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Dynamical violation of parity and chiral symmetry in three-dimensional four-Fermi theory
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We study dynamical symmetry breaking in (2+1)-dimensional quantum electrodynamics with four-

Fermi couplings. Using the large-N expansion and an effective potential method we show that the four-

Fermi couplings can be relevant when the coupling constants are near certain critical points. We show

that the four-Fermi interactions can break either parity and time-reversal symmetries or a certain

discrete flavor symmetry and analyze how the symmetry-breaking pattern is modified by electromagnetic

interactions. We discuss the critical behavior of the theory in the large-N expansion in both the leading

and next-to-leading orders.
PACS number(s): 11.15.Pg, 11.15.Ex, 12.20.Ds

I. INTRODUCTION

Dynamical symmetry breaking plays a central role in
many current areas of physics research [1—3]. Beginning
with the work of Nambu and Jona-Lasinio [1],it has been
investigated as a mechanism for generating the fermion
mass spectrum in elementary-particle physics. The
breaking of the approximate chiral symmetry of QCD is
now widely accepted as a realization of this phenomenon
[2]. It is also proposed as a mechanism for symmetry
breaking in the electroweak sector of the standard model
[3]. Among its appealing features are the fact that is re-
quires fewer ad hoc parameters and fewer elementary
fields than the alternative spontaneous symmetry break-
ing with elementary Higgs fields.

A systematic analysis of dynamical symmetry breaking
in realistic field theories requires nonperturbative
methods. Commonly used are numerical lattice simula-
tions, analytic approximation schemes such as the study
of Dyson-Schwinger equations in the quenched, planar
limit, and variational methods. Another useful laborato-
ry where much as been learned is the solution of models
in lower dimensions, particularly in 1+1 dimensions
where there are numerous solvable interacting quantum
field theories with discrete symmetries broken by com-
posite order parameters. In this paper we shall study the
dynamical breaking of parity and time reversal and a cer-
tain discrete fiavor (chiral) symmetry in a strongly cou-

pled (2+1)-dimensional field theory using a conventional
effective potential approach and the large-N approxima-
tion. Our method is especially suited to field theories
with four-Fermi interactions where the order parameter
is the vacuum expectation value of a local composite
operator.

Perhaps the classic example of dynamical symmetry
breaking in 1+1 dimensions occurs in the Gross-Neveu
model [4,5], which is strictly renormalizable and exhibits

asymptotic freedom, dimensional transmutation, and

dynamical chiral-symmetry breaking through the genera-
tion of fermion mass. It was conjectured long ago [5]

X
A, AS=f d x g Ag, t'y„Bpg, +

2

vA

a=1

'2

with N flavors of complex four-component fermions and
a U(1) gauge field A„with 9'„=8+,—8+„ in three-
dimensional Euclidean space. A is the ultraviolet cutoff
and A, A, , ~, and e are dirnensionless, cutoff-dependent
constants. A ' is the fermion wave-function renormal-
ization parameter, A, and ~ are the bare four-Fermi ver-
tices and e is the bare electric charge. These constants
have been scaled by the appropriate powers of the cutoff
to make them dimensionless, i.e., so that the only dimen-
sional parameter in the model is the ultraviolet cutoff.

The y matrices are

cr„O 0
73—

0 o ' 0P.
(1.2)

that the generalization of the Gross-Neveu model to 2+ 1

dimensions, although not renormalizable in an expansion
in powers of the four-Fermi coupling, would be renormal-
izable in the large-N expansion and would exhibit some of
the features of the (1+1)-dimensional model such as
dynamical symmetry breaking. This possibility has re-

cently been discussed by several authors [6—11]. We
shall elaborate on a recent investigation [11]of dynamical
breaking of parity and time-reversal invariance and also
certain discrete fiavor symmetries in the (2+1)-
dimensional Gross-Neveu model with additional U(1)
gauge fields.

We shall consider a continuum field theory with two
kinds of four-Fermi couplings as well as a U(1) gauge
coupling:
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where o„, ]]],=1,2, 3 are the Pauli matrices and J is the
2X2 unit matrix. (Notation and definitions of symbols
for Euclidean fermions is discussed in detail in Appendix
A.)

Three kinds of mass operator are important in this
model: a scalar fermion mass gr g, a pseudoscalar fer-
mion mass g]j'r, and a Chem-Simons topological mass
term for the photon field e""A„B~». The latter
changes by an exact derivative under a gauge transforma-
tion and therefore has a gauge-invariant spacetime in-
tegral [12,13]. These mass terms are distinguished by the
way in which they transform under discrete symmetries.

The action (1.1) has U(N) XU(N) symmetry. Equation
(1.1) also has a discrete Z2 symmetry:

Z~:p~r'g, Z2:g~gr', Z2A„~A„,
where

(1.3)

1
0

0 (1.4)

Under this transformation the scalar fermion mass opera-
tor ]tjr P changes sign,

Z (1.5)

and the mass operators gP and e""A&B~» are invari-
ant:

Z2:pg~fg, Z2:e]'" A„B~»~e""A„B+» . (1.6)

Since gr g is not invariant under Zz, a nonvanishing ex-
pectation value ( gr g )%0 would indicate that the vacu-
um of the theory is not symmetric. This expectation
value is therefore an order parameter for Z2 symmetry
breaking.

The action (1.1) is also invariant under the Euclidean
three-dimensional parity

P:g(x„x2,»3)~y r'f(x], —xz, xi),
P:P(x„x,x ) —P(x„—»2, »3)y r',
P:(A],A2, A3)(x] »2 »3)

(1.7)

(1.8)

The topological mass term is also parity odd:

P:fd'x ~~""A„a~,— fd'» ~—~."A„a~„. (1.12)

Either of the vacuum expectation values (ff ) or
( fE""A„B+») are order parameters for parity break-
ing. If one of these operators has an expectation value,
radiative corrections can induce an expectation value for
the other one [14—17]. In general this occurs when the
physical fermion has a pseudoscalar mass larger in mag-

~(A ] A2 A 3)(x„—»2, »i ) . (1.9)

The mass operator gr g transforms like a scalar,

P:fd xgrg~fd »Pre, (1.10)

and Pg like a pseudoscalar:

P:fd »gal~ —fd »gal.

nitude than the scalar mass [11]. Then the physical fer-
mion and the physical photon would have parity-
violating masses and the Coulomb interaction would be
short ranged.

The Z2 and parity symmetries forbid the appearance of
a bare mass for either the fermions or the photon in the
action (1.1). If the physical fermion spectrum is to have a
mass gap at least one of these symmetries must be broken
dynamically. Furthermore, the photon can have a topo-
logical mass only if parity is broken. In the following we
shall seek solutions of the model (1.1) which break either
Zz or parity or both through the generation of fermion
masses. We also find that, with the particular choice of
four-Fermi couplings taken in (1.1), either parity or chiral
Z2 symmetry can be broken, but there is no solution
where both are simultaneously broken. We shall discuss
the effects of choosing other four-Fermi couplings in Sec.
II.

The model (1.1) is not ultraviolet renormalizable in a
perturbative expansion in the coupling constants A, /A
and ~/A, and formally, the four-Fermi operators are ir-
relevant. Furthermore, perturbation theory in the di-
mensional electromagnetic coupling constant ev'A is
super-renormalizable in the ultraviolet but has infrared
divergences when the fermions are massless [12]. Howev-
er, it has long been argued that the four-Fermi couplings
are renormalizable in the large-N expansion [5—11,18,19].
There is a recent rigorous construction of a model with
one four-Fermi coupling (A. =O=e) in the context of the
large-N expansion [9]. There it was shown to have a
strong-coupling fixed point where the four-Fermi cou-
pling is a relevant operator, i.e., generates nontrivial be-
havior of the S matrix. It has also been argued that a
four-Fermi interaction of the kind considered here can
drive dynamical symmetry breaking and dynamical fer-
mion mass generation if the coupling is sufficiently strong
[8,10,11].

In the large-N expansion the electromagnetic coupling
is also ultraviolet renormalizable and its infrared behav-
ior is improved [12,13,17—19]. It has been shown that for
suff]ciently strong coupling (suff]ciently large 1/N) the
electromagnetic interaction can break the Z2 symmetry
[18—27]. Also, a preliminary investigation showed that
the electromagnetic interactions oppose the spontaneous
breaking of parity [25].

In this paper we shall elaborate on the phase diagram
of the model (1.1} in the three-parameter coupling-
constant space of A, ,a, 1/N.

In Sec. II we describe an effective potential approach
to dynamical symmetry breaking. We find the large-N
limit of the phase diagram and show that P and Z2 can
be broken for sufficiently strong coupling.

In Sec. III we examine the renormalization of the rnod-
el and next-to-leading-order corrections to the effective
potential from both four-Fermi and U(1} gauge interac-
tions. We discuss the critical behavior of the second-
order phase transition. We believe that the next-to-
leading-order computation both demonstrates the renor-
malizability of the four-Fermi theory and provides an aid
in estimating the radius of convergence of the large-N ex-
pansion. There is a previous result on the renormaliza-
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tion in large-N with a single four-Fermi coupling and
without further coupling to electromagnetic interactions
[28]. There it is asserted that an additive renormalization
of the auxiliary scalar fields of the model is necessary.
Here we show that this is not necessary and only conven-
tional multiplicative renormalization is needed to make
the critical theory finite.

Section IV contains a discussion, and some useful for-
mulas are summarized in the Appendix.

and the thermodynamic potential is

W[J„J2]=—lnZ[J„Jz] .

The expectation value of the scalar fields are given by

(2.3)

cuto8' A is taken to infinity.
The partition function is given by

Z[J„Jz]=

fdic

dy dA„d /de exp —S —f (Jig+ J2&)

(2.2)

II. DYNAMICAL SYMMETRY BREAKING

To set up the 1/N expansion we introduce the
Lagrange multiplier fields P and y and to rewrite the con-
tinuum action (1.1) as

(y) = W[J„J,]—= m, ,
1

(y) = W[J„J2]=m2 .5

2

(2.4)

(2.5)

S=fd x Agiy„B„1/r+iBPQP+iCygdg
The free energy is obtained by the Legendre transforma-
tion

+
NB'A 02+ NC'A 2+ A e .A 0
2A 2A. 2A 2K 'p p

I [m„m2]= W[Ji,J2]—fm, Ji —f m2J2

and has the derivatives

(2.6)

+ 9'„„9„„N
4A ~" ]Lt"

(2.1) 5 I [m, , m2]= —J, ,
5m )

(2.7)

Solving the equations of motion for the scalar fields P and

y and substituting the solutions into (2.1) yields the four-
Fermi interaction terms in the action (1.1). The cutoff-
dependent renormalization constants A, B,C and the
cutoff-dependent coupling constants A,,»' in (2.1) are to be
chosen so that, in each order of the 1/N expansion, the
correlation functions remain finite as the ultraviolet

5
1[m, , m, ]=—J, .

5m2
(2.8)

We shall consider the equilibrium theory where
J, =J2 =0. This requires that we minimize the free ener-

gy with respect to m, , m2.
The functional integral

I = —ln fdgdydA„dgdgexp —S+f (P m, ) — I + f (y —mz)
5 5

5m, 5m 2
(2.9)

gives a self-consistent equation for I . It can be simplified by translating the integration variables
P~P+mi, y~y+m2. With the definition

NB A 2 NC AI [m„m2]= z m, +
z mz +I [m„m2], (2.10)

this gives

I = —lnf dgdydA„dfdgexp —f Af iy„B„+i mi+i m—2r /+i—BPPP+iCygr g

(2.11)

This is a self-consistent equation which determines I as a
functional of m

&
and m2. I is the free energy which is to

be minimized in order to find the values of m, and m2 at
equilibrium. It is also the sum of all one-(P, y)-particle-
irreducible Feynman diagrams with arbitrary numbers of
classical fields (P) =m, and (y) =m2 attached to exter-
nal lines. If we use the functions (B/A)m, +(CIA)m27

I

as the fermion mass, I is the sum of all irreducible, con-
nected vacuum bubble diagrams.

Feynman rules for the 1 /N expansion are defined as
follows.

(i) We first consider the Feynman rules for the
coupling-constant expansion in powers of A, , K with propa-
gators and vertices depicted in Fig. I.
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(ii) We then find the scalar field inverse propagators to
leading order in the 1/N expansion. To do this we must
compute the fermion loop diagrams depicted in Fig. 2 to
get the one-loop self-energies of the scalars, which is the
only contribution to their proper self-energy part which
is of order N. All other corrections are of order X or of
higher order in 1/N. Using the function

FIG. 2. The large-N resummed scalar propagator is the sum
of all graphs of order N

f (p, m) = /m/

277

p +4m parctan

diagrams shown in Fig. 3. The photon self-energy can be
decomposed as

(2.16)

the inverse scalar propagator is

(2.12) Here, II, is allowed only when parity is broken. The
one-loop diagram leads to

II, (p ) =m., p, —m, +—m ~

where

'(k) =N

B A B
gA2 A2

BC
A2 x4

C A

~A

BC
A2 Ix

C2

A 2 XX

(2.13)

C B+a, p, —m2 ——
m&

II,(p )=~, p, —m, +—m,

C B

(2.17)

(2.18)
B C B CD~~=D~r=f p, —m~+ —m2 +f p, —m, ——m2

(2.14)

B C B C

where

/m/ p' —4m' p~,(p, m)= —e N 2+ 3
arctan

(2.15)

are the components of the one-loop proper self-energy
functioo.

(iii) We follow a similar procedure to find the inverse of
the photon propagator to order X, i.e., we sum the loop

(2. 19)

e I'm~,(p, m ) = arctan
2~/p/ 2/m

/

(2.20)

The photon propagator to leading order in 1/N is the
inverse of the matrix:

P
&„.'(p) =—(p'5„„—p~„)—Il„.(p)+gp~„, (2.21)

X

XA
NBA

eA
NC'A

Ag' & i Bm, + i Cm, r' where we have used a relativistic R
&

gauge 6xing.
The 1/N resummed efFective action would have a

dynamically generated Chem-Simons term with a
coeScient determined by the zero-momentum limit of the
parity-odd part of the photon propagator:

2

Qadi k - k~kv
k'

N 2

11,(O) = N' B C
sgn —m, +—m2

B C+sgn —m ——m
A '

A
(2.22)

which vanishes when ~mz ~
) ~m, ~

and is +Ne /4m. when

3-iCT

-Aey"

FIG. 1. Propagators and vertices of the coupling-constant ex-
pansion.

FIG. 3. The large-N resummed photon propagator is the sum
of all graphs of order N
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(iv) The Feynman rules, as summarized in Fig. 4, are
the same as before with the exception that we use the
large-N corrected scalar propagator b, (p) and photon
propagator h„(p), and we omit all Feynman graphs

which have one-loop scalar or photon self-energy sub-
graphs.

With these rules, I is given by the sum of the diagrams
depicted in Fig. 5. Explicitly, we obtain

trna 2] NAB NAC d k 8 . . C
m, + m, —N lndet y k +i—m, +i—m2~'

(2~)3
2

+
3

ln deth k +— ln k ——H, k + II, k
1 Adk ) 1 Adk 2 1

2 (2~) (2~)'
(2.23)

where the contributions omitted are at least of order N '. The last two terms are the sum of ring diagrams shown in

Fig. 5. Note that the electromagnetic coupling only influences the effective potential at next-to-leading order. The
leading order is governed strictly by the four-Fermi interactions.

It is straightforward to integrate the leading order in I to get the free energy

ll. »] NAb NA NA b N b
2 m&+ 2 mz —

2 2(~~+mz)+ 3(l~~+m21 +l~~ m21 )+ '
2ga2 2Ka2 ~2 a2 6~ a3

(2.24)

~c K (2.25)

the leading order in the large-N part of I can be written
as

1 NA 1 1 2 NA 1 1—I [m„m2]= —— m f+
V

'
2 k A'c 2 K Kc

m 2

+ (lrn, +m, l'+lm, —m, l')+

(2.26)

1

Ag'+ iBm, + icrn, r'

4(p) in eqn (3,13)

4„„(k) in eqn (3-21)

where to leading order in 1/N, we have taken A =a and
8 =b =C, with a and b finite dimensionless constants.
The cutoff dependence of A, and K is yet to be determined.
For now, it is sufficient to absorb the factors b la into m,
and m2. Then, if we define the critical coupling constants

It is evident that if either of the four-Fermi couplings
are suSciently strong, either k & k, or K & K„ the free en-

ergy is minimized by mt+0 or m2%0 and either the par-
ity or Z2 symmetry is broken dynamically. The large-N
phase diagram is depicted in Fig. 6. The completely sym-
metric phase with m, =m 2 =0 is stable only in the region
k & k, and K & K, . When k & k, and also A, & K the stable
minimum of (2.26) has m&%0 and m2=0. When ~&~,
and s. &A, the stable minimum is where m&@0 and

m, =0. There are no stable minima where both m& and

m2 are simultaneously nonzero. On the symmetry line

A, =K& k, =K, the symmetry-breaking pattern ip discon-
tinuous and jumps from m, AO, m2=0 for A, &~ to
m

&
=0, m2+0 for s. & A, . At large N the electromagnetic

interactions contribute to the effective action only at
next-to-leading order. When l m, &

l m 2 l. the physical

photon has a topological mass (2.22), and when

l m, (
l
m z l

the photon is massless. Here we have ob-

tained this as a one-loop result. However, it is known
that when the charged matter fields have a mass gap the
topological mass term of the photon field receives quan-
tum corrections only at one-loop order. Thus, although
the topological photon mass is generic to a system where
P is broken, when the P-conserving mass of the physical

(p, x)

(-i8, -i Cg')

I' = x

I
(

I

+
/

- Ael"

FIG. 4. Propagators and vertices of the large-N expansion.
All graphs which contain as subgraphs those diagrams already
included in the resummed scalar and photon propagators shown
in Figs. 2 and 3 are to be omitted. FIG. 5. Large-N expansion of the effective potential.



45 DYNAMICAL VIOLATION OF PARITY AND CHIRAL. . . 1347

FIG. 8. Order N ' corrections to the fermion propagator.

FIG. 6. The N —+00 limit of the phase diagram in the A,-K

plane. Z& is broken when A, &A,, and P is broken when K&x, .
%'hen K) A, )A,, the photon has a topological mass.

fermion is larger in magnitude than the P-violating mass
of the physical fermion the photon remains massless.

The effective four-Fermi couplings are (see Fig. 7)

3

S;„,= Jd x g (/asia)
5=0

(2.31)

where r&= t S,r; j are the unit and Pauli matrices. Also,
we could introduce scalar fields ms so that (2.31) can be
described by the action

NA
S;„,= d x msm&+imsf'rsvp

2gs

and A, ~A., and K~K aS A~~. A,, and Kc are StrOng-

coupling fixed points. If A, or K deviate from these values
the associated four-Fermi operator is irrelevant. If either
P or Z2 symmetry is broken the mass gap of both of the
fermion species is infinite. If not, they are massless and
the four-Fermi interactions are irrelevant and the physi-
cal properties of the system are governed by the Coulomb
interactions.

Our analysis so far is specific to the four-Fermi interac-
tions introduced in (1.1). Here, we note that to the lead-
ing order in large N our results apply to more general in-
teractions. In fact, if we introduce a general four-Fermi
interaction we have

A,A,

AA, —
A,

(2.27) and the leading order in large-N effective action would be

KKc
Keff

A Kc K
(2.28)

where we have used the cutoff A to restore the canonical
dimension of the effective four-Fermi coupling. (At the
critical points A, =A,, or K=K, the effective four-Fermi
vertices do not have a finite local limit and in fact vary
like an inverse power of momentum, f~ f

'.) The effective
couplings (2.32) and (2.33) are the zero-momentum limit
of the sum of diagrams in Fig. 8. When A, & A,, or K& K,
the effective four-Fermi interaction is attractive, con-
sistent with formation of a fermion mass operator con-
densate. These interactions are finite only when the cou-
pling constants are close to their critical values. In fact,
if we fix A,,ff and K,ff at finite constants of either sign then

NA 1 2

gS gc
m&

2

+ [( fm, + fmf)'

+( fmo —fm f )']+

1 NA—I'[ms ]= msms
2gg

A d'k—N ln det(y„k„+ims~s)+
(2m. )

(2.33)

(2.34)

1+A., /AA, ,ff
K A~ oocK- Kc1+K, /AKeff

(2.29)

(2.30)

FIG. 7. The order-N ' graphs contributing to the effective
four-Fermi coupling.

In the case where we have a full SU(2) chiral symmetry,
g;=g for i =1,2, 3, and we get a situation very similar to
that in (2.26) where now mz is identified with fm f

and m,
is identified with mo. Also, either chiral SU(2) is broken
for sufficiently large g or parity is broken for large
enough g0=A, , but the two symmetries are never simul-
taneously broken. When the chiral SU(2) is broken there
will be massless composite Goldstone bosons resulting
from the spontaneous breaking of the chiral symmetry.
We could recover the model (1.1) by breaking the SU(2)
symmetry explicitly, i.e., taking g, =g2 &g, &g3. Then
the Goldstone bosons acquire a mass proportional to
A(g3 —gi ) which is large in the A~ oo limit.

The analysis in this section is arbitrarily accurate for
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suf5ciently large N. To estimate corrections to the
leading-order behavior we must compute to the next-to-
leading order. This introduces logarithmic divergences
and renormalization is required. A systematic procedure
for renormalization of the theory described by (1.1) will
be discussed in the next section.

III. RADIATIVE CORRECTIONS

and

—,
' trl ~'~' (p, —p, 0)= —ib when p =p (3.3)

—,
' trr I &&'(p, —p, O)= —ic when p =p (3.4)

The bare (large-N resummed) propagators for the scalars
and the photon (in the Landau gauge) are

In the previous two sections we established the ex-
istence at large N of critical couplings k, and ~, for the
model with action (2.1). In this section we shall examine
the next-to-leading order in N corrections to that result.
These are particularly interesting since this is where the
first logarithmic divergences appear and where the renor-
malization constants A, 8, and C are required to be
cuto6' dependent.

gcrit( k ) a'N Ikl
'

2
gcrit kxY C2N

gcrit( k )
—gcrit( k )

—00x

b;"'(k) = 5PV PV

k„k
k' N k'yA+-' 'lkl

'

(3 5)

(3.6)

A. Renormalization of the critical theory

It is most convenient to renormalize the critical theory
with finite-momentum subtraction points. %e shall do
this by requiring the renormalization conditions that the
inverse t)t-P and y-y correlation functions vanish at zero
momentum,

respectively. The critical bare Fermion propagator is

1 1S ()=— (3.7)

To compute the counterterms we shall use an ultraviolet
cutoff A and the photon propagator

1 1=0=
gcrit ~rit

eff eff

(3.1) k k„gcrit( k )PV PV
2

8 1

e'N Ikl
(3.g)

S,„,(p)=y~„when p =ttt

and that the fermion-fermion-scalar vertices are

(3.2)

(this defines the critical point), that the inverse fermion
propagator is normalized as The renormalization counterterms computed with pho-

ton propagator (3.8) and with (3.6) differ at most by finite
additive constants.

The large-N correction to the fermion propagator is

A A d'k 1 4 8W pA d'k
(2~)' "y&(p

—k)&
" (3.9)

= Ay~ 1+ ln —+—+4 A 4 8

p 3
ln ———+O(N )

A 2 —2

p 3
(3.10)

where the first contribution is from the fermion-scalar in-
termediate state and the second is from the fermion-
photon intermediate state. Note that in the electromag-
netic correction the dependence on e cancels and in the
scalar correction the dependence on B and C cancels.
This determines A as

—4IHN

+ 0 ~ ~ (3.12)

accurate to order N '. The renormalized fermion propa-
gator is

4 A 4 8 A 2
A = 1 — ln —+—— ln ———+ . - .

3~'N p 3 3~'N p

+O(N ) . (3.13)

4 A
ln —+

p

which is approximately the power

(3.11)

The anomalous dimension of the fermion field operator is

D[$]=1+2/a N.
The order-N ' correction to the g1(tttt vertex is given

by the graphs in Fig. 9. The contribution of the one-loop
graph in Fig. 9 to the gPttt vertex function I &'&'&(p,

—p, O)

when the external ttt line has zero momentum is
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.B Adk 1 4 . 8B Adk 1 k„k 1
2l l

(27r)' (p —k)' k N (27r)' "
(p —k)' " "" k' (3.14)

4= —lB
A 8 A

ln —+1 + ln —+1 + .
p Nm-' p

(3.15)

where the first term is the contribution of the scalar-fermion loop and the second is the contribution of the photon-
fermion loop. The contribution to trI &'&&(p,

—p, O) of the two-loop graphs in Fig. 9 which have no internal photon lines

vanishes upon taking the trace over Dirac matrices. This leaves the two-loop graphs with one or more internal photon
lines. It is also easy to show that the graphs with one internal photon line vanish in the Landau gauge.

The integral corresponding to the graph with two internal photon lines is

64iB, , tr y„y„h„p(l)4 (l) ,' «y—p y(2~)' (2~)' y q r q "r q
—l "' ' 'r p+l

+h„b, (l)—,
' tr y y'r s

—.l

Note that this expression includes both the diagram shown in Fig. 9 and the contribution with crossed photon lines.
Taking the trace over Dirac matrices yields the integral

d31 y& d3q 'ep z q

(2m. )' (2m. )' q'(q —l)' &„p(i)&„(l)
is~ —„(p+l)„

(p + l)
+5 b,„(l)P& ~P

i e „(—p —l)„

(p —l)

%e first perform the loop integration over q. The result
1s

Contracting indices and performing the remaining in-
tegration yields

e,(p + l)„x b, (l)h„.(l}PP +0'
( + l)2

„(p —l)„+a .a„(i)
(p —l)'

(3.16)

B=b 1+
2

ln —+1 +4 A 8

m'N p
12/m N

+ ~ ~ ~

p m. N

A
ln ——1 +

p

16iB Aln-
p

The normalization condition (3.3) determines

(3.17)

(3.18)

(( l

where the first term is due to four-Fermi interactions and
the second term is due to electromagnetic interactions.
Note that the magnitude of each contribution is charac-
terized by 1/N rather than the four-Fermi or electromag-
netic couplings.

The renormalized vertex function is

I —(p, —p, O) = ib 1 — —ln —+crit 12

p
—12lvr N

p
(3.19}

A similar computation leads to the leading corrections
to the /PAL vertex. The resulting cutoff'dependence of the
coefKicient C is

4C=@ 1+
m N

A
ln —+1

FIG. 9. Order N ' corrections to the fermion-fermion-scalar
vertex.

A C
ln ——1 +. . =—8

p b
(3.20)
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and the renormalized vertex function is

I' —(p, —p, 0)= —ie~ 1 — ln —+3 12

p
—12/m X

lCV (3.21)

B. The efFective potential I: Pure four-Fermi theory

We cannot compute the integrals in the penultimate
and the last terms of (2.23} explicitly. However, we can
obtain a Taylor expansion of these quantities, and there-

Note that the strength of the interactions of the fer-
mions with a zero-momentum scalar is small when the
momentum of the fermion is small; i.e., the interaction is
infrared-free. However, unlike the case of a coupling-
constant expansion, it is the value of N which controls
the validity of the approximations, and at least to the or-
der that we have considered, N is scale independent. The
correction to leading-order behavior here is small if N is
sufficiently large. Here the next-to-leading order is small-
er than the leading order if N 2 2.

A change in the arbitrary parameter p which appears
in renormalized quantities can always be canceled by a
change in the parameters b and c or the wave-function
normalization of the fermion.

A
A 4f

—4/3m X '

+ ~ ~ ~

9m. N
(3.22)

4/n N
'

Bf=C = —' (3.23}

(accurate to order N '), where we have set b =c.
Since there are massless fermions when m, =+m2 we

do not expect the effective potential to be analytic there.
This is already apparent in the cubic terms in (2.26)
which depend on the absolute values

~ m, +m z ~
and

~m, —mz ~
and are therefore not three times differentiable

at m, =+m2. To order N the effective potential is twice
differentiable at m1+m2, and therefore the quadratic
terms in m1 and m2 can be isolated.

Taylor expansion of the penultimate integral in (2.23}
gives

fore also the effective potential to second order in the pa-
rameters m, and m2.

We begin by considering the pure four-Fermi theory in
the absence of electromagnetic interactions. Note that
the leading-order calculation in Sec. II did not use the
electromagnetic interactions. The renormalization con-
stants for the pure four-Fermi theory [from Eq. (3.11)]
are

1 A d'k B 1 C 2 2A 1 1 1
indetb, '(k)= const + + 2+4 —— ln4

(2m)

1 1+4
K Kc

1 1
ln4

K Kc
+ ~ ~ ~ (3.24)

and combining with the leading-order result gives

r 1 1

V
—= const + . 1+ ln4

8 1 1

~c

8 1 1 1+ ln4
K Kc

m1

A

+ ~

K K2
1+ ln4

8 1 1 8 1+
m. N

1 1 1
ln4

m2 + ~ ~ ~

A
(3.25)

where we have included an order-N ' correction to the
critical couplings:

Kc

2 2
1 ——

N
(3.26)

1+ ln4
8 1 1

8 1 1 1 1+ ln4
Kc K Kc

AB
A

(3.27)

All corrections to (3.25) either vanish faster than m, , m 2

as m, , m z ~0 or are at least of order N
Thus, the inverse correlation lengths for the renormal-

ized scalar fields are

I

and

1 14=
K Kc

1+ ln4
8 1 1

8 1+
m. N

1 1 1
ln4

AC
A

(3.28)

for P and for y, respectively. In the A,-a plane the line

g&[A, ,K]=0 gives a line of second-order critical points of
the parity-breaking phase transition, and $2[2., x ]=0
gives a line of second-order critical points where Z2 sym-
metry is broken. The parameters g& and g2 are the renor-
malized coefficients of the quadratic terms in scalar fields
in the effective action. These can be made finite by tun-
ing A. and K sufficiently close to the zeros of the functions
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g, [A,, a.] and/or $2[A, ,a]. Since these functions have a
simultaneous zero, it is possible to make both g, and gz
finite in the continuum limit.

Equations (3.27) and (3.28) can be inverted to obtain

1 1

c

16 1 11+ ln4
NAB

A

(3.35)

8 4ki+ 1— lnBA HN
8 A'g' 4k

ln
1 1 14
4 A. A,,

1+16/dN NAB 2

(3.36)

(3.29)

Kc

A2g2 8 4A
+ 1 — ln

CA HN CA

8 Ak 4Ag,
ln

r/N BA BA
(3.30)

which show that the linear running of A, and K to A,, and
K„respectively, is corrected by logarithms at next-to-
leading order. We can derive renormalization-group
equations by considering the logarithmic derivatives of
(3.29) and (3.30) with respect to the cutoff, holding the
low-energy, physical parameters of the model b, p, ,g„adn
$2 fixed. The result is

~'

1 1 2
A +

BA A, K Ac b&g

161+
3HN

1 1 2—+——
K A, q

(3.31)

a
A

BA A,
1+ 32

3m N

1 1

K

(3.32)

1 1

K A

'
1+32/3m N

1 2

p p
(3.33)

There are lines of fixed points where A, =K and where
1 lk, +1/v=(4/n )(1 2/N+ )—. Explicit running of
the coupling constants can be found by solving these
equations as

Here, the critical exponent which governs how fast the
correlation lengths of the scalar fields vanish as A, ~A,, is
1+16/n N. In general this scaling behavior depends on
the direction from which we approach the critical line.
For example, if instead we set K=K, and consider
g, [A,,a., ], the same critical exponent is 1+8/m N.

%'e can also expand the effective potential due to the
four-Fermi interactions to third order. The result for the
third-order term is

4 1 1
ln 16

3m3 K Kc

3
B C B C

X —m +—m + —m ——m

16!dN~3b
6m p

1 1
16

K Kc

8/Nm

x(lmi+m21'+ lmi —m21') (3.38)

8/NdN b3 16A 1 1

6~ p2 A A, K Kc

x(lm, +m, l'+ lm, —m, l')
8 /Nor

6m p2
(lm, +m, l'+

l m, —m, l'),

(3.39)

(3.40)

(3.37)

and the leading- [from Eq. (2.24}] and next-to-leading-
order cubic terms combined are

1 1 2—+——
K A,c

'
1+16/3n N i —16/m N

A p
1 —16/m N

S2S

p

(3.34)

Equations (3.33}and (3.34) indicate that A, fiows toward a
and that both A, and K Bow toward k, =K, as we take the
continuum limit A/p~ ~.

The logarithms in (3.28) can also be interpreted as a
manifestation of nontrivial scaling behavior. It is
straightforward to deduce critical exponents associated
with this scaling. If we set K=A. and approach the criti-
cal point (A,„a,) in the v-A, plane along the diagonal from
the symmetric phase, we get

where we have used (3.22) and (3.23) for A, B, and C and
b =b (1+20/3~ N+ ). The result is finite in the
limit of the infinite ultraviolet cutoff A~ 00 since
g, =A(1/A, —1/A, , ) and $2=A(l/~ —1/a, ) are finite in
the critical regime. This confirms that the effective po-
tential to order N is made finite by the counterterms
given in Eqs. (3.22) and (3.23) and supports the renormal-
izability of the full theory.

The sum of (3.25) and (3.40) gives the effective poten-
tial to cubic order and to order N . Corrections to this
formula either vanish faster than cubic order as m1 and
m2 vanish or are at least of order N '. The remaining
corrections at order N are also finite as A~Do. Thus,
with the cutoff dependence (3.22) and (3.23) and with A.

and x tuned so that g'& and g'2 in (3.27) and (3.28) are
finite, the effective potential is ultraviolet finite to both
leading- and next-to-leading order in large-N.

The critical coupling in (3.26) gets larger as N get
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smaller and goes to infinity when N=2. This indicates
that, beyond the leading order in large N, the quantum
fluctuations due to the four-Fermi interaction resist
breaking of both parity and chiral Zz symmetry. As we
shall see in the following, this is particularly important in
the latter case where the next-to-leading-order effect of
the four-Fermi interactions can cancel the leading-order
tendency of the electromagnetic interactions to break
chiral symmetry.

C. The effective potential 2: Electromagnetic
radiative corrections

To order N the quadratic term in the effective poten-
tial contained in the last, electromagnetic term in (2.23)
can be obtained as

—J ln k ——II, (k) + II,(k)1 &dk p 1

(2n ) A

1 p 8
Ae ln 1+

27T2 e

8 q C
2A 2A

m&+ mz

8A 1 C
1+8/e 2A

(3.41)

The first term arises from the dependence of II, on the
induced fermion masses and does not distinguish between
parity and chiral Zz symmetry breaking. The second
term comes from H, and can be regarded as arising from
the induced topological photon mass, which is present
when parity is spontaneously broken. Note that it only
depends on the parity-odd mass m, . The expression
(3.41) contains no cutoff-dependent logarithms, and
therefore this contribution to the effective potential
modifies the critical values of the coupling constants,
rather than the critical exponents. The modified critical
couplings are

4 1

N 1+8re'

(3.42)

2 2 e
1 ——+ ln 1+ 8

N 4N 2
(3.43)

(3.44)

2 e e 81+—— — ln 1+ +
2 N 2N 4N

(3.45)

Note that the electromagnetic contributions decrease the
critical coupling ~, and therefore favor Z~ symmetry
breaking. However, the electromagnetic terms in (3.44)
are always positive and therefore increase A, Thus the

or, if we invert (3.42) and (3.43) by assuming that N is

very large,

~2 2 e2 8 4 11+—— ln 1+ +- + ~ ~ ~

2 X 4X e' & 1+8ye'

electromagnetic corrections resist the dynamical breaking
of parity. This is consistent with the results of Ref. [25].

The function —,'e ln(1+8/e ) in ~, is a monotonically
increasing function of e with maximum 2 at e =Oo.
Thus, when e = 00 the electromagnetic interactions bal-
ance the tendency of next-to-leading-order four-Fermi in-
teractions to increase the critical couplings. The elec-
tromagnetic correction is the same magnitude as the
leading-order result when N =2.

In the absence of four-Fermi interactions, i.e., in
three-dimensional quantum electrodynamics, it has been
shown [22] by finding the solution of Dyson-Schwinger
equations for the fermion mass operator in the large-N
(or quenched planar) limit that there is a critical N„;,=4
such that for N & N„;, the electromagnetic interactions
break chiral Zz symmetry and for N )N„;, the system is
chirally symmetric. In the present case the next-to-
leading-order effect of the four-Fermi coupling cancels
the tendency of the electromagnetic interaction to reduce
the critical coupling constant for chiral symmetry break-
ing. To the order that we have computed, it is not possi-
ble to conclude whether for small enough N the elec-
tromagnetic interactions renormalize ~, to 0. It is neces-
sary to estimate the relative magnitude of contributions
from electromagnetic and four-Fermi interactions at
next-to-next-to leading order in large N. Also, a compu-
tation to that order would help in obtaining a better esti-
mate of the radius of convergence of the large-N expan-
sion itself.

IV. DISCUSSION

The low-energy effective action of the four-Fermi
theories near the critical points should contain the kinetic
terms for the scalar fields P and y, which are stable if the
corresponding parity and/or chiral symmetry is broken
and which have masses -2m

&
and 2m&, respectively.

Although the only effect of electromagnetic interac-
tions in the effective potential to the order computed is to
shift the critical four-Fermi couplings, they have a pro-
found effect on the nature of the low-energy spectrum of
the fermions. There, we distinguish three phases:
con/ning, Coulombic, and topologically massiue. When
the fermions have a parity-invariant mass, or if parity
breaking is weaker than chiral-symmetry breaking so that

~ m, ~
(

~ mz ~, the photon is massless (there is no induced
topological mass at one loop and a no-renormalization
theorem [17] guarantees that it does not appear in
higher-order corrections) and the Coulomb interaction is
long ranged and logarithmic. The photon propagator has
the low-momentum behavior

k„k„
h„„(k)—5„—

k k

where m is proportional to a characteristic fermion mass.
This gives a conjoining logarithmic Coulomb interaction
between fermions and antifermions. In this case only
neutral excitations should appear in the spectrum of
finite-energy states of the model.

On the other hand, if all of the fermions are massless
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for N large enough that the large-X photon propagator is
a good approximation,

k„k
h„(k)- 5„„—

k

1s

S,=f d x P(iy"8„+m)g

C:f~g ', C:g ~g',

(A4)

(A5)

the electromagnetic interaction is Coulombic
( —I/ix —yi ) and the coupling strength is the dimension-
less parameter 1/N. This Cou!ombic phase should have
asymptotic states with infrared-free fermions and antifer-
mions as well as a propagating free photon similar to
four-dimensional electrodynamics.

If parity breaking is stronger than chiral-symmetry
breaking, i.e., if im, i

) imz ~, the low-energy effective ac-
tion contains a Chem-Simons term for the photon with
coefficient given by Eq. (2.22} and we obtain the topologi
cally massioe phase. The resulting topological mass of
the photon screens the Coulomb interaction and the fer-
mions are not confined. (This is also true for compact
electrodynamics with topological mass [29].) In this
phase the fermions have fractional statistics [30—34].

Four-Fermi interactions have recently been argued to
play a role in the strong-coupling, chiral-symmetry-
breaking phase of quantum electrodynamics in four di-
mensions [35]. There it has been shown that, because of
the large anomalous dimension of the fermion mass
operator, four-Fermi couplings can be relevant operators
[36]. This idea has been used to construct a dynamical-
symmetry-breaking scheme for the standard model where
the Higgs boson is a t-t condensate. In the present case,
near the critical points the effective dimension of the
mass operator can be obtained from the large Euclidean
momentum limit of the correlation functions:

where the dagger denotes Hermitian conjugation and t
denotes the transpose. Making the substitution (A5) in
the action (A4) and taking into account the anticommu-
tativity of the spinor fields, we see that the action is self-
conjugate.

It is possible to define a real spinor which obeys the
constraint

4=4 '
~ (A6)

The action with a real spinor differs from (A4) by a factor
of 2:

So = ,' fd—xf(i y"8„+m )g, (A7)

where now the fermion field obeys the constraint (A6).
This minimal representation fermion field has the advan-
tage of exhibiting the full flavor symmetry of the Dirac
action. For example, if in (A7) there are 2N species of
real fermions the explicit flavor symmetry would be
O(2N), whereas in its complex representation (A4) there
would be a manifest U(N) [which is a subgroup of O(2N)]
symmetry. The full symmetry could only be seen by tak-
ing combinations of U(N) transformations and charge
conj ugations.

A disadvantage of using this parametrization of the
fermions is that the analytic continuation to Euclidean
space is more subtle. This is done by putting xp~ix3
and defining the Euclidean space y matrices as

1

&A 6&
&4r 0A & .& 0r 0 4~ 0& .

k

in the large-k limit and dim[//]=1+0(N ) and also
dim[fr g]=1+0(N ').

APPENDIX: FERMIONS IN 2+ 1 DIMENSIONS

y3 yp y jy g y2 jy —0

We then define the Euclidean Fermi fields as

l//z =q(XQ~ix3), yz = i/(xo~—ix3),
so that the Dirac action is

S=iSz=i fd xzgz(iy„B„+im)Pz

(AS)

(A9)

(A 10)

In this Appendix we shall fix the notation which is
used in this paper and discuss the symmetries of the
Dirac equation in 2+1 dimensions. Fermions in 2+1 di-
mensions are spinor representations of the I.orentz group
SO(2, 1). The minimal dimension of the Dirac matrices
which satisfies the Clifford algebra

Z= fdPzdPze = det(iy„B„+im) . (Al 1)

In Euclidean space we can relabel the y matrices as
y„=cr„,p = 1,2, 3, and, define charge conjunction as

and the path-integral representation of the partition func-
tion would be

(Al) Sz~o24z 4z~ 4zo . — (A12}

[where the metric is taken as g" =diag (1,—1, —1)] is
2 X 2. A particularly convenient choice is

—0, y =l(J, y =1CT (A2)

where o' are the Pauli matrices. With this choice the
Dirac operator |('+=~'0+ (A13)

The Euclidean action in (A10) is invariant under this
transformation. Again, we can use this fact to decom-
pose Euclidean fermions into their self-conjugate and
anti-self-conjugate components. Self-conjugate Euclidean
fermions obey the constraint

i y„B"+m (A3} where

is real and the charge-conjugation symmetry of the action 0+ ,'(4z+o'4z» 0 =-,'(4. ~'0'z) *-—(A14)
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and have action with an additional factor of —,':
(A15)

if', can be written in terms of real fermions as

(A17)
Z= fdP+e =[det(iy„ti„+im)]' (A16)

The Euclidean mass operator for complex fermions,
which exhibits explicitly the O(2) [or O(2N) if there are N
flavors of fermions] symmetry of the mass operator.
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