reproduce indeed
the family of anomalies (1.1).

Now let us consider the prescription (3.1), which can
be rewritten as

Tr(g 'RgK +g 'LgR )

=Tr(g '[R,g]K)+ Tr[g '(LB+4K)R] (3.11)

in terms of (3.2a). We observe that the diSculty in iden-
tifying the corresponding currents that are responsible
for the family (3.7) arises from the first term in the right-
hand side of (3.11) which depends on ri(x) instead of
B„ri(x). One can force this dependence at the expense of
introducing an extra nonlocal contribution to the current,
either in the form

term of the right-hand side of Eq. (3.11) and also are not
gauge invariant. We expected that the charge-
conjugation-covariant prescription would be naturally
singled out as the correct one. Nevertheless, this was not
the case and even worse, we found that the results ob-
tained with this prescription do not have the group prop-
erty and also they are not related by allowed counter-
terms to the other prescriptions [point-splitting or (2.11)].
These properties can be traced back to the fact that
prescription (3.1), though covariant under charge conju-
gation, does not incorporate (LB+8K) as a unity but has
an extra contribution which is responsible for the addi-
tional nonlocal terms. This result favors prescription
(3.2) as the correct one.

IV. THE FOUR-DIMENSIONAL CASK

(1+a)ie „„p
2(4~)~

(4.1a)

in our conventions. We were not able to find the corre-
sponding calculation for the divergence of the vector
current with arbitrary a, which is then performed in Ap-
pendix A. The result is

The anomaly calculations in four dimensions are com-
pletely analogous to those described in the previous sec-
tion and most of the details are presented in the appen-
dices because of the more complicated nature of the alge-
bra that it is involved. Again, our starting point is the
one-parameter-dependent point-splitting calculation of
the vector and axial-vector anomalies. The latter case
can be found in the literature [13],so that we just quote
the Euclidean result which is

or

X e'""G(x,x')[R„.,g„,)
X e'""i y~h~(x' —y)B» (3.14a)

8 JP= — lim 8 [—2MOA "+-,'B,B"A"e(1 —a) 2

(4~)2 M IJ

—
—,'e (1—a) A„A'A "] .

zJ"„(y)=— lim tr f dx dx'dk
(2~)'

Xe '""G(x,x')[R„,,g„,]
Xiy5SO(x' y)y" . — (3.14b)

The corresponding vector currents are obtained by mak-
ing the replacement y5~ 1. The results of the calculation
are

JIl= 8"8 A
1 2 ~2 a

p e(1—a} 1
&&e~ 8 A1 3 2 2

~
P

(3.15}

together with

2
1

a

(3.16)

Both currents; J" defined in (3.13) lead to the family of
anomalies (3.7), but differ from the standard ones (3.10)
by extra nonlocal terms due to the presence of the first

(4.1b)

The expected null result obtained in the gauge-invariant
calculation (a =1) was previously verified explicitly in
Ref. [14]. Let us remark that the values for the
anomalies in the point-splitting calculation must be co-
variant under charge conjugation, which amounts to the
transformation properties JI!~—JIl, J"„~J"„,in four di-

mensions. This fact can be directly verified from expres-
sion (A3) for the regularized current, taking into account
the transformation properties of the Green's function to-
gether with the prescription that the short-distance limit
must be taken symmetrically. Equations (4.1) constitute
a family of vector and axial-vector anomalies in four di-
mensions which is the analogue of the one given in Eqs.
(1.1) for the two-dimensional case.

Next we turn to the calculation of anomalies in the
Fujikawa approach using the extended definition for the
regulated Jacobian introduced previously in Eqs. (2.13)
and (3.2a) with the regulating operator
R =exp[ (B,/M) ]. The ca—lculation according to the
prescription (2.13} is summarized in Appendix B and
leads to the following family of anomalies in their Eu-
clidean version:
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8 JI', = lim 8 ( —2M A "+2iaeA F""(1—a)e
(4~)' M-- "

+—,'IB"8"A —ie(1 —a)[A„B"A "+B„(A"A )] e—(1—a) A A A "]), (4.2a)

(1+a )ie ~„pF FP A 2(4 pv aP (4.2b)

X lim 8„[—2M A"
M~ oo

+ ', [8"8"A —e(1—a)—A A A "]],
(4.3a)

se

(4m )
(4.3b)

Let us remark that, in an abuse of notation, we will be us-
ing the same symbols for the currents in different regular-
ization schemes, even though we know from the previous
section that, in general, such currents are expected to be
different.

The four-dimensional calculation shows explicitly that
the prescription (3.2a) is not covariant under charge con-
jugation. Consequently, one should consider the average
—,'(T2+T3) to complete the regularization procedure.
Nevertheless, the axial anomaly obtained from T2 trans-
forms correctly under this symmetry. Contrary to the
two-dimensional case, the anomaly calculation according
to the prescription (3.2), in its symmetrized form, does
not directly reproduce the point-splitting results (4.1).
Later in this section we will explain how results (4.1) and
(4.2) can be related via counterterms in the corresponding
Jacobians.

Equation (4.2b) shows that the parameter-dependent
coefficient of the axial anomaly is (1+a )/2 instead of
the value (1+a)/2 obtained in the point-splitting calcula-
tion. We remind the reader that a must be a real number
in order for 8, to be Hermitian. The above result may
lead to the uncomfortable feeling that the axial anomaly
could not be made zero in principle, even though this is
not the physical situation. Relaxing the condition of a to
be real does not allow us to choose a =i in order to set
(4.2b) equal to zero, because then P, would not be Her-
mitian and the whole calculation according to Eq. (3.2a)
would be wrong. The possibility of considering complex
values of the parameter can be realized by using the regu-
lators R, = exp( g,g, /M ) —and Rz= exp(
/M ) in Eq. (2.7). This calculation gives the factor
[a +aa'+4a' +6(a' —a)+6]/12, which reduces to
(1+a )/2 when a =a *, and which can be made zero for
the choice a = 2+i&30/—2 that, anyway, is different
from the naive choice a =i.

Now we consider the anomaly calculation according to
prescription (3.1) which is invariant under charge conju-
gation. Some details of the calculation are presented at
the end of the Appendix B and here we only write the re-
sults, which are

2(1—a)e

In complete analogy with the two-dimensional case, the
axial anomaly is again independent of the parameter a
and apparently has the correct physical value even before
imposing any requirement about gauge invariance.

Having presented three alternative calculations of the
vector and axial-vector anomalies in four dimensions, we
would like to discuss now some relations among such re-
sults. In this section we will not intend to identify the
currents which lead to the corresponding anomalies,
mainly because of the calculational difficulties in this
case.

The first thing we notice in all the results obtained for
the vector anomaly is that our regularization prescrip-
tions have not been completely successful because the
terms linear in A„with no derivatives diverge. This
means that we still have to identify the finite part of this
contribution to the Jacobian. After this is done we real-
ize that such finite pieces are defined up to a local coun-
terterm fdy a(y)B„A "(y). We can think of this term as
arising from an effective ambiguity in the short-distance
behavior of the four-dimensional Green s function given
by 5G —y"A„. This counterterm does not contribute to
the axial-vector anomaly because Tr(y"y"y~)=0 in four
dimensions. Now we consider the possible counterterms
that we can have in the corresponding Jacobians arising
directly from the identification of the short-distance be-
havior of the Green's function. In four dimensions, the
subtraction of such infinities leads to an arbitrariness in
the Green's function determined by the following local
polynomials in A„and its derivatives:

S,G-aa„A~, S,G-a„a~A, (4.4)

S,G-~&y ~&a„a.a, ,

S,G =Aa„A~,
55G =8A

S,G= ~~a„g,

57G —A

(4.5)

(4.6)

Such terms arise when the divergences of G (x,x) are la-
beled by powers of A and correspond to all possible
terms of dimension [m ] that can be constructed with the
y matrices, A„, and its derivatives. The vector anomaly
would get contributions from any one of the terms above
and those in Eq. (4.5) will induce terms violating charge-
conjugation invariance. On the other hand, the axial
anomaly will get a contribution only from the first ex-
pression in Eq. (4.5). We then see that, in four dimen-
sions (and, in general, in 4n dimensions) charge-
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conjugation invariance puts severe constraints upon the
possibility of relating the results for the anomalies ob-
tained via di6'erent regularization prescriptions, or results
with di6'erent parameters within a specific regularization.

Let us consider the point-splitting calculation, for ex-
ample. Suppose that we want to change the axial anoma-
ly with parameter a to a corresponding one with parame-
ter a'. This could only be done with a counterterm in-
duced by the first local polynomial in (4.5) which, never-
theless, would generate terms that violate charge-
conjugation invariance in the vector anomaly. This is a
simple way of realizing that the family of anomalies (4.1)
in four dimensions does not possess the group property
exhibited by the analogous two-dimensional family.
Thus, the physical result in the four-dimensional family
(4.1) can only be achieved by demanding gauge invari-
ance choosing a =1.

Now let us compare the point-splitting calculation (4.1)
with the one using the regularization prescription (3.2a).
The latter calculation does not produce a result covariant
under charge conjugation for the vector anomaly and the
counterterm arising from the first local polynomia1 in
(4.5) needed to change the factor (1+a ) into (1+a) in
the axial anomaly, gives contributions of similar type to
those terms already present in (4.2a). Unfortunately, the
elimination of these charge-conjugation-violating terms
in the vector anomaly does not constitute any check on
our calculation. This is because we have at our disposal
three parameters, arising from the last three local polyno-
mials in (4.5), to cancel a given linear combination of the
terms A "B„A",3 8"A„A"B,A" that appear inside the
total derivative term in Eq. (4.2a). This can always be
done and we do not write the results for the required
eoe%cients because they are not very illuminating. The
only remaining difference between the results (4.1) and
(4.2) for the vector anomaly is the coefficient in the term
linear in A„with three derivatives. Again, one result ean
be transformed into the other by means of the counter-
term arising from any of the local polynomials in (4.4).

Finally, we comment on the family (4.3) obtained
through the charge-conjugation-invariant prescription
(3.1). We obtain results similar to the two-dimensional
ease: the axial-vector anomaly turns out to be indepen-
dent of the parameter a and also with the correct physi-
cal value. Nevertheless, the vector anomaly is nonzero
and parameter dependent. Because of charge-
conjugation invariance, this family is not related by coun-
terterms to any of the previous ones and does not possess
the group property either. Even though we did not cal-
culate the currents that produce this family of anomalies,
we conjecture that, in analogy with the two-dimensional
case, the regularization prescription (3.1) induces extra
nonlocal terms in these currents that account for these
rather bizarre results.

We conclude with the following remarks. (i) Our gen-
eralization (2.11) of the regularized Fujikawa Jacobian
has allowed us to understand the regularization ambigui-
ties appearing due to local terms in the e6'ective action as
ambiguities arising from local counterterms in the
Green's function appearing in the Jacobian. The ability
of using such counterterms is highly restricted by

charge-conjugation invariance, as is clear in the four-
dimensional case. (ii) The nice group property exhibited
in the two-dimensional case by the family of anomalies
given in Eqs. (1) is not extended to four dimensions,
essentially due to charge-conjugation invariance. (iii) The
alternative possibility of placing the regulating operator
according to Eq. (3.1), though covariant under charge
conjugation ab initio, has to be rejected because it induces
extra nonlocal terms in the currents.
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APPENDIX A:
THE POINT-SPLITTING METHOD

x +6/2
Xexp —iea f A„dx"

x —e/2
(A 1)

where e is a small spacelike interval, and a is a parameter
which should be set equal to one in order to have gauge
invariance; i.e., for a =1 the anomaly must vanish.

The divergence of jP(x lela) is

&p p(x I ~ I a) =iej P(x I
~

I
&)

X A„(x +e/2) —A„(x —e/2)

—aB„f A (y)dy
x —6/2

(A2)

To obtain the anomaly of the vector current we take first
the vacuum expectation value of (A2) and then the sym-
metric limit e—+0, which leads to

H =B„JP=elimtry"G(x —e/2, x +e/2)
a~0

X A„(x +e/2) —A„(x —e/2)

—aQ
x —e/2

x+e/2
X exp iae f —A (y)dy

X E/2
(A3)

In this expression G(x —e/2, x +e/2) is the Green's
function of the fermion in the external field A„. The first

thing that we would like to check, before making any cal-
culation, is whether Eq. (A3) transforms correctly under

charge conjugation. Under the corresponding transfor-
mations the right hand side of (A3) changes into

In this appendix we present the calculation of the vec-
tor anomaly using the point-splitting method in Min-
kowski space. The vector current is given by

jP(xlela) =g(x +e/2)y"g(x e/2—)
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H ~ —elimtry" G (x +e/2, x —e/2)
e~o

X —A„(x +e/2)+ A „(x—e/2)

+aB„f A (y)dy

x+e/2
X exp +iae f A (y)dy

x —e/2

Taking into account that the limit e—+0 is taken symme-
trically, it is possible to interchange e by —e, so that H
transforms as H~ —H. This is in agreement with the
transformation property of the vector current jll~ —jIl
under charge conjugation. This result implies that the
only terms that can contribute to the anomaly of the vec-
tor current are odd in the electromagnetic potential A„.

To calculate the divergence (A3) we expand the fields
to O(e ) and solve the integrals to the same order. The
result is

H=B„JP

E' E' E'~
=elimtry"G(x —E/2, x+e/2) (e iae—e e A )(8 A„—aB„A )+ [ —,', i3 8 8 A„—(a/12)B 8 B„A

@~0 2

—(ae) A A (8 A„—aB„A )]

(AS)

Substituting the expansion of G (x,y), we obtain contributions to the anomaly of zero, first, and second order in the
external field. We denote this power series by

H =HO+H)+H2+

where Ho corresponds to the free term of the Green's function, and it is given by

Ho=elimtr f exp(ipse)y" (e iaee e —A )(8 A„—aB„A }
8p
2'

+ [ —,', 8 8 8 A„—(a/12)B 8 B„A
2

—(ae) A A (8 A„—aBA )] (A6)

After taking the trace it is easy to see that (A6} diverges in the limit e~O. To avoid this we introduce a Pauli-Viliars
regulator with mass Mo. Calculating the integral and taking the limit a~0, we obtain

H = — liin 8 [
—M A "+—a a A" '(ae) —A—A A ] .2e (1—a) 2 ] cx 2

0 (4 )2 ~ p 0 12 cz 3 Ix (A7)

The first term in the right-hand side of (A7) diverges in the limit Mo~ oo, but this divergence can be eliminated intro-
ducing a mass renormalization.

The first-order term in the external field of the Green's function contributes with

H, =e limtr dz exp[ ik (x ——e/2 —z)] exp[ ip (z ——x —e/2)]
dk dp

e~o (2n. )

Xy"S(k)A(z)S(p)[(e —iaee e A )(0 Az —aB„A )] .

The result of calculating this expression is

4 (1—
)H, = — 8 (A"A "A ) .

3(4~)

(A8)

(A9)

In the contribution of second order in 3„in the Green s function, the only term that gives a nonvanishing result is

H2 =e tr dz dw3 dp dq dk

(2') ' exp[iz (p —q)) exp[ix (k —p)] exp[iw (q —k)]

Xexp[(i e/2)(k +p)]y"S(p) A (z)S(q) A (w)S(k)e (8 A„—aB„A ) . (A10)
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After calculating the integrals and taking the trace we
obtain

R = exp( —g, /M ),
where

(B1)

2 1—0,= ' ' ' a(A„A A~).
3(4m )

(A 1 1) 8, =y"(8„+ieaA„)=y"D,„,
(B2)

Adding all the contributions of the divergence of the
vector current we are led to

a Z;= — lim a [
—2M A~+-a a.A~e(1 —a) 2

P ~
(4 )2 M P 0 6

—
—,'e (1—a) A „A "A "] .

(A12)

This result shows clearly that, when a = 1, i.e., the case of
a gauge-invariant current, the vector anomaly vanishes.
Finally, we remark that our conventions are such that the
same expression (A12) is valid in the Euclidean formula-
tion.

APPENDIX B:
AXIAL AND VECTOR ANOMALIES

IN FOUR DIMENSIONS

In this appendix we calculate the axial and vector
anomalies in Euclidean space using the prescription given
in Eq. (3.2a); i.e., we use expressions (2.13a) and (2.13b)
with the regulator given by

2 2

T»= dy y ~~~ F F
(4m. )

(B3)

The second term in (2.13b) and the contribution (2.13a) to
the vector anomaly can be written in similar form by in-
troducing a matrix Q, with the value Q~=aI for the vec-
tor anomaly and Q„=—Py5 for the axial anomaly. In
this way we have

T, =i Tr(8 'Q [8,R]) . (B4)

Calculating the trace over the spacetime and using Eq.
(2.16), we are left with

2

Our conventions are as follows: y"(@=1,2, 3,4) are
anti-Hermitian matrices satisfying Iy",y"J =2g„„;
g „=diag( ————); ys=y'y y y y with y~=1, and
$4

We begin by calculating the first term in Eq. (2.13b).
This contribution is equivalent to the Fujikawa computa-
tion of the axial anomaly with A „~aA „.The result is

T, = i (1 —a)e —lim tr f dx dy s exp( ikx) exp—[iy (k —q) ]6(x,y)Q (y)
dk dq

M~ oo (2n )

—1—exp D,„D,"—2iq„DI"—q +2k„q"

(B5)

where G(x,y)=(x~9 '~y) with 8=8+ieA Rescali.ng k~Mp, and expanding the exponentials up to terms that go
like 1/M, we obtain that the term inside the curly brackets in (B5) is

[ I~= 2p„q"y~+ [iae(g I'y" g~"y')F„„(q—+2iq„D,"+—2p~ q"q +4ip~ q D,")y~]1 1

+ [aep (g "~y" g~"y')(F„„D,+—D, F„„) 2q~„(D, Df —+D,"D, )yl'1

+2iq p„DI'y~ 2p q [D,„D,"+(—iae/2)y"y"F„, ]y~+2p q (2iq„D,"+q )y~

+ 4p„p,p (q"q q +3iq "q D," 3q D,"D,")y~]— (B6)

Now, to calculate (85) we needed to expand the Green's function G(x,y) in powers of the external field A„. For the
first term in the expansion we have

dp dq . —M
T,,o=(1—a)e lim trf dy p q exp( iqy) Q(y)A&(q)exp(—p )[(2~)' MI{

Substituting (B6) into (B7) we can calculate the contribution to the axial anomaly with the result

(B7)
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ia (1—a)e p,vaPT,0„= dy P(y)e"' F„F& .
2(4n )

The corresponding contribution to the vector anomaly involves a more tedious calculation since there is a large number
of terms not vanishing under the trace. These are given by

T,0v= —(1 a—)e lim tr f dy exp( iqy—)a(y) A~(q) exp(p )
dg dp 2

M m (2~)

X 2 "M q"y yl'+ [ae(g "t'y" g»y—")(F„,D, +D,F„„)
PaPp z /pa

P

2q„(—D,"D, +D, D&)yt'

+2iq D, y~ q(2D—,„D,"+iaey"y"F, )yt'

+2q (2iq„D,"+q2)y~]

+—
2 (q"q"q +3iq'q D1' 3q D1'D—,")y&y&

4 S'gPvP&I
(89)

Tracing over the y matrices and calculating one of the momentum integrals as an inverse Fourier transform, we obtain
the result

T10v= 2
lim fdy a(y)[2M B„A" 2iaeA —"(F „D,"+D,"F„,)

(4~)2

2iaed„A, F—" ', [d„A„(DI—'D—,"+D,"D1')+d„di'A. D,"

+a„A~D.~."+2a~a A.D.„+a„a"a~A„]]. (810)

Reordering this expression, we finally obtain the zeroth-order contribution in the Green s function expansion to the
vector anomaly:

T = lim f dy a(y)B ( 2M A "—+2iaeA FI'"(1—a)e 2
10v

(4 )2 P V

+—,'[8"8"A„+iae[A,B"A"+8 (A "A")] ate A„A "A "—
j ) . (811)

The second contribution to the anomalies comes from the first-order term in the Green s function and it is

T»=(1 a)e li—m tr fdzdy, Iexp[iy(k+t —q)]exp[ iz(k+t)]—2 dk dq dt
M~ oo (2n )'

XS(—k)A(z)$(t)Q(y)A (q) exp(k /M )I J1'[, (812)

where S(k)= 1/k' is the free propagator. Making a change of variables and rescaling in the usual way we can express
(812) in the form

T»=(1 a)ie lim —tr fdy, M [exp[ iy(q+r)]—S(—Mp)y S( —Mp —r)Q(y)A (r)A (q)exp(p )[M~ oo (2m }'

(813}

Introducing the expansion for the free propagator S( —Mp r) in powers of 1/M togeth—er with Eq. (86), we get the re-
sult
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T»=(1 —a)ie trf dy exp[ —iy(q+r)]A (r)A (q)exp(p )
dg dp E&

)12 a p

x 2r pQ(v)[i«(g"'r" —g"'r )F„. —r'(»q„D."+q }l
P Pp

2—r PQ (y )r~(4iq "D,"+2q "q ")P PpP

—r Q(y)[iae(g "~r" g»—r')F„, r~(—2iq„D,"+q ))

+r Q(y)r'(4iq "D."+2q"q"} " +2r q"rpr r"Q(V)r'
p Ppal

p p4

—«q"rPQ(y)r' "+4r"q"r Q(y}r' " "P P PpPI PgPp
7l ~6 p4

From this expression we obtain the contribution to the axial anomaly,

T„w =
z dv P(v)e"' F„,F p

i(1—a)ez pvap

2(4'�)
whereas for the vector anomaly we have

T»v= f dy a(y) ;B„[2—-aeA„A A" ie[A„B—"A'+B„(A"A")]] .(1—a)e

(814)

(815)

(816)

The last contribution to the anomalies arises from the second-order term in the Green s function expansion, and it is
given by

T z=(1 —a)e lim trfdydzdw, 6 exp(k /M )e px[iy(k+t —q)]exp[ iz(k—+r)]3 dk dq dt dr
M~ oo (2n. )'

xexp[iw(r —t)]S(—k)A(z) S(r)A( w)S(t)Q(y) A(q)[ ]~ . (817)

If we again replace the free propagators, integrate over the position variables z and m, and take the inverse Fourier
transforms, we obtain

3

Trz=
z trf dy A„A d"A (g„g p+g„g p+g„pg„)r"r r r rPQ(y)r

12(4n. )
(818)

From this expression it is easy to see that the contribution to the axial anomaly vanishes and that, for the vector anoma-
ly, we have

3

T,zv= f dy a(y) —38„(A„A A") .
(4m )

The result of adding all the contributions to the axial anomaly is

T = d P( }e""PF F
2(4 )z

V V& Pv aP~

whereas for the vector anomaly we have

T~= lim f dy a(y)B„( 2M A "+2iaeA—,F"'+ ', [8"8"A„ie(1——a—)[A,B"A "+B„(A"A )]
(1—a)e
(4~)z M--

(819)

(820}

—e (1—a) A A A"l). (821)

Equation (821) shows explicitly that the prescription (2.13a) does not transform correctly under charge conjugation,
so that we now consider the prescription (3.1}which naturally does so. In order to calculate with this prescription we
use Eq. (3.5). For the axial anomaly we have from Eqs. (88) and (815) that

X"(A„)= f dy 13(y)e" PF„„F„p. (822)

Then, the axial anomaly in four dimensions calculated with the prescription (3.1) is
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(B23)

For the vector anomaly, we have from the Eq. (B21), that

X (A„)=T~

and then we obtain

(B24)

t)"J~= t) lim I 2M—A "+,'[ri"—d"A„e—(1—a) A„A A "]J,
(4sr) "M

according to prescription (3.1).

(B25)

[1]H. Fukuda and Y. Miyamoto, Prog. Theor. Phys. 4, 347
(1949); J. Steinberger, Phys. Rev. 76, 1180 (1949); J.
Schwinger, ibid. 82, 664 (1951); J. Bell and R. Jackiw,
Nuovo Cimento 60A, 47 (1969); S. Adler, Phys. Rev. 177,
2426 (1969).

[2] K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979); Phys. Rev.
D 21, 2828 (1980).

[3] K. Johnson, Phys. Lett. 5, 253 (1963).
[4] A. Das and V. S. Mathur, Phys. Rev. D 33, 489 (1986).
[5] A. Smailagic and R. E. Gamboa-Saravi, Phys. Lett B 192,

145 (1987).
[6] J. Alfaro, L. R. Urrutia, and J. D. Vergara, Phys. Lett. B

202, 121 (1988).
[7] J. Alfaro, L. F. Urrutia, and J. D. Vergara, in Quantum

Mechanics ofFundamental Systems II, edited by C. Teitel-
boim and J. Zanelli (Plenum, New York, 1989).

[8] D. Cabra and F. A. Schaposnik, J. Math. Phys. 30, 816
(1989).

[9]S. D. Joglekar and G. Saini, Phys. Rev. D 43, 1346 (1991);
43, 1355 (1991).

[10]G. A. Christos, Z. Phys. C 18, 155 (1983).
[11]K. Fujikawa, Phys. Rev. D 29, 285 (1984).
[12]For a discussion of these ambiguities at the level of the

effective action see H. Leutwyler, Helv. Phys. Acta 59, 201
(1988).

[13]R. Jackiw, in Current Algebra and Anomalies, edited by S.
B.Treiman et al. (World Scientific, Singapore, 1985).

[14] C. R. Hagen, Phys. Rev. 188, 2416 (1969).


