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We discuss the existence and properties of the asymptotic S matrix in field theories with massless par-
ticles. We show for the classic case of the scattering of an electron in an external electromagnetic field
that the S-matrix method yields the same results as the traditional cross-section method involving prop-
erly formed sums over physically degenerate initial as well as final states. In that case, we show that ob-
servables are independent of the particular choice of asymptotic Hamiltonian. We argue that the mass-
less theory is unique and discuss its relation to the massless limit of the massive theory. Although the re-
sults do not depend on it, a novel aspect of our formalism is the interpretation of physical states involv-
ing massless particles as Fock states and the occurrence of physical transitions in Fock space.

PACS number(s): 11.20.Dj, 11.10.Jj, 11.15.Bt

I. INTRODUCTION

The perturbative evaluation of transition amplitudes in
gauge theories, such as QED or QCD, is plagued by
divergences, mass singularities, associated with the mass-
less particles that these theories contain. These singulari-
ties do not occur in off-shell Green’s functions, but only
in S-matrix elements or certain other quantities involving
on-mass-shell particles such as form factors. Technically
speaking, these divergences are an indication that the
Feynman-Dyson S matrix between Fock-space states
does not exist. Traditionally, the standard method of
dealing with these divergences is to regulate them in
some manner, usually by temporarily restoring a mass to
all particles and summing up incoherent but physically
indistinguishable cross sections, as in the classic Bloch-
Nordsieck treatment of the soft-photon divergence or so-
called “infrared catastrophe” [1,2]. Following Nelson
[3], we shall refer to this procedure as the cross-section
method. The mass divergences are conveniently divided
into two classes: (1) infrared divergences, which deal
with mass singularities associated with the emission of
soft quanta, and (2) collinear divergences, related to the
property that differing numbers of collinear, massless,
on-shell particles can be degenerate in energy and
momentum (and other good quantum numbers). It has
been shown quite generally [4,5] that summing over phys-
ically degenerate states does indeed produce a cancella-
tion of all mass divergences, both infrared and collinear.

There remain, however, unresolved issues concerning
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this procedure. First of all, for collinear singularities in
the Abelian case and generally in the non-Abelian case,
these cancellations require summing not only over indis-
tinguishable final states, but also over degenerate initial
states, a procedure that is somewhat controversial. The
ability to entertain initial states corresponding to the su-
perposition of states with arbitrary relative weights is
fundamental to quantum mechanics, yet the sum over de-
generate initial states requires a very special relationship
among them in order to cancel mass singularities. So
while some believe the cancellation would inevitably
occur, others have their doubts. Lee and Nauenberg [5]
themselves were somewhat equivocal on this point, indi-
cating that their theorem implied the cancellation of
singularities at least in the sense of an “ensemble aver-
age.”” Whether it would always occur in nature was left
undecided. In this paper, among other things, we shall
show that the requisite initial-state summation does inev-
itably occur in massless theories. Even if one is con-
vinced of the cancellation, there is the question, for a par-
ticle of finite mass, how small must the mass be before it
becomes negligible? We shall show that the relevant pa-
rameter is the ratio of mass to transverse momentum.

A second issue concerns whether the massless theory is
unique and has a well-defined perturbation expansion, a
point that was also raised in Ref. [5]. At first sight it
would seem that the results do depend on the method by
which mass singularities are regulated. It has been
shown in special cases that dimensional regularization [6]
also results in a cancellation of infrared divergences [7,8].
In certain cases those terms that diverge with an energy
resolution AE or angular resolution 86 have been shown
to be the same as when using a mass cutoff. However,
there remain certain finite contributions that are indepen-
dent of AE and 66, and it has not been shown that they
are always independent of the method used to regulate
the mass singularities. As we shall elaborate below, this
has important physical consequences, yet is an issue that,
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until very recently [9], has received very little attention
[7]. A closely related, physically relevant question is
whether the high-energy limit of a massive theory coin-
cides with the predictions of its massless counterpart.
We shall show that results are indeed regulator indepen-
dent and that observables are smooth (i.e., nonsingular) in
the limit that any mass tends to zero.

With regard to the first point, the summation of degen-
erate initial states, there are persuasive arguments that
the true asymptotic, “in”” and ‘“out” scattering states of
quantum electrodynamics are asymptotic states that can-
not be approximated as noninteracting particles. In
quantum mechanics it is well known that the asymptotic
states in a Coulomb potential are not simply plane waves,
but are modified by nonvanishing Coulomb phase factors,
reflecting the long-range nature of the Coulomb poten-
tial. Its consequences for scattering theory were especial-
ly clarified by the work of Dollard [10], who showed that
states in Hilbert space did not evolve in time asymptoti-
cally according to the free Hamiltonian, but that the true
asymptotic states of the theory required the introduction
of another, asymptotic Hamiltonian and, corresponding-
ly, an appropriate modification in the definition of the S
matrix. In field theory, not only are there Coulomb
phases that reflect the long-range nature of the interac-
tion, but also there is particle creation that modifies the
character of the asymptotic states. In his seminal paper,
Chung [11] argued that the “infrared catastrophe” could
be avoided in transition amplitudes themselves if the usu-
al Feynman-Dyson S matrix were evaluated between
properly chosen coherent states [12,13]. This view was
justified and extensively developed by Kibble [14] and,
later, by Zwanziger [15], who developed a Lehmann-
Symanzik-Zimmermann- (LSZ) type reduction formal-
ism. As we shall review briefly in Sec. II and more exten-
sively in Appendix A, these coherent states are associated
with unitarily inequivalent representations of the canoni-
cal commutation relations, and so this point of view re-
quires a modification of the traditional view of quantum
field theory operating in Fock space. The justification for
this departure is associated with the infinite number of
soft photons created by the scattering of charged parti-
cles. This can be seen explicitly in the solution of the
problem of the response of the electromagnetic field to a
classical current source, in which in general it appears
that an infinite number of photons are created [14,16].
However, while the asymptotic states associated with
massless quanta are certainly not described by the free-
particle Hamiltonian, contrary to the prevailing view
[11,14,15], it is not necessary to leave Fock space in order
to describe this situation.! This can be seen, in particu-
lar, in the discussion by Blanchard [17] of the Pauli-Fierz
model {18] consisting of the interaction of a single, nonre-
lativistic, charged particle with the quantized electromag-
netic field and with an unspecified, short-range potential.
Although our conclusions do not depend on this revision
of the usual view of coherent states, this Fock-space point

I'This alternate point of view (and the relevance of the work of
Blanchard) was brought to our attention by D. N. Williams.
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of view is the one we shall develop in Sec. II. The
motivation for preferring this point of view will be ex-
plained in Sec. V and Appendix A.

A kind of synthesis of the work of Chung, Dollard,
Kibble, and Blanchard was developed by Kulish and Fad-
deev [19], for full QED, who employed the notion of a
modified asymptotic Hamiltonian H , acting in a separ-
able but non-Fock subspace #,, of physical asymptotic
states. They were able to extract the generalization of the
Coulomb phase factor of potential theory explicitly from
the modified S matrix. This has a technical advantage
over Kibble’s formalism inasmuch as the S matrix acts
within a single subspace of the Hilbert space rather than
between inequivalent subspaces [20]. However, it is not
known whether a similar construction is possible for col-
linear divergences.

We want to state at the outset, however, that we are
not saying the more common procedure is erroneous; one
can choose to regard the physical in and out spaces as
non-Fock spaces and interpret S-matrix elements as tran-
sitions between unitarily inequivalent subspaces, as does
Kibble [14] or, after an infinite Coulomb phase is factored
out, within a common non-Fock “space of asymptotic
states,” as do Kulish and Faddeev [19]. However, it
seems more economical and in many ways conceptually
advantageous not to modify the common practice in
quantum field theory and simply to work in Fock space
and to regard the S matrix as operating within Fock
space. To our mind it also very much facilitates the in-
terpretation of the calculations that are actually per-
formed in practice. However, we wish to emphasize to
readers preferring the conventional view that none of our
physical conclusions depend upon our reinterpretation of
the underlying mathematics.

Once it is recognized that the true asymptotic states of
the massless theory are not noninteracting particles as in
all-massive theories, the attraction of the traditional
cross-section method [1,5] is diminished, for the massless
limit is bound to be problematic for the conventional
Feynman-Dyson S matrix Sgp. On the other hand, the
less commonly used S-matrix method in the space of
asymptotic states, when evaluated via the usual interac-
tion picture with a regulator, automatically generates the
proper relative weights between free-particle states in-
volving different numbers of quanta. Transition ampli-
tudes in this basis, unlike noninteracting particle states,
have smooth limits as the particle masses tend to zero.

The bottom line on the question of summation over de-
generate initial states is that while one can prepare arbi-
trary initial superpositions of asymptotic states, all these
asymptotic states are orthogonal to the usual in and out
states associated with the free-particle Hamiltonian; i.e.,
they lie in a different space.” When mass singularities are

2This statement is true regardless of whether one adopts the
conventional view of the physical Hilbert space as being a non-
Fock space of coherent states with the space associated with the
free Hamiltonian H, as Fock space #£ or the reverse view, ad-
vocated here, of the physical space as Fock space #j with the
space associated with H becoming the unitarily inequivalent
space of coherent states.
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regulated, then all these spaces coincide and the previous-
ly orthogonal asymptotic states can be represented as
sums of states of noninteracting particles. Similarly, the
coherent states used in evaluating the Feynman-Dyson S
matrix Sgp[H] may be represented as sums over states of
noninteracting particles, but this superposition is re-
quired by the underlying asymptotic dynamics (in order
to obtain matrix elements having a smooth limit as the
regulators are removed) and is not to be thought of as an
“ensemble average.”

With regard to the second point, the uniqueness of the
results, there has been remarkably little discussion in the
past. This is especially surprising in view of the fact that
Lee and Nauenberg, in their original paper [5], noted that
there are processes in QED involving helicity flip that
would appear to lead to different results than would the
theory with massless electrons. Because of a collinear
singularity, the total probability of an electron emitting a
forward-going photon but undergoing helicity flip
remains finite in the limit that the mass of the electron
m, tends to zero, a circumstance that led them to remark
[5] that this “seems to indicate that a two-component
theory of a zero mass spin-J charged particle does not ex-
ist,” at least not in perturbation theory.® If true, this
would be extraordinary, since it would mean that chiral
symmetry of a nonanomalous gauge theory is not re-
stored in the limit that m, —0. It would, moreover, sug-
gest that a physical result depends on the regulator
method, since neither giving the photon a mass nor using
dimensional regularization would allow helicity flip. The
theory defined by those regulators would be manifestly
chirally conserving, but these are also not without para-
doxes. In the case of the massive photon, it turns out
that the probability of emission of a collinear longitudinal
photon remains finite in the limit of zero photon mass.
In the case of dimensional regularization, it turns out
that the probability of emitting the extra € transverse po-
larizations of the photon in 4+¢€ dimensions does not
vanish in the limit that e—0.* This has the appearance
of a collinear anomaly, since the massless theory seems
not to have properties that depend upon the method by
which the singularities are regulated.” On the other
hand, the fact remains that such effects do not occur in
off-shell Green’s functions, and so the possibility exists
that the theory somehow has in fact a unique interpreta-
tion. Indeed, it is a corollary of our work that this ap-
parent “anomaly” is spurious, associated with the
method of calculation, and without observable conse-

3This paradox, its relevance to a forthcoming experiment at
the DESY ep collider HERA, and speculations concerning its
probable resolution were discussed in an earlier paper [21], but
remained unresolved.

4These observations were made a few years ago [22], but were
not published because of the suspicion, justified herein, that
they were in fact unphysical artifacts of the method.

SIndeed, this lack of decoupling of longitudinal photons and
gluons has recently been erroneously advocated as a physical
effect and a new kind of “infrared anomaly” [23].
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quences. We label as “evanescent”® those processes or

effects that do not occur for the massless theory, but ap-
pear to survive in the limit that some mass (or masses)
tend to zero when one evaluates the cross section via the
standard Feynman-Dyson S matrix Sgp[H]. In a com-
panion paper, we discuss these pseudoanomalies in
evanescent processes, using the S-matrix method to
resolve this paradox concerning helicity-flip processes
and the nondecoupling of longitudinal photons in mass-
less QED [25].

Strictly speaking, the S-matrix method is based on cer-
tain unproved assumptions about the field theory, based
on analogies with the solvable case of potential scatter-
ing. While those assumptions are both plausible and con-
sistent with everything that is known about the field
theory, they are assumptions nevertheless, so that explicit
calculations are necessary to provide confidence in the
method. We feel it is important to have settled these is-
sues for a familiar process before applying the method in
a novel context [25] where a naive application of the con-
ventional method seems to give a different answer. The
present paper establishes further confidence in the S-
matrix formalism by discussing the consistency of the S-
matrix method. We shall derive the equivalence between
evaluating the actual S matrix in the physical Fock space
and evaluating the Feynman-Dyson S matrix between un-
physical coherent states [11,14], a relation that seems to
have been widely assumed in practice, but not demon-
strated heretofore.

We shall show that observables are, in a certain sense,
independent of the particular choice of asymptotic Ham-
iltonian, and by both general arguments and explicit cal-
culations, we demonstrate the equivalence between the
regulated cross-section method (provided initial-state as
well as final-state degeneracy is included) and the S-
matrix method. Since the S matrix is derivable from the
Hamiltonian of the massless theory, these results may be
regarded as justifying the cross-section method, which
deals with matrix elements having mass singularities, and
as showing that summation over degenerate initial states
is required for a consistent theory.

The coherent-state method has recently been extended
to the treatment of collinear singularities [26]. We find
that the formulation of asymptotic Hamiltonians in Ref.
[26] is particularly economical and well suited to the dis-
cussion of questions of uniqueness and the correspon-
dence between the very-high-energy and massless limits.

In non-Abelian gauge theories, the situation is especial-
ly relevant and confusing [26-30]. In a number of cases
[31,32], it was shown that the Bloch-Nordsieck cancella-
tion does not occur. However, it was later demonstrated
[33] that the inclusion of initial-state degeneracy restored
the cancellation of divergences. This does not establish
whether physical observables always must involve such
initial-state cancellations, and there seems to be a diver-
gence of opinion on this score. Indeed, people perform-
ing radiative corrections frequently cite the inapplicabili-

6This terminology has been introduced for similar kinds of ul-
traviolet singularities by Collins [24].
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ty of the Kinoshita-Lee-Nauenberg (KLN) theorem to
non-Abelian gauge theories [32,34], and there remain un-
compensated logarithmic dependences on light-quark
masses in these radiative corrections as traditionally cal-
culated. It has been argued that, since the initial-state
cancellation would require a very special relationship be-
tween the quark and two-particle, quark-gluon structure
functions, the cancellation should not be expected to
occur [32]. As a result of the work that we shall report
here and subsequently [25], it is quite clear that such
seemingly special relationships from the traditional point
of view are natural and required.

It seems, on the contrary, that such sensitivity to
light-quark masses is spurious and such cancellations are
perfectly natural. While we believe that, quite generally,
observables will always be independent of mass singulari-
ties and have gone considerable distance toward showing
this in QED, we shall have relatively little to say in this
paper about the non-Abelian case, to which we may re-
turn in later work. However, the theoretical discussion
in this paper strongly suggests that there are no
differences of principle between the Abelian and non-
Abelian cases; the latter is simply more complicated tech-
nically. We shall indicate below why these seemingly
special relationships must necessarily obtain, why there is
no conflict with the superposition principle, and how the
notion of partons must be revised to take them into ac-
count.

To summarize, it is the purpose of the present paper to
elaborate on the S-matrix method. We extend previous
results in several ways: We establish quite generally the
relationship between the coherent-state method and
scattering matrix in the space of asymptotic states. In so
doing we also explain why standard calculations in the in-
teraction representation in a regulated theory lead to
unique, correct results in the limit that the regulator is
removed. Stated another way, we argue that the massless
theory is unique, resolving the questions originally raised
in Ref. [5]. Thus massless theories have no ‘“infrared
anomalies” [23], and the perturbation expansion is well
defined and independent of how the mass singularities are
regulated. This will be illustrated further for the case of
helicity flip in another paper [25].

Because the asymptotic Hamiltonian inevitably de-
pends on parameters not in the original Hamiltonian and
not derivable from it, this S-matrix method differs some-
what from the familiar S matrix for massive theories. To
make the discussion more concrete and to support
abstract claims with explicit calculations, we illustrate
the concepts by reference to the classic case of the
scattering of an electron in an external field and support
general claims by calculating the radiative corrections to
this process to lowest nontrivial order in . We show ex-
plicitly that the S-matrix formalism not only leads to a
cancellation of mass singularities, but also yields precisely
the same finite, observable cross section that was previ-
ously calculated using the cross-section method [9]. In
that work this was shown to give identical results regard-
less of whether one regulates the mass singularities via di-
mensional regularization or by temporarily assigning
finite masses to the particles. Therefore, we have estab-
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lished an important extension of the classic KLN
theorem [4,5] that has a number of significant practical
implications for the calculation of radiative corrections.

In order to enhance our intuition, we want to under-
stand precisely in what sense different possible choices of
asymptotic Hamiltonians H , actually describe the
scattering states for the true Hamiltonian Hqggp. We dis-
cuss which aspects of the actual asymptotic states are
determined by the Hamiltonian H gp and show how ob-
servables are, in a sense to be described, independent of
the choice of the particular asymptotic Hamiltonian H ,
used to define the asymptotic states. Throughout the pa-
per we pay particular attention to the relation between
the choice of asymptotic Hamiltonian and the experimen-
tal resolution parameters for any given measurement. In
so doing we shall indicate how one particular choice of
H , is especially natural, inasmuch as it includes all
initial- and final-state degeneracies to be associated with
the phase space appropriate to a given measurement.
This justifies the intuitive interpretation commonly used
[19,26] and associates an essentially unique choice of H ,
with any given experimental situation. We also define a
new S matrix that nicely accommodates experiments in
which the initial- and final-state resolutions differ.

An outline of the paper is as follows: In Sec. II we dis-
cuss the S-matrix method in a general way, inspired by
the work of Refs. [10], [17], and [19]: Much of the partic-
ular development in Sec. II is original. In particular, we
derive the general coherent-state formalism and relate it
to the scattering matrix in the space of actual asymptotic
states. We discuss the mathematics of von Neumann
space and contrast our point of view with the more con-
ventional one in Appendix A. We also raise some ques-
tions there about some of the results in Ref. [19]. In Sec.
III we apply the formalism to QED, using the method of
defining the asymptotic Hamiltonian developed in Ref.
[26], and discuss its intuitive interpretation. We explicit-
ly calculate the lowest-order QED radiative corrections
to the scattering of an electron in an external electromag-
netic field, with particular attention not only to the can-
cellation of divergences, but also to showing that the
finite results precisely agree with those of Ref. [9], where
the cross section method was employed. In Sec. IV we
return to a discussion of the S-matrix formalism, demon-
strating its equivalence to the cross-section method in the
case of massive particles, thereby deriving the intuitive
interpretation used in Sec. III and Ref. [26]. We establish
that observables are independent of the choice of H 4, but
that the calculations and interpretation become especially
simple for the particular choice made in Sec. III. In the
process we discuss how observables may depend on the
initial-state energy and angular resolutions, and we define
a modified S matrix which is useful in describing situa-
tions in which the initial- and final-state resolutions
differ. Some of the details of the calculations are relegat-
ed to Appendix B. Finally, in Sec. V we draw con-
clusions and suggest a variety of applications in which
this approach is likely to provide new insights. In partic-
ular, we reflect on certain initial-state radiative correction
calculations in QED that have been calculated for the
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SLAC Linear Collider (SLC) and CERN e e~ collider
LEP, and explain why they are correct for those physical
situations, but would not be in the limit that the electron
mass became extremely small. We also comment on cer-
tain QCD radiative corrections in deeply inelastic scatter-
ing that are sensitive to light-quark masses and that very
likely are misleading and must be modified. Finally, we
indicate what problems remain to be addressed and
where improvements in the formalism might be made. In
particular, a novel suggestion that will be explored in fu-
ture work is the introduction of an ‘“asymptotic interac-
tion picture,” as an alternative to the usual interaction
picture for deriving Feynman rules and organizing calcu-
lations.

II. S-MATRIX METHOD AND COHERENT STATES

In this section we discuss the S-matrix method in a
manner that combines the approaches of Refs. [17] and
[19]. One of the goals of this section is to establish that
the exact S matrix S, between physical asymptotic states
may be evaluated by evaluating the Feynman-Dyson S
matrix Sgp between properly defined coherent states, as
expressed in Egs. (2.15) and (2.16) below. This is in fact
the starting point of coherent-state calculations [26,27] in
recent times, but we are not aware of a previous deriva-
tion in the literature. It is one thing to show that Sgp be-
tween coherent states is free of mass singularities and
another to derive from first principles that this is in fact
the physical transition amplitude, even though our
derivation is not rigorous. The reader prepared to accept
this result may wish to skip this formal discussion, refer-
ring back to the relevant equations as necessary, and
proceed to the next section in which this formalism is im-
plemented in QED for the case of the scattering of a
massless electron in an external potential. However, our
formal discussion is not without interest or void of re-
sults: Contrary to the conventional view of coherent
states, we argue that the scattering in massless theories
can be regarded as occurring in Fock space and that we
need not concern ourselves with the intricacies of the
larger von Neumann [35] space #,y, which we discuss in
Appendix A.” We derive the correspondence between
matrix elements of the scattering operator S, between
physical, asymptotic scattering states in Fock space #p
and matrix elements of the Feynman-Dyson S matrix
Sgp[H] in the (for us, unphysical) space of coherent
states [Eq. (2.15)] that are unitarily inequivalent to Fock
space. Another result is that, in the strictly massless lim-
it, the coherent states commonly employed [27,26] lie
outside the space of asymptotic scattering states [cf. Eq.
(2.17) with Eq. (2.18)].

Let us first recall the situation regarding the ‘“infrared
catastrophe” associated with a massless photon interact-
ing with a massive electron. To set the stage and to facil-

This is very much in keeping with the philosophy elaborated
by Wightman [36] and the conventional view of observables.
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itate comparison, before explaining how the S matrix
may be resurrected, we shall first review briefly the more
familiar cross-section method. The conventional manner
of dealing with these infrared problems is to give the pho-
ton a small mass, thereby temporarily replacing the
long-range Coulomb potential with a short-range, ex-
ponentially damped one and restoring a mass gap to the
spectrum so that propagators have isolated particle poles.
In QED this enables one to use standard methods of com-
putation, but the radiative corrections to any exclusive
process, such as the elastic scattering of an electron in an
external field, diverge as the photon mass m, tends to
zero. However, the now conventional argument [1] is
that any real experiment involves a detector with a
finite-energy resolution AE, and so these exclusive pro-
cesses are not observable, being physically indistinguish-
able from scattering accompanied by the emission of any
number of sufficiently low-momentum massless photons
(although, to a given order in perturbation theory, only a
finite number may be emitted). When these soft brems-
strahlung cross sections are added to the radiatively
corrected elastic cross section, a finite answer is obtained
in the limit m,—0. However, the resulting observable
cross section depends on the energy resolution AE and, to
any finite order in perturbation theory, diverges as a
power of In(AE) in the limit that AE —0. In fact, if one
sums up the leading logarithmic divergences in each or-
der, one finds that the transition probability vanishes
[2,16,37] as AE? with some positive power Bx<a; i.e.,
there is in fact zero probability of detecting a charged
particle with a definite momentum. Thus the energy
resolution of the detector enters observables in an essen-
tial way and, unlike the case of short-range interactions,
cannot be removed in the definition of an observable
cross section.

As reviewed in the preceding section, attempts have
been made to reproduce the observable cross section by
means of S-matrix methods [20]. In their influential pa-
per, Kulish and Faddeev [19], following Dollard [10],
Blanchard [17], and others, suggested that the scattering
states associated with the exact Hamiltonian Hggp may
be approximated by the scattering states associated with
another, asymptotically correct Hamiltonian H ,. While
they suggested a particular form for H 4, there is in fact a
great deal of arbitrariness in its specification. The only
stipulation is that all such choices of H , must lead to the
same long-range, large-time behavior as the true Hamil-
tonian Hggp, a requirement that will be made mathemat-
ically more precise below [see Eq. (2.9)]. Unlike theories
involving only massive particles, H , involves nontrivial
interactions and differs from the free-particle Hamiltoni-
an H, characterizing the in and out states in theories
without massless particles. In potential theory this pro-
cedure has been shown to reproduce the same results as
solving the Schrodinger or Dirac equation in a Coulomb
potential [20]. A similar conjecture is supposed to hold
true for quantum field theory as well, and supporting evi-
dence is provided by showing that, in the basis of asymp-
totic states of H 4, infrared divergences cancel, and one
can obtain the correct “Coulomb phase” factors directly
from H , without solving the complete dynamical prob-
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lem [19].% Similarly, the extension of this method to col-
linear singularities removes those divergences as well
[26]. In general, the definition of a particular asymptotic
Hamiltonian H 4,(A) involves a set of infrared and/or col-
linear parameters, denoted collectively here by A, that
are associated with the definition of the infrared or col-
linear regions, and consequently, the scattering states
defined from H , also depend on these parameters.” This
is quite different from the usual situation in which the pa-
rameters of Hy, i.e., the particle masses, are in principle
determined by the parameters of the exact Hamiltonian
H. It is probably more meaningful to discuss this after
having some familiarity with the method, and so we defer
until Sec. V the origin and implications of this difference.
Since finite observable cross sections depend inextricably
on experimental resolutions [5], we would anticipate that
the parameters A may have something to do with these
resolutions, and, indeed, they do.

In Sec. IV we shall show that calculations simplify con-
siderably for the particular H 4,(A) in which these param-
eters are identified with the experimental resolutions.
For that choice the asymptotic dynamics described by
H ,(A) may be interpreted as generating an asymptotic in
state (or out state) that approximates those prepared (or
measured) in the laboratory. However, we shall explicitly
also show that observables are, in a sense, independent of
the specific choice of H 4 (A), and so, in principle, the
theory is uniquely specified by H, as it should be.

In the following we shall give an heuristic description
of the mathematical framework, with a goal toward un-
derstanding the origin of coherent states and their rela-
tionship to the asymptotic scattering states. We have not
rigorously proved the assertions made in this section;
rather, we are attempting to portray the circumstances
that apparently must obtain in order to relate coherent-
state calculations to the S matrix and to interpret results
obtained using coherent states. As this is not a review ar-
ticle, we shall assume some familiarity with the concepts
and results of earlier work, especially of Refs. [14] and
[19].

Let H denote the exact Hamiltonian of a system in-
volving some massless particles, such as Hqgp. As usual,
we construct the Hilbert space 7 on which this acts as a
Fock space.’® In the Schrodinger picture, the states of

8As noted at the end of Appendix A, we question the con-
clusion of Ref. [19] that their .S matrix collapses to a Fock-space
operator.

°In Ref. [19] this dependence on a parameter called ? is re-
garded as trivial, and even though their S matrix depends on it,
it is for the most part suppressed. In Ref. [26] this dependence
is represented explicitly by an infrared resolution M and an an-
gular resolution A. For now, A simply denotes some generic
way of defining what is meant by the infrared and collinear re-
gimes.

10We will specifically ignore for now the possibility of unitarily
inequivalent representations of the canonical commutation rela-
tions of the creation and annihilation operators. At this point
we depart from the common procedure [11,14,19] of construct-
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the theory evolve according to e “H|y), where |¢)
denotes some normalizable (square-integrable) wave
packet in #p. The main difference between massive
theories and theories involving massless particles is that
the asymptotic Behavior of the states as 1 — F  cannot
be approximated as e_lH°I|t/)0) for any choice of state
|¥y), where H,, denotes the free-particle Hamiltonian ob-
tained from H by switching off all interactions (but keep-
ing physical masses, if any, in H,'!). This is frequently
expressed in terms of the asymptotic convergence of the
operator:

the“"Ho' ]

Qpp(t)=e (2.1

Then another way to state this is to say that, unlike
thiorles with only massive particles, for no choice of state
l¥5 ) does QH,HO(t)Ma‘L) converge as t— F o to the
Fock state |¢).> In other words,
theories, the Mdller wave operators!>

()
Q) =

unlike massive

t— +

do not exist.'* However, it is believed possible to find
other asymptotic Hamiltonians H 4(A) to replace H, for
which the corresponding limits do exist, and we shall as-
sume that is the case. The basic idea in the construction
of an acceptable H , from H is that any such H , must in-

ing the massless theory in a Hilbert space of coherent states that
is unitarily inequivalent to Fock space. While the usual pro-
cedure is possible, it seems to be cumbersome and entirely un-
necessary; in Appendix A we explain the relation of our pro-
cedure to that other approach.

11We are ignoring the possibility of bound states of H; this is
an inessential complication for our purposes. If they occur, one
simply projects onto the scattering states.

12Be warned that there is no uniform sign convention for the
correspondence between the symbols + and — and the in and
out states. In the literature one will frequently find the conven-
tion reversed from the one employed in this paper, which
derives from the sign convention for retarded and advanced
Green’s functions.

13A pedagogical review of scattering theory in this language
may be found in Chaps. 6 and 7 of Newton [38]. While this
reference does not treat the massless case, his formal discussion
carries over with the replacement of Hy by H 4.

14By “exist,” we mean as a unitary operator in 7. To make
these statements precise, one must imagine introducing an ultra-
violet cutoff, to be eventually removed by the well-known pro-
cedure of renormalization. On the other hand, we want to em-
phasize that these statements apply to a theory in which the
mass singularities have not been somehow regulated, such as by
temporarily giving all massless particles fictitious masses. The
asymptotic convergence of the infrared regulated theory is
different, as we shall discuss subsequently. The limits in which
the mass regulator is removed (e.g., fictitious masses tend to
zero) and the time ¢ — F oo frequently do not commute. In
Appendix A we shall indicate how the situation may be regard-
ed in the larger von Neumann space in which these operators
may be formally defined.
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volve precisely the same mass singularities as H, but
differ in their short-range behavior. Thus, if H, were to
be regarded as the exact Hamiltonian, the associated
Feynman-Dyson S matrix Sgp[H 4 ] must reproduce pre-
cisely the same infrared and collinear singularities as
Sep[H]. While the existence of such an H , has been es-
tablished for potential theory [10] and for certain field-
theory models [17], it is at this point an assumption about
the realistic field theory for which motivation has been
provided in Ref. [19] and earlier work cited therein.
While this has not been proved in general to the best of
our knowledge, this assumption is certainly consistent
with the experience of all finite-order calculations in
QED and QCD using coherent states, to which this will
ultimately be shown to be related.

The replacement of H, by H , is the essence of the S-
matrix method. The existence of the corresponding
Mgdller wave operators Q‘,}L’},A (and associated S matrix

S 4) as unitary operators in Fock space # is equivalent
to the requirement that they be free of mass singularities.
Other than the existence of these Mdller operators, the
properties that all such asymptotic Hamiltonians H 4(A)
share have been only rather vaguely characterized. Their
dependence on certain parameters A other than those in
H seems to be one such property. The choices that have
been made thus far [26,27] suggest that, in general, H , is
not Lorentz invariant and will not take the form of a spa-
tial integral of a Hamiltonian density involving products
of fields at the same time and place. Rather, H ; will in-
volve fields at different times and positions, with the pa-
rameters A specifying the phase-space volume involved in
this smearing. This does not mean that the actual theory
becomes either non-Lorentz invariant or noncausal. In
fact, observables in a certain sense to be explained in Sec.
IV are independent of the choice of H ;. However, if one
identifies A with experimental resolutions, certain
simplifications occur. Just as there does not exist an ob-
servable cross section free of resolutions, we do not ex-
pect to be able to find an asymptotic Hamiltonian H ,
(other than H itself) that does not depend on additional
parameters A reflecting some such nonlocality.!> As will
be seen in the next section, however, the fields themselves
can be taken to interact locally, so that vertices conserve
energy and momentum, albeit over a restricted phase-
space volume.

As a technical point, in principle, H , may be allowed
to depend explicitly on the time ¢, even in the
Schrodinger picture. (Indeed, this may be useful, as was
shown for potential theory in Refs. [10] and [19] and for
field theory in Ref. [19].) In that case the evolution
operator is not simply e “4 but rather U 4(1), satisfy-
ing

. d
=

dar (2.3)

U, )=H (U ,(1) .

15We shall argue in Sec. V that this reflects the approximation
of measurements over finite, long times and finite, large dis-
tances by an .S matrix.
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However, in order to emphasize the formal analogy be-
tween the massive and massless cases, and because in
practice we have chosen H 4 to be time independent'® (in
the Schrodinger picture) as in Ref. [26], we shall assume
in the following that H ;, does not in fact depend explicit-
ly on time. While this allows us to maintain conservation
of energy as well as a certain economy of notation, we
emphasize that few of the concepts below depend on this
assumption. If e M4t were replaced everywhere in the
following by U ,(t), the results would go through essen-
tially unchanged.

To return to the discussion of asymptotic convergence,
our assumption is that one can find an asymptotic Hamil-
tonian H , and associated states W/ﬁ ), so that, for any
(normalizable) state |1), its time evolution e ~“#|4) ap-

—iH 4t 4\ 4 - ;
proaches e [$*)4 as t— F . More precisely, we
assume the existence as (proper) unitary operators in
of the Mdller wave operators!’

Q5 )y = lim Qg4 (1), (2.4)
* A t—F o A
where
Qup (N=ele 4" 2.5)

The utility of these Mdller operators is that they provide
the correspondence between an arbitrary state |¢) and
the associated in and out states'® |¢yT)4, viz,
[¥)=Qf )y ¥ Using the fact that HQy,
ZQ%},AHA, it can be seen that, if |n;E )" is an eigen-
state of H with eigenvalue E, then the corresponding
[$F(E))“ are the stationary-state scattering solutions of
energy E associated with H , Die.,

In;EX=Qf y 1Y (ENA. (2.6)
The corresponding S matrix
S.=0G ) oy 2.7)

16See Eq. (3.8) below for the specific case of QED. As dis-
cussed above, H , =H 4,(A) also depends inextricably on cer-
tain parameters A, which will remain for the most part
suppressed in this section, but explicitly resurrected in the next.

17To be mathematically precise, we will assume strong conver-
gence to the limit.

18] est there be any confusion with non-Fock asymptotic states
employed in the literature [14,19], we emphasize once again that
our physical Hilbert space #f is a conventional Fock space,
and these asymptotic states necessarily are in the same #p
since Q;;:,)HA are unitary operators within this space. Our con-

struction differs markedly from Refs. [14] and [19], for whom
the asymptotic states are non-Fock, but it coincides with that of
Ref. [17] in the Pauli-Fierz model.

19The index n denotes any other quantum numbers, such as
the momentum, necessary to specify the states. Here we are ig-
noring the possibility of bound states of H or H 4. If they exist,
then E must be restricted to the continuous spectrum of H.
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is to be associated with transitions between in states
|¢™ )4 and out states |~ ) 4:
A(¢+l¢—)AEA<¢+iSA|¢+>A .

Inasmuch as the Q}}:},A exist, it follows that this S matrix

(2.8)

S 4 is a proper unitary operator. More physically stated,
this S matrix has matrix elements in Fock space # that
are free of any mass singularities. Note that S, com-
mutes with H 4, and thus conserves energy.
Mathematically, the freedom of choice of asymptotic
Hamiltonian H , may be specified by the requirement
that the operators Q‘;}—L’HA exist as unitary operators. This
is clearly an equivalence relation: Two asymptotic Ham-
iltonians H, and H/ which are “asymptotically
equivalent to H” in this sense, are clearly asymptotically

equivalent to each other; i.e., Q(If) I~ also exists. This
AT A
follows from?°
()  —oE1 o)
QHA’H'A QHvHAQH,H:’ (2.9)

One may therefore meaningfully speak of the equivalence
class of asymptotic Hamiltonians. (This does not mean
that certain choices are not more convenient than others
for a given set of experimental conditions.) Note that, ac-
cording to this definition, the full Hamiltonian H is in-
cluded in this class. Not all members of the equivalence
class are relevant to a particular measurement, a point we
shall elaborate on in Sec. IV.

In summary, once one recognizes that the origin of
mass singularities in the usual § matrix Sgp[H] stems
from the false assumption®! that the asymptotic states are
to be identified with the free-particle eigenstates associat-
ed with H,, one may proceed to define an .S matrix S, in
a precisely analogous fashion. There is no need to modify
any of the common methods of quantum field theory by
which massive field theories are constructed, including
the identification of the physical Hilbert space with Fock
space. There are no changes in the principles underlying
the field theory, only in the determination of the asymp-
totic states and the S matrix.??

As we hope the preceding discussion illustrates, the
consideration of the strictly massless theory is actually
quite helpful for understanding clearly what is going on.
While this is all well and good, can one actually calculate
anything? In particular, what is the connection with the
usual perturbative solution of gauge-field theory, which is
formulated in an interaction picture defined by H,?
Needless to say, this can be treacherous in the present
context. The situation is very much like the manipula-
tion of bare quantities in a renormalizable field theory,
where because of Haag’s theorem [40] the transformation

20Technically, this requires strong convergence of the limit in
Eq. (2.4), or, for time-dependent H ,(t), strong convergence of
the corresponding U ,(¢).

2180 far as we know, that this was the origin of the “infrared
catastrophe” was first identified by Friedrichs [39].

22While this was also the spirit of the work by Kibble [14], he,
in contrast, chose to modify the Hilbert space in which physics
takes place.
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to the interaction picture does not really exist.?> If one is
very careful, one will not make a mistake working with
bare quantities, but the manipulations can only be
justified by introducing an ultraviolet cutoff to render for-
mally divergent quantities finite and carefully studying
the limit as the cutoff is removed. Similarly, in order to
keep things under control, it is wise to introduce at this
point a regulator for the mass singularities.

Let us begin with a discussion of the options for regu-
lating mass singularities. For QED one has the option of
giving an electron an explicit mass, and the photon can
be given a mass in a gauge-invariant manner as well.
Even if it is compatible with gauge invariance, adding
masses may change the global symmetries, such as chiral
symmetry, of the theory, as we discussed in Sec. I. More-
over, giving masses to massless particles will not be so
straightforward for a general gauge theory, as a bare fer-
mion mass may be prohibited by gauge symmetries (as in
the standard model), and one can never assign a bare
mass to a non-Abelian gauge boson without breaking
gauge invariance. Therefore, to give mass to some mass-
less particles generally may require the introduction of
some additional fictitious fields, such as Higgs fields and
scalar potentials. At best, this is quite cumbersome, and
one may wish to entertain other infrared regulator
methods, such as dimensional regularization of infrared
divergences [6,7]. Unlike other regulators, dimensional
regularization leaves the form of the Hamiltonians un-
changed, but modifies the evaluation of matrix elements
by imagining the theory is in 4+ € dimensions.”* Regard-
less of the particular regulator employed, for economy of
notation, we will denote the corresponding regulated
Hamiltonians as H'®, H (A‘), and H },‘), and we generically
will refer to the process of removing the cutoff as e —0.
We will assume that these Hamiltonians, or at least their
Fock-space matrix elements, formally reduce to the
correct H, H ,, and H, that we envisioned previously for
the massless theory. It is hard to be more precise without
considering a particular regulator, especially inasmuch as
the regulated theories may involve additional degrees of
freedom than the massless theories.?’

23In fact, one can show this is mathematically precisely the
same as the nonexistence of the Q}f}.,o because of mass singu-
larities [39].

241f dimensional regularization is also used for the ultraviolet
divergences, it is important to choose the ultraviolet counter-
terms the same as in the massive theory. (This is necessary to
define the integral f d"k k ~*, which is ill defined for all n.)
That is, one must first imagine working in 4 — € dimensions be-
fore continuing to 4 + € dimensions.

25Working to lowest order in the radiative corrections, it was
shown by explicit calculation in Ref. [9] that dimensional regu-
larization and regularization by masses lead to the same observ-
able cross section for scattering of an electron in an external
field. Although this was done using the cross-section method,
we will present general arguments later in this section and verify
explicitly in subsequent sections that the S-matrix and cross-
section methods give identical results.
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Whatever the device, to be successful the regulator
must correspond to a way of cutting off the long-range or
collinear interactions responsible for the divergences in
the usual formalism. In so doing the modified theory re-
stores the free Hamiltonian H{ to the same asymptotic
convergence class as the true Hamiltonian H'® and al-
lows implementation of the standard formalism. It would
seem that the entire preceding formal discussion might be
regarded as irrelevant except that, of course, Fock-space
matrix elements of the Feynman-Dyson S matrix
Sep[H]'® for the regulated theory will diverge when the
cutoff € is removed. In this respect the theory with a re-
gulator of the mass singularities is more confusing than
the massless theory, which is presumably how the “in-
frared catastrophe” earned its name. Traditionally, one
adopts the cross-section method to make sensible predic-
tions and to remove the cutoff. The preceeding discus-
sion strongly suggests that these singularities are not indi-
cations of difficulties intrinsic to the theory, but are sim-
ply a reflection of the incorrect initial assumption that
H, was in the same convergence class as H in the mass-
less limit. The purpose of introducing regulators of mass
singularities is simply to be able to make contact with the
usual interaction representation. Having done that, we
want to understand how to recover the sensible, finite S-
matrix elements that have been discussed previously
abstractly. We also wish to explore the relationship of
the choice of asymptotic Hamiltonian to observable
quantities and to understand why the cross-section
method yields the same answer for observables as the
more rigorously justifiable S-matrix method.

So let us imagine repeating the earlier discussion for
the regulated theory, defining asymptotic states, transi-
tion amplitudes, etc. We assume that H'¢), H'¢ i ) and H {e)
are all properly chosen, by which we mean that the spec-
tra of Hy and the scattering states of H' (and H')
coincide. An important feature of the regulated theory is
that the Mgller operators

Q(I;L(l),ng) = tliglw QH“’,H&"(” (2.10)
and
Q( e) H(sJ —lfljrneo QH;H'HEJGJ(t) 2.11)

now exist as proper unitary operators.?® As a special case
of the equivalence expressed by Eq. (2.9), we have

Q;;(L H(e) Q(}fe) H(E)QH(E) H(e ’ (212)
so that the S matrix [Eq. (2.7)] may be written as
S(Ae)= H“’ e)SFD[H] e+ ) 2.13)

H‘e),HBE) ’
where Sgp [ H]' is the usual Feynman-Dyson S matrix:

S¥p [H](e)_QH(o H(e)QH(e) HE (2.14)

26This statement illustrates the aforementioned lack of com-
mutivity of the limits €—0 and ¢ — oo.
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The relation Eq. (2.13) is frequently rewritten in another
form. If |¢) is any Fock state, then

)4 =00 o) 2.15)

defines the associated coherent states |¢;+)2€. Then,
by definition, the Fock-space matrix elements of S’ may
be written as

(gISP1v) =G o

—|Sep[H Ol )49, (2.16)

for any two Fock states |¢),|¢). In other words, the
Fock-space matrix elements of S'f’ may be thought of as
the matrix elements of the usual Feynman-Dyson S ma-
trix Sgp [ H '] between coherent states.

Note that the coherent states relevant to the evaluation

of the scattering matrix involves £} H<J B It will be im-

portant for the physical interpretation to recognize that
these operators are the inverses of the operators mapping
energy states of H{ to asymptotic energy states
|Y(E))4©. To see this let |E,n )'® denote the usual
energy eigenstates assoc1ated with H(. Then, using

H(E’Q‘I;i ©= Q%e) H(e)Ho , their relatlon to the energy
A°°70
states assoc1ated with Hj (€) jg
IIIJ:T-(E) QHm HY |E,n)© . (2.17)

These are the stationary states of H if’, which form a basis
for the asymptotic scattering states. However, for finite
€, this simply corresponds to a unitary change of basis in
Fock space #%’. For a finite regulator, therefore, the
two bases provide equivalent physical descriptions. Con-
sider, as is frequently done in practice [27,26,3,33],
evaluating the matrix elements of S'{’ between these ener-
gy states |E,n ). According to Eq. (2.16), the associat-
ed coherent states between which Sgp[H €] is to be eval-
uated are given by

B, m )= 0| En ) (2.18)

H[e)
Although for finite € this may be regarded as another uni-
tary transformation in ?[(F", these coherent states are not
to be thought of as asymptotic states or as eigenstates of
HOY

Equation (2.13), or, equivalently, Egs. (2.16) and (2.15),
are useful for making the connection to ordinary pertur-
bation theory, and we shall elaborate on this below.
First, however, we must face the issue of these various re-

2’Readers familiar with Ref. [19] may be mystified by this
statement, since the point of that paper seemed to be that the
relevant states were the asymptotic states. Toward the end of
Appendix A, we elaborate where we believe that reference has
drawn erroneous conclusions and explain why people who
evaluate S ff) between Fock states are calculating correctly. We
confess to being puzzled how that prescription is to be inferred
from Ref. [19], who in their Sec. V, do the opposite.
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gulated quantities in the limit that the regulator is re-
moved, e—0. The first question deals with why we have
labeled our Fock space for the regulated theory with an e.
In general, certainly in a gauge theory, the process of re-
gulating may change the Hilbert space or at least the
physical subspace. For example, regulating the infrared
divergence by adding a photon mass pu introduces a longi-
tudinal photon as a physical degree of freedom. Even if a
covariant quantization procedure had been used in the
massless theory, so that the # includes an unphysical
longitudinal photon, it moves from the unphysical into
the physical subspace when the photon mass becomes
nonzero. In the limit that u—0, one must demonstrate
that it becomes unphysical again. This is not at all trivi-
al; it is a simple calculation to show that the bremsstrah-
lung by a massless electron of a collinear, longitudinal
photon does not vanish in the limit that u—0. More
abstractly stated, certain matrix elements of singular
operators such as Sgpp[H ] may remain finite in the limit
that the regulator is removed,?® but that does not imply
they are observable. Moreover, not all the various states
of the Fock space %} defined for €0 remain Fock
states in the limit €e—0. For example, consider the rela-
tion between the asymptotic states and the eigenstates of
H{ in Eq. (2.17) or the relation between a given Fock
state and its associated coherent state given in Eq. (2.15).

In each case states are related via operators Q(I;‘]Al. AL

that are singular as e—0. As a result, it cannot remain
true that the states so related both remain in Fock space
in the limit; indeed, that is the inspiration for the discus-
sion of von Neumann space ¥,y and the introduction of
coherent states in so many of the references that we have
cited. Thus not all the states lying in #¢ tend to states
in our original #. Intuitively, it is clear that, in the lim-
it e—0, we want the asymptotic states of the regulated
theory |- (E)) € to go over smoothly to the asymptot-
ic states |5(E)) 4 of the massless theory defined in Eq.
(2.6). Inasmuch as the latter lie in the Fock space %, we
want the former to remain Fock states in the limit. This
implies that the eigenstates of H, the states |E,n )€, do
not tend to Fock states in the limit e—0. This is perfect-
ly possible to arrange, but it is worth noting that it is the
reverse of what is commonly done, e.g., in Refs. [14] and
[19]. For us, the coherent state subspace that is unitarily
inequivalent to Fock space is not the physical space, but
the unphysical subspace usually associated with the Hil-
bert space #,, built up from H, (see Appendix A for fur-
ther discussion).

From our discussion of asymptotic convergence at the
outset, we know that certain of these quantities, in partic-

ular, the operators Q(I;t(l) Hle will have mass singularities
A0

in the limit. On the other hand, our assumption about
the existence of H 4 suggests that other quantities not in-

volving H, such as Q(I;ﬁﬁ, e and Sff), should be smooth
A

28This is really the origin of the paradoxical ‘“‘anomaly”
claimed to have been found in Ref. [23]. In another paper [25]
we shall deal with matters such as these more explicitly.
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in the limit e —0. This is our basic continuity assump-
tion: Operators that are well defined for the massless
theory are approached smoothly in the limit e—0. More
precisely, if |#) is an arbitrary Fock state (independent of
€,) then we assume that?’

Q;ﬁlnﬁgf)lz,b)—»u‘,f}u:w . (2.19)
One might well worry that our continuity assumption on
S'€) is insufficient, for it may be that we are interested in
matrix elements of S'f’ between states that depend on e,
such as the asymptotic energy states |- (E)) 4 (€. As
stated, our convergence assumption of course does not
imply that matrix elements of S' between states that
could vary with (€) converge; indeed, it can be easily seen
that in general they may not. To clarify this situation re-
quires a better understanding of the structure of the Hil-
bert space 7'’ and the way it splits up in the limit e—0.
For finite € the sets of states {|E,n )}, {4} (E)) ¢}
(or { |9, (E))*'®}) each form a basis for #¢’. However,
in the limit e—0, they become orthogonal to one anoth-
er. Because the operators Q(Hii}’ HiE are singular, the
asymptotic states [Eq. (2.17)], the coherent states [Eq.
(2.15)], and the eigenstates of H are, in the limit e—O0,
no longer simply related by unitary transformations in
Fock space. This is normally [17,14,19] the point of
departure for a discussion of the properties of von Neu-
mann space #,y and the relation between its various uni-
tarily inequivalent subspaces. Previous authors, with the
notable exception of Blanchard [17], have regarded the
Fock subspace # as unphysical and identified the physi-
cal subspace of asymptotic states as a space of coherent
states unitarily inequivalent to it. However, our point of
view is apparently different, as we constructed the mass-
less theory on Fock space # from the outset, and the
natural thing to do is to regard this as the physical space
in the limit that e —0. Therefore, if the states between
which S (j’ is evaluated depend on €, then, in order to ob-
tain a finite limit in general, those states must converge to
Fock states in the limit e—~0. Thus, for example, so long
as one adopts a procedure by which

lim W, (E)) ' O=]y, (E))* (2.20)
€—

(as a well-defined limit in Fock space), then the matrix
elements of S'f’ will tend to the corresponding matrix ele-
ments of S, in # for the massless theory.

29We will assume strong convergence, although probably all
that is really necessary is that Sf,f)—>SA weakly. However,
strong convergence of the Mg@ller operators assures convergence
of their products, such as occurs in § ff). Convergence should in
principle be a derivable property, but we do not know whether
it is really possible with present knowledge about field theory.
One could attempt to prove it to any finite order in perturbation
theory, but we have not tried. In cases that have been explored,
such as the one discussed in the next section, it works.



45 INTERPRETATION OF THE ASYMPTOTIC S MATRIX FOR MASSLESS . ..

If one is willing to assume that the thing to do is to
evaluate S, in Fock space, then one need not be con-
cerned with the subtleties of what is going on outside of
Fock space in the larger von Neumann space ¥,y in
which # is embedded. In this larger space, previously
ill-defined operators such as QY H in fact can be inter-

preted once again as a certain kmd of unitary operator,
an isometry between different subspaces. While it is con-
ceptually important to understand the structure of the
massless theory, in actual applications, it is irrelevant as
people simply calculate matrix elements of S, between
Fock states of the regulated theory. So, in order not to
get mired down in mathematical issues, we relegate to
Appendix A this discussion and the connection with
these opposing viewpoints.

This construction allows one to understand the
equivalence between the cross-section and S-matrix
methods and to resolve the quandary over the summation
over degenerate initial states. For the regulated theory,
these two approaches may be regarded as simply having
made two different choices for the asymptotic Hamiltoni-
ans H'Y) and H{. Either choice is acceptable (in the
sense of asymptotic convergence with respect to H) so
long as the mass singularities have been regulated. The
cross-section method proceeds from the choice H '
while the S-matrix method, as shown, proceeds from
H'§). Because they simply amount to a unitary change of
basis, they must lead to the same observables, and there-
fore physical cross sections will be free of mass singulari-
ties in the limit e—0. However, the one choice H Ef’
leads to an S matrix S’ that has no mass singularities in
the limit €—0, while the other H éf’ leads to an S matrix
Spp[H1'® that is singular in the limit €é—0. It is the
former that is justified by the scattering theory for the
unregulated Hamiltonian, and so the cross-section
method must conform thereto. In particular, it is clear
that to avoid singularities in general, the cross-section
method must be defined to include summation over degen-
erate initial states.®® The Bloch-Nordsieck result, proved
in Ref. [5] and reproduced in Sec. IV below, is that, for
infrared singularities in an Abelian gauge theory, it
suffices to sum only over degenerate final states. This is
never true for collinear singularities and is also not true
for infrared singularities in the non-Abelian theories in
general [31,32].

We want to emphasize that the only reason for intro-
ducing a regulator was to make contact with the usual
Feynman-Dyson S matrix, which has been given in Eq.
(2.13), and to be able to evaluate quantities using the usu-
al Feynman rules in the interaction picture, the connec-
tion to which we will now review. The standard interac-
tion picture involves a transformation of operators
and states from the Schrodmger picture of the

11-1'0 11-10 €
form O3—O(t)=e Oge and [¥(2))g—|9(2))

30In this regard we must register our sharp disagreement with
the discussion of this point in Sec. 26 of Ref. [20].
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=e [y
Qlt

)) . It is a simple exercise to show that®!

o ~
=T exp —if¢ dt V(,f)(t)] , (2.21)

H(eb H(e)

where the ‘‘asymptotic” interaction 1is given by
VE=H'—H{ and the tilde reminds us that V' is to
be expressed in the interaction picture. Of course, the
Feynman-Dyson S matrix is, as usual

Sep[H —lf “dt V(E)( )] ,

where V{9=H'9—H is the full interaction Hamiltoni-
an, which, in Eq. (2.22), has been transformed to the in-
teraction picture. Thus, to evaluate Fock-space matrix
elements of Eq. (2.13) in perturbation theory, one calcu-
lates Sgp[H ](" following the usual Feynman rules, while
evaluating Q' HE using the Feynman rules associated

1'¥=Texp (2.22)

H(e)
with vertices appropriate to the asymptotic Hamiltonian
HE.

In summary, Eq. (2.13), or, equivalently, Egs. (2.15)
and (2.16), form the starting point of all coherent-state
calculations. The previous discussion has suggested that
these Fock-space matrix elements smoothly go over to
the corresponding matrix elements of the massless theory
in the limit that the regulator is removed, and this we
shall show by explicit calculation for the radiative correc-
tions to electron scattering in an external field in the fol-
lowing section. Although we have shown this for specific
regulators, we believe the result is quite general. In fact,
it seems natural to require this of regulators, and if it
were not the case for some regulator, one might be
justified in labeling it as pathological. This is analogous
to requiring the regulator be gauge invariant in renormal-
ization theory; otherwise, one has to add additional coun-
terterms so that the renormalized Green’s functions satis-
fy the Ward-Takahashi identities required for gauge in-
variance. It remains to flesh out this abstract formalism
in a particular example and to discuss how these matrix
elements are to be related to observable cross sections.
This we do for massless QED in the succeeding sections.

III. QED RADIATIVE CORRECTIONS
TO ELECTRON SCATTERING

In this section we will describe the situation for mass-
less QED, where it is possible to assign gauge-invariant
bare masses to the electron and photon and thereby
choose regulators quite simple and physical. However,
we expect the following discussion to go through for
more general regulators. We shall employ the conven-
tional “‘coherent-state”” method described in the preced-
ing section.

First, we establish some notational conventions. Hav-
ing indicated toward the end of the preceding section the
connection with the interaction picture, in what follows,
all the fields will be assumed to be given in that picture,

31gee, e.g., Ref. [38].
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and we shall drop the tilde. In addition, throughout the
calculations, we shall be working exclusively with the re-
gulated theory in which both the electron and photon
have finite masses m, and m,, respectively.’? So we shall
suppress the superscript (€) that we used in the preceding
section to distinguish the regulated from the unregulated
cases. We shall indicate explicitly whenever we wish to
consider the limit in which the photon and electron
masses vanish.
The interaction Hamiltonian will be written as

Vi) =ViED(n+ Vi), 3.1)
where the usual QED interaction is
VIEP(n=e [ d*%: T x)y W x):4,(x), (3.2

and V;” represents any remaining interactions, for exam-
ple, the rest of the standard-model interaction Hamiltoni-
an or, simply, an external source. The point of this sepa-
ration is that we will be discussing electromagnetic radia-
tive corrections, but will work only to first order in V,m.
In this paper ¥}’ will simply be the interaction of an
electron with a classical electromagnetic potential. We
will only consider processes in which there is a finite
momentum transfer exchanged with this potential, and so
this will not give rise to any mass singularities. To define
the asymptotic Hamiltonian H ,, it is useful to write this
interaction in momentum space. Substituting the Fourier
transform for the fields,*® we find
PaN 8
ViEP ()= fd3kld/37<2 3 hy(ky,ky, k)
=1

Xexp[ —i(Sw)t], (3.3)
where é’j is the sign matrix,
-1 1 1
-1 -1 1
1 1 1
1 -1 1
=1, _1 =1 (3.4
1 1 -1
-1 -1 —1
-1 1 -1

and

32In order to introduce a photon mass in a manifestly gauge-
invariant way, one can introduce a fictitious scalar field in the
manner of Stuckelberg [41]. We imagine that we are working in
the “unitary” gauge in which the scalar field has been decou-
pled. One can also simply insert a photon mass in the propaga-
tor and verify gauge invariance directly by showing that the
kﬂkv terms in the propagator make no contribution because
the photon is coupled to a conserved current.

33For both bosons and fermions, the normalization of the

Fourier transform has been taken to be d’k=d%k/
[(2m)2w(k,m)]'"? with o(k,m )= (k >+ m?)!/2.
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(O] w(kl,me)
0= |0, |= |o(k,,m,) (3.5)
W3 w(k3,my)

Here {k;] are the three-momenta entering the QED ver-
tices & (k,k,,k3) with the photon momentum k; fixed by
momentum conservation for each vertex [:

k;=ki=—S54(Sik,+Sk,) . (3.6)
For completeness we list the eight vertices:
hi= 3 C'b] ()b, (k,)a;(k})
ajah ! 2
X T “k) e (kKDUK,)
hy='3 C%] (k)d] (k)a,(k})
alazk 2
X T “Uk) (k3 V (k,) ,
hy=3 C%, (k))b, (k,)a,(k3)
a;a,A ! 2
XV k)EKDUK,) , 3.7

ho==— 3 C'd] (kyd, (k))a, (k)

alazk
XV Uk KDV UK,) ,
hy =hl(Ki =k, 1=1,....,4,

where we have defined C’E[(Zﬂ')3/2a)(k’,my )]'2,

By H, we will of course mean the free-field theory (in-
cluding mass terms for the photon and electron). We also
need to identify an asymptotic Hamiltonian H 4(A),
which, in the massless limit, contains the same mass
singularities as the exact Hamiltonian H. This is the
field-theory analogue of “keeping the long-range tail” of
the Coulomb potential in quantum mechanics, and while
there are many ways to specify H ,, we will follow the
simple and intuitive method of Ref. [26]. The basic idea
is to use the Lee-Nauenberg degeneracy criterion for on-
mass-shell, massless particles [5]. This is particularly
simple to implement in the interaction representation
that we are using, since the energy associated with each
virtual particle is the same as if it was on-mass shell. In
time-ordered perturbation theory, the mass singularities
arise from the vanishing of energy denominators obtained
from the phase factors ($w)’ in Eq. (3.3). To be a good
asymptotic Hamiltonian, H, must reproduce these
singularities precisely. This can be accomplished simply
by defining the interaction term in H ,(A) to be

A A\ 8
VEP(Ast)=e [dk,d’k, 3 @,k )k (ky ko k)
=1

Xexp[ —i(Sw)'t] . (3.8)

Here we have simply inserted an unspecified function of
the momentum ®,(k;). Its purpose is to isolate the in-
frared and collinear contributions, and for these
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configurations, it must reproduce V%D exactly. Thus,

in the massless limit, the ® function must be equal to one
for the precisely collinear k;xk, or infrared ;=0
configurations. An example of the sort of function we
have in mind is ®(A; —|($w)/|), where ®(x) denotes the
usual step function and A, are a set of arbitrary parame-
ters. Of course, the full asymptotic Hamiltonian is taken
to be

H,A=Hy,+V, . (3.9)

We have shown in the preceding section that we may
take Eq. (2.13) as the starting point for calculations of the
S matrix for the regulated theory and that we may re-
strict our attention to its matrix elements in Fock space.
The Fock-space matrix elements in the regulated theory
will be calculated as usual in the interaction picture, us-
ing Egs. (2.21) and (2.22). Consider the evaluation of the
Mgdller operators

0
Q.(8)=0F) 4 =T exp ‘—i J? viEana |,

| I-k

FIG. 1. Momentum assignment for the asymptotic kinemat-
ics.

where we have introduced an abbreviated notation for
the Mdller operators of interest to us here. Inserting the
standard “adiabatic factor” exp(—e|t|) into the in-
tegrand to ensure formal convergence of the temporal in-

(3.10)  tegration, we obtain an expression for the nth-order term:
]
(n) = n 1 1
‘Q’i (A)= 2 e VI VI _1"';111 7 i 1 cc 7 7 i 5 (3.11)
I " (Sw) 'tie (Sw)'+(Sw)’t2ie (o) '+ (Sw) 2+ - -+ +(Sw)"Lnie
where the vertex Vl,- is defined as
SO

V,j:fd ky kg hy (ki ks ks )O,(K;) - (3.12)

A. Asymptotic kinematics

At this point we introduce some kinematical notation; to be specific, consider a vertex with momentum assignments

as in Fig. 1. We can write

I=(1—x)"20(l,m,)e; ,

22—y 172 22— 172

I—k=(1—x)"2w(l,m,) { |1—cosf 27 e;—sinf 27 ert, (3.13)

1—x, 1—x.

k=(22-—)(f,)1/2co(l,me)(cos6e3+sin6eT) )

where the mass fractions x,,, and photon energy fraction z have been defined as
_ me/y _w(k,m.},)e 1

Xerr=Gmy 2= all,m,) SXr17X]- (3.14)
From the above expressions, we obtain

ol—k,m,)=o(l,m,){1+2>—x2—2cosO)[(z2—x2)(1—x2)]'/}}'/> . (3.15)
For example, considering the vertex 4 (which will be useful in the remainder of the paper), we have

vz(é’m)’=w(l—k,me)+w(k,m,, )—w(l,m,)

=a(l,m,)({1 +zz—)(f,—2 cos9[(22—)(§,)( 1—x) V)V 42 —1) . (3.16)
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At this stage we will specify the structure of the
domain that we previously characterized by the generic
symbol A. As indicated previously, the kinematically
singular regimes for the vertices are where the energy
denominators in Eq. (3.11) may vanish in the limit that
the cutoffs are removed (m,,,—0.) In this regard it is
useful to distinguish the infrared regime, corresponding
to emission of a soft photon,** from the collinear regimes.
In general, the latter consist either of a hard photon con-
verting to a nearly collinear electron-positron pair or of
an electron or positron emitting a hard, but nearly col-
linear photon. In other words, the degeneracy-domain
constraint that we wrote as ®,(k;) can be specified to
correspond to two complementary regimes.

(i) Infrared (soft-photon) constraint. This region corre-
sponds to soft bremsstrahlung by an electron or positron
and is associated with the vertices !, #* and their Hermi-
tian conjugates h° h8. For the case of interest here,
scattering of an electron in an external field, the con-
straint may be described by the inequality

X, <z <8, 0€[0,7]. (3.17)

For the time being, we will associate a dimensionless pa-
rameter 6 with the minimum detectable energy AE of
an individual photon &z =AE /w(l,m,). Subsequently,
we shall show that §; may be chosen arbitrarily without
changing observables, as we would expect on the basis of
the general theory in the preceding section. We shall also
later take up the question of whether or not, in a given
experiment, the energy resolution differs between the ini-
tial state (beam) and final state (detector).

(i1) Hard-collinear constraints.
are two different regions.

(a) Collinear photon. This region corresponds to the
same vertices as the soft-photon constraint. For our situ-
ation it may be prescribed by the inequality

In this category there

0<0<dy z€[6,1—x.]. (3.18)

One may think of &4 as the angular resolution associated
with a given measurement, but as with 8z, observables
will be independent of the choice. For a schematic view
of the above regions, see Fig. 2 and Ref. [26].

(b) Collinear electron-positron pairs. This region is as-
sociated with the vertices A% h> and their conjugates
h® k7. To the lowest order in perturbation theory in
which we are working, these do not occur and will be ig-
nored for the remainder of this paper. In general, these
vertices would be modified in a manner analogous to the
preceding cases.

34The regime in which an electron or positron energy E be-
comes soft can be shown not to produce a singularity because
the matrix element for that vanishes as V'E. Ultimately, this
difference between the massless photon and massless electron
can be traced to the fact that a boson field has dimension I,
whereas a fermion field has dimension %
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cos 8
i T
5 HC
foommeee oo ee e 1-35/2
s
ol x, 5 X 2

FIG. 2. Various asymptotic regions characterizing an ideal-
ized degeneracy domain: S denotes the soft region. HC denotes
the hard-collinear region.

Thus, for the problem of interest, the scattering of an
electron in an external field to lowest nontrivial order, we
may think of specifying the asymptotic Hamiltonian by
the replacement

0,(k;) =08, —2)+0(z—5,)0(8,—6) .  (3.19)

It is clear that the vertices here are of the standard form,
but restricted to a small region of phase space where the
photon is soft (o, <AE) or where the photon is hard but
nearly collinear (6 < &,) with the electron or positron.

B. Calculation of S-matrix elements

Now we wish to proceed with the calculation of the
lowest-order radiative corrections to electron scattering
off an external source. Using the cross-section method, it
has already been shown to have a smooth massless limit
when the masses of the photon and electron are taken to
zero [9]. Thus we already know that, following conven-
tional methods, the properly defined observable cross sec-
tion is independent of the regularization scheme applied
to the mass singularities. (By properly defined we are in-
cluding initial- as well as final-state degeneracy in our
definition). Despite the general discussion in the preced-
ing section, we feel it is important to verify explicitly us-
ing the S-matrix method that the same results are also
obtained. This will give us increased confidence in the as-
sumptions made in the abstract formalism and justify, at
least in this case, the continuity assumption made in the
formal treatment.

Let us determine the order e? corrections to the elastic
amplitude. To this end one must evaluate S 4 [Eq. (2.13)],
using Eq. (3.11), between single electron states
liY=le(l;i)), |fY=le(l";i")). If we denote the nonra-
diative S-matrix element by (S(O))f,- (see Fig. 3) and the
second-order matrix element by (S(AZ))ﬁ, then the lowest-
order radiative correction to the cross section will be

do'V~2Re[(S'P) (S]] . (3.20)
The second-order S-matrix element is
(S, =(109s Qa2+ (f1Q0sE L)
+(£122s PP+ (Flals B a0
+H(rlaUs ol i) +(f100s B oY i) .
(3.21)



45 INTERPRETATION OF THE ASYMPTOTIC S MATRIX FOR MASSLESS . .. 1305

FIG. 3. Nonradiative scattering process and the virtual radi-
ative corrections (only the singular ones are shown above).

The first two terms, involving contributions to the initial
coherent state, will be denoted by (S>?),, and (S{"1)),,
respectively. Similarly, the third and fourth terms, in-
volving the final coherent-state contributions, will be
denoted by (S'7?), and (SY""),, respectively. The fifth
term, involving both initial and final coherent states, will
be denoted by (S'"))_. . Finally, the last term is the usu-
al elastic vertex correction (since Q'2’=1,) which we will
write as (S'”) ;8. This contribution, shown in Figs.
3(b)-3(d), is totally standard and has been discussed pre-
viously [9] and will not be calculated again here. In the
remainder of this section, we calculate the various other
terms in Eq. (3.21).

1. Calculation of (S{");n
We have

(SE)=Ce(1;i)|SE QM el;i) . (3.22)
From Egs. (3.11), (3.12), and the list of vertices in Eq.
(3.7), we obtain the following first-order contribution to

the coherent state:
|

(S0 =—e2T (") [ dk |JIAD +vyoly A=Ky

+y, [ AU—Kk)—4 W AU —k)y*

FIG. 4. First-order transformation of the initial electron
state. All lines connected to the asymptotic wave operator
(blob) are on mass shell. Note that the propagators are not on
mass shell.

QVe(t;i))y =e h fﬁly(k;k)e(l—k;a))
ak

X T *(1—k)e (k) U()
0,(k;)

20(l—k,m,)v ’ (323

where ®,(k;) is to be replaced as designated in Eq. (3.19).
Here and for the remainder of this paper, we define
d’k =d’k /(2m)20(k,m,). Hence the initial single-
particle state becomes an initial coherent state that can
be expressed in terms of multiparticle states. The
Feynman-Dyson S-matrix elements are calculated as usu-
al with ordinary Feynman rules. The matrix element
(S}, is depicted in Fig. 4. For the first graph [Fig.
4(a)], we can write the electronic properator as

Nplok,m,)+o(l—k,m,)1]

, 3.24
Dp[a)(k,mr)-l-a)(l—k,me);l] { )
where
Ngla;bl=ay,—b-y+m, ,
(3.25)
Dpla;bl=a’—b*—m?2 .
Therefore, it follows that
Nelolk,m ) +o(l—k,m, )1 1=V +vyo+m, ,
(3.26)

Dyplo(k,m ) +o(l—k,m, )l ]|=v[v+2w(l,m,)] .
Working similarly for the second graph [Fig. 4(b)], we ob-
tain the S ,-matrix element:
O,(k;)
201 —k,m,)V[v+20(l,m,)]
O,(k;)
20l —k,m, W' [v' —20(l'—k,m,)]

(3.27)

Uil .
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In the expression above, J denotes the Fourier transform
of the external current; A(b)=w(b,m,)y,—b-y +m,, the
projector, and v'=o(l'—k,m,)+o(k,m,)—w(l’,m,),
the energy difference. (An overall energy-momentum §
function has been suppressed.) At this point we can
evaluate the right-hand side of Eq. (3.27) by making the
phase-space decomposition indicated by Eq. (3.19).
Separating into soft and hard-collinear regions, we will
define corresponding quantities 8{1:!’ and 8{1:}) by

in;he
(4 =(5) (8D +8(010] . (3.28)

The explicit expressions for these follow.

(i) Soft region. Noting that vo(l,m,)=vo(l —k,m,)
=(lk) and v'o(l'—k,m,)=(I'k ), we can write

(SY)ins =(S ) 8007 (3.29)
with
(8=T" " JUI) (3.30)
and
~ | —p2 ,
(Lh=,2 [ 43 e ar) _
Sin=e? [dk o T Towe (@) . 63D

(i) Hard-collinear region. In this region we can simi-
larly write

(S inhe =(S) ;8000 (3.32)
with
siLl) = m} 1 1
8in’he f (kI )2 (kl,) +;_1H
X0O(55—0)O(z—8g) (3.33)

where 0 is the angle between the vectors k and I. Here
we used the kinematics of Sec. III A to simplify:

20(1—k,m, W [v+20(l,m,) ] =4(1—z)(kl,)?,
20(l—k,m, W' [v' —20(l'—k,m,)]
~—4z(1—z)(kl)I'),

(3.34)

where the on-mass-shell four-vector I, is defined as
I, =(o(l—k,m,);1—Kk).

2. Calculation of (S'{"")

Similarly, we can write

(S(ll)) —(S(O))ﬁ(a(l l) _(/'lhlc)) (3.35)
with
Slom o ar
sV =02 [ 23k e 4 ) _
h=e? [ Trr FTowe |98e—2), (336
shh=¢2 dak —m3+ 1 __1
(k2 (k)
X0O(8,—0')0(z—5g) . (3.37)

Here €' is the angle between the vectors k and !’ and the
four-vector I is defined I} =(w(l'—k,m,);1'—k). Note
that o(l,m,)=w(l',m,), and hence the definition of z
remains unchanged.

3. Calculation of (SG'") ix
Using the first-order expressions calculated previously

for the soft bremsstrahlung contributions to both initial
and final coherent states, we may write

(S i
=—e2T (") [ dk v, AU — KT AU —k)y*
O(8;—2)
x 20(l —k,m W20(l'—k,m, V'

xXUil) .
(3.38)

The corresponding diagram is shown in Fig. 5. There-
fore, we can write

(S )= (580 339
with
(L= _,2 [ 43 ur) 8p— (3.40)
== [ Pk 5 OB —2)
4. Calculation of (S$%);, and (S$%),
From Eq. (3.21) we have
(S0, =(eli")SQ QP e(l;) . (3.41)

Calculating in a similar manner as before, the second-
order initial-state contribution to the coherent state, we
obtain

QMe;i)) =3 le(,a)) TADZUN) ,  (3.42)
with
v
Sa=—e? [ d*k v, AU —K)p*
@,(k;)
= (3.43)

2co(l m, N —2ieo(l —k,m, v

FIG. 5. Mixed initial-final state transformation.

35Note that this matrix element exists only in the soft region.
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The diagrams corresponding to this and the final matrix
element are shown in Fig. 6. Note that the denominator
has a formally vanishing factor —2ie. This requires a
certain physical interpretation. The fact that a second-
order contribution to the coherent state reproduces a
single-particle contribution of exactly the same on-mass-
shell momentum indicates that this is a self-energy effect,
as is evident from Fig. 6. This interpretation is also rein-
forced by the adiabatic factor 2ie€, corresponding to an
interaction effect surviving in the remote past (for initial
states) or the far future (for final states). This is no
different from the calculation of ordinary Feynman-
Dyson S-matrix elements, except this contribution is
restricted to soft or collinear photons. To put it in a
more familiar form, we write vo(l—k,m,)=(lk)
=—1[U —k)?—m2+ieg], where €y is the Feynman dis-
placement of the propagator poles, and the relation

er=2[w(l,m,)—w(k,m,)]e (3.44)

connects it to our adiabatic energy factor e. We then

write this as in previous cases in the form

(S79);,=(8) ;829 , (3.45)
where 8{2? is the contribution of =, to the S-matrix ele-
ment, given by

7, AU —k)y*
aX(I) [I—=kP—=m?] | xir=o

X(1—=2z)0,(k;), (3.46)

(20)_ —e? f

where X(1)=)—m,. As before, it will prove useful to
divide this into soft and hard-collinear contributions:

(SPu=(S) (820 +820)) . (3.47)

(i) Soft region. Writing (I—k)*—m2=[X)
—¥][X(1)—K+2m,] and evaluating the derivative, we

FIG. 6. Asymptotic self-energy transformations of the (a) ini-
tial and (b) final states.

1307
obtain
2 v m2 1
(20)_ 3 e _ —_
8= = [a% ATy 05, —z)
2
~—fd3k(lk)2®(85 z), (3.48)

since the second term does not contribute to the soft lim-
it.

(ii) Hard-collinear region. Working similarly, we find

Y 2
8(20) 82 d3k m, _(1_2)
mhe™ g (kI,)>  (kI})
x®(89_0)®(2_85)
=_e_f 3k m} _z
2 (kl,)? (k)

X @(8,—60)0(z—5) . (3.49)

Obviously, (SZ?) ¢ is given by expressions identical to
those above with /, replaced by /.

C. Summary of results

Summarizing the results of all these calculations, we
may put together the various contributions:

S(Z)_S(O)(S(Z 0)+8(l l)+8(2 0)+5(l 1)

n;s ;s

52“”'*‘8(20)‘*'5“” (j;l?‘:)+8(1

in;he in;hc

'+8%)) ,
(3.50)

where we have included the usual vertex correction in the
last term. Denoting the sum inside the parentheses sim-
ply by 8%, we have

2 2 ,
8‘2’=e2f;}kl _ m, m ()
21k)?  2'k)?  (Ik)I'k)
XG(SE—Z)
2
1 2
fl —z | (kI St P2
X®(89—9)®(z—85)+8(}) . (3.51)

In this form it is easy to compare with the results ob-
tained via the cross-section method [9]. The first term is
exactly equal to half the soft bremsstrahlung contribu-
tion, denoted 185, while the second term equals the sum
of hard collinear bremsstrahlung, denoted &gy. Hence

8V =185 +85y+8% . (3.52)

The lowest-order radiative correction to the cross section
[Eq. (3.20)] is therefore

da(z) (2)d0’
a0 aQ

This is precisely the same cross section obtained in Ref.

"(885+253H+28‘2’) (3.53)
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[9], thereby establishing the identity of the S-matrix
method with the cross-section method in this case. But
Ref. [9] established that this formula has a smooth limit
as the photon and electron masses tend to zero, and so no
further work is required here. Moreover, since Ref. [9]
also showed that the result was the same regardless of
whether one used dimensional regularization or mass
cutoffs, we know this result contains no anomalies. The
present discussion implies that this result will also obtain
for fixed masses in the limit of very high energies; i.e., the
result is entirely uniform.

IV. OBSERVABLES AND THE
“EXPERIMENTAL” ASYMPTOTIC HAMILTONIAN

Having illustrated the S-matrix formalism in the case
of the scattering of an electron in an external field, we
wish to reflect on the method more generally and explain
its relationship to the traditional cross-section method.
To some extent this section picks up where Sec. II leaves
off, with reference to the explicit calculation of the previ-
ous section. Heretofore, we have intuitively interpreted
the parameters in the asymptotic Hamiltonian as the de-
gree of physical degeneracy appropriate to a particular
experiment. In this section we among other things derive
that interpretation, showing that the preceding calcula-
tion is correct only for that particular choice. In the pro-
cess we show that observables are, in a sense, independent
of the particular choice of H ,(A). We answer other
questions such as, what if the initial- and final-state reso-
lutions differ? To this end we introduce a new S matrix
that involves different asymptotic Hamiltonians for the
initial and final states. We find that the “infrared catas-
trophe” is independent of the initial-state energy resolu-
tion, so long as that is more precise than the final-state
energy resolution. At first sight this result appears coun-
terintuitive, until one understands that, in a given mea-
surement, the determination that a soft photon has not
been emitted is set by the worst rather than the best reso-
lution in the problem. We also show that, in this special
case, one does not need to sum over degenerate initial
Fock states, just as in the Bloch-Nordsieck prescription.
However, this is never true of the collinear singularities
associated with the incoming particles, for which initial-
state summation is crucial. As a result, observables
remain functions of the initial-state angular resolution
(or, equivalently, the transverse-momentum resolution).

We shall show that this intuitive picture is justified.
The concept employed by Bloch and Nordsieck [1] and
by Lee and Nauenberg [5] is that, for massless particles,
there are always indistinguishable final states to be associ-
ated with a given measurement. Such states will be said
to lie within a certain degeneracy domain for a given ex-
periment. For example, one cannot differentiate between
a single electron of a certain momentum and multiparti-
cle states having the same quantum numbers lying within
a certain region of phase space that cannot be dis-
tinguished by the measurement. The usual examples are
that one cannot distinguish between an electron together
with a sufficiently soft photon or a sufficiently collinear
electron-photon pair. We shall show that, for multiparti-
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cle states lying within the degeneracy domain, all matrix
elements of S, vanish. This means that for states that
are experimentally indistinguishable, the scattering
operator S , is completely characterized by its matrix ele-
ments between particles with momenta that are all distin-
guishable. It is important to understand that this applies
to massive as well as massless particles; it just depends on
the relation between the particles’ masses and the actual
resolutions in a given situation.

To begin, suppose that all particles, both electrons and
photons, were massive. One may still develop the theory
in terms of a set of asymptotic Hamiltonians H ,(A) such
as the ones considered previously, and for a certain range
of kinematic parameters, there will be nontrivial solu-
tions of the constraints provided by the ® functions. For
the massive theory, the previously singular Mdller opera-

tors Q. E—Q(Hi;’ H, are well-defined unitary transforma-

tions in Fock space, and the formalism may be interpret-
ed simply as calculating in a basis different from the more
customary Fock states having a definite number of parti-
cles. One can therefore obtain physical predictions in a
manner similar to the usual cross-section method. In
fact, for any given reaction at finite energy, one can, in
principle, choose the parameters A sufficiently small so
that, for the allowed range of phase space, Q. =1, in
which case this becomes identical to the usual cross-
section formalism. As we shall discuss, it seems to us
that the formalism, at least the cross-section method, is
inherently ambiguous when it comes to initial-state de-
generacy.

When the photon or electron becomes massless, the
equivalence to the standard formalism breaks down(.+ )Be-

cause of the infrared behavior of H ,, the QtEQHA)HO

cease to be operators in Fock space. This is true regard-
less of whether one interprets the physical space as Fock
space #, as we have done here, or the free-particle
states in Fock space #,, as was done in Ref. [19]. In ei-
ther case the operators ), map eigenstates of H, to
eigenstates of H ,(A), states which more nearly approxi-
mate the actual asymptotic states of the theory, but
which depend on some parameters A. Although it is be-
lieved the singular behavior accurately reflects the in-
frared structure of Hggp, the asymptotic Hamiltonian
H ,(A) depends on parameters A that are not specified by
Hggp, but which reflect the fact that observable cross
sections depend inextricably on experimental parameters.
This naturally raises a number of questions concerning (1)
the uniqueness of the form of the H ,(A), (2) the meaning
of the parameters in H ,(A) and their relation to experi-
mental parameters, and (3) the relationship of the S-
matrix method to the cross-section method.

With respect to the first point, the asymptotic Hamil-
tonian H , certainly is not unique, at least not if the only
requirement is the existence of the corresponding Mgller

wave operators Q(Hi},A We recall that in the case of

QED the form of H, used in Ref. [19] is not derived
from Hggp. Indeed, the precise form of H , used in Ref.
[19] differs from the ones used, for example, in Ref. [26].
However, it is argued that either choice is plausibly
correct because matrix elements in the respective
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asymptotic-state bases do not contain infrared diver-
gences to all orders in perturbation theory. Similarly,
when both the electron and photon are massless, so that
collinear divergences also appear, it has been argued [26]

that the choice of H 4(A) that we have employed leads to

matrix elements free of collinear singularities as well. We
have seen explicitly in the case of the scattering of an
electron in an external field that working with the S ,(A)
associated with the asymptotic Hamiltonian H ,(A) does
indeed produce nonsingular matrix elements, at least to
lowest nontrivial order. One can easily see that this re-
sult is independent of the identification of A with any ex-
perimental parameters. It is clear that the crucial in-
gredient for the absence of such mass singularities is that
H , reproduce the same infrared and collinear singularity
structure as Hqgp. This is the universal feature of ac-
ceptable asymptotic Hamiltonians having the property
that the matrix elements so generated are free of mass
singularities. In other respects there is considerable arbi-
trariness in how H ,(A) is specified.

What then are we to make of our demonstration in the
foregoing section that, if we identify the parameters in a
particular H ,(A) with the experimental resolutions, we
obtain the same answer as the usual cross-section
method? For the time being, we will continue to imagine
that initial- and final-state resolutions are the same. Sub-
sequently, we will generalize to the more realistic case
when they differ. The parameters generically denoted by
A define the degenerate phase space for a given experi-
ment, the relevant soft and nearly collinear regimes.
Within this degeneracy domain, a particular experiment
cannot distinguish between multiparticle states differing
by a number of sufficiently soft or sufficiently collinear
quanta. Correspondingly, all matrix elements of S [A]
between states having quanta within the degenerate phase
space vanish. We have demonstrated this by explicit cal-
culation, to lowest nontrivial order, in Appendix B. A
heuristic way to see this is in the asymptotic interaction
picture, discussed in Appendix C, in which the interac-
tion operator is V;=H —H ,(A). In this picture all ver-
tices vanish for the emission or absorption of quanta
within the degeneracy domain. For example, consider
the vertices associated with H 4 restricted by the ® func-
tion as in Eq. (3.19). V; involves a ® function with re-
versed arguments. Thus, if ®, is given as in Eq. (3.19),
then 1—0,=0(z —8;)0(0—38;). Such vertices in this
picture emit only hard, noncollinear photons. Similar ar-
guments apply to other vertices involving collinear
electron-positron pairs. Thus S [A] is nonzero only be-
tween states having quanta all of whose momenta lie out-
side the degeneracy domain. For example, in the case
treated in Sec. III, scattering of an electron in an external
field is completely characterized by the single-particle
matrix elements that we calculated. Since the inelastic
matrix elements vanish and the elastic matrix elements of
S 4 reproduce the results of the cross-section method in-
volving elastic and inelastic matrix elements of Sgp, our
identification of the parameters A in H ,(A) with the ex-
perimental resolution is justified.

But what if we had chosen H ,(A) with parameters A
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not equal to the experimental resolution? The foregoing
discussion applies to both massless quanta and to parti-
cles having a small but finite mass. As we remarked ear-
lier, for massive particles, choosing A sufficiently small
removes any possibility of degeneracy. Thus, for
sufficiently small A, S ,[A] reduces to Sgp. If this choice
of A is small compared to the experimental resolutions,
then it is clear that the cross-section method must be
used to construct the observable cross section. This ob-
servation generalizes as follows: If the choice of asymp-
totic Hamiltonian H ,(A) involves parameters A that are
smaller than the experimental degeneracy, one must add
to the elastic cross section, the inelastic contributions of
soft and collinear quanta that the measurement cannot
resolve. This is proved by explicit calculations in Appen-
dix B for the scattering of an electron in an external field.
More precisely stated, if A° denotes the experimental
resolution, and A < A¢ then

do g (A)=|(I'|S ,[A¢]I1)]?

=K [AlD 1P+ 3 KIS (ALl 12,
if

obs

4.1

where the second term represents a sum over those in-
elastic initial and final states that cannot be experimental-
ly distinguished from the elastic contribution. The neces-
sity to include initial-state degeneracy differs from the
Bloch-Nordsieck [1] result for Abelian theories. Howev-
er, it is well known to be required for collinear singulari-
ties [5,6] and for non-Abelian theories in amplitudes in-
volving nonsinglet initial states [31,32].

The equality displayed in Eq. (4.1) requires a specific
relative weighting among degenerate initial states, viz.,
the same phase space normalizations that apply to final
states. While this relation is an indisputable mathemati-
cal fact, it carries the paradoxical implication that
initial-state degeneracy is to be associated with a certain
relative weight between, say, an incoming single electron
of definite energy and an electron of much lower energy
accompanied by a hard but nearly collinear photon. This
conflicts with the intuitive notion of an electron beam as
well as the idea that one may prepare arbitrary linear
combinations of states in Hilbert space. A complete reso-
lution of this paradox requires a more careful analysis of
the measurement process. While we have not carried out
such a study, we believe it would show that the S matrix
(e(l')|S 4[A°]le(])) involving experimental parameters
A° is an approximation to the long-time, large-distance
correlation functions. The corrections to these transition
amplitudes presumably vanish in the limit that A°—0.
Thus one cannot so easily separate the measurement from
the dynamical system characterized by H, which is, of
course, free of such parameters. For the massless theory,
the measured states are approximately states described by
the in and out states associated with asymptotic Hamil-
tonians H ,(A). However, it is not a priori clear which
asymptotic Hamiltonian is relevant to a particular mea-
surement. We would turn the preceding discussion
around and specify that H, for which S, annihilates
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multiparticle states that are experimentally indistinguish-
able.

Suppose one had chosen an asymptotic Hamiltonian
H ,(A) corresponding to a resolution larger than the ac-
tual experimental resolution. It is clear that, to realize
the same observable cross section do ., as in Eq. (4.1),
one must subtract those inelastic contributions corre-
sponding to quanta that can in fact be distinguished, but
that have been included in the ‘“elastic” term by the
choice of H ,(A). Thus one obtains a similar expression
as Eq. (4.1), but with a minus sign before the inelastic
term. This shows that two asymptotic Hamiltonians may
be mathematically equivalent in the sense discussed pre-
viously, but may actually describe very different physical
situations.

What if, as is usually the case, the initial- and final-
state resolutions differ? In that case it is useful to intro-
duce a modification of S ,[A] to accommodate such cir-
cumstances. The S matrix S, given in Eq. (2.7) or (2.8),
corresponds to transitions between in and out states
defined with respect to a particular choice of asymptotic
Hamiltonian H 4. Nothing prevents one from using a
different asymptotic Hamiltonian for the out states than
for the in states; that is, one may define

S 44 EQ‘H"E; Q' h 4.2)

or

oty =TSyl
where H', is associated with out states and H, with in
states. Mathematically, this amounts to a trivial change
of basis in the Hilbert space since

(=)t —o(—) (=)t
QH,H'A Q11;,HAQH,1‘1A-

(4.3)

4.4)

Physically, of course, we have in mind a situation in
which the final-state resolution (generically denoted by
Ay) differs from the initial-state resolution (denoted by
A;), suggesting that we associate H)y =H 4(A /) with final
states and H ,=H 4(A;) with initial states and denote
Sy 42388, 4[Ar,A;]. One may relate S 4 to our previ-
ous S 4 by using Eq. (4.3), to wit,

SA,A[Af,A,-]———Q;a)HASA[Ai] : (4.5)

It is straightforward to generalize the preceding discus-
sion to show that multiparticle matrix elements of
S 4 4[As,A;] vanish whenever final- or initial-state quan-
ta lie within their respective degeneracy domains, i.e.,
when states involve quanta that are indistinguishable by a
measurement characterized by final-state resolution A,
and initial-state resolution A;. To see this one may apply
the asymptotic interaction picture argument that we pre-
viously gave for S ,[A] separately to Q‘Hf},A and Q(H_I){A,
i.e., one may employ different interaction pictures in each
case to establish the result. One may also verify it by ex-
plicit calculation in the usual interaction picture as
shown in Appendix B. For massive particles (or a regu-
lated theory), one may write
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(4.6)

4o "

Swaldp81=0%) , SeplH4 )y

This is the most natural form for calculating the matrix
elements of S 4. 4, using the usual Feynman rules of the in-
teraction picture. For example, for scattering in an exter-
nal field, one is instructed to evaluate the Feynman-

Dyson S matrix between the in-coherent state
lit)= Q(HJ;),THO le(l)), associated with initial-state
resolution A;, and the out-coherent state lf)

=Q(H';’fHO|e(l ")), associated with final-state resolution
Afn

Thus far, we have avoided the rather vexing question
of how, for a given experiment, one is to infer the initial-
state resolution A;. In analogy with detector resolutions,
we want to identify the uncertainty with which the ener-
gy and direction of each particle may be known. This is
not the same as the classical, statistical distribution of
momenta of all the particles in a beam bunch, since, in
principle, each particle’s momentum is definite. Rather,
one should entertain the notion of the extent to which,
given the accelerator, a single particle, such as an elec-
tron, can be distinguished from multiparticle states, such
as electron plus a soft photon or an electron plus a col-
linear, hard photon. Another way to think about this is
to view the accelerator as a measurement of a particle’s
momentum to a certain accuracy. To better understand
the symmetry between initial- and final-state resolutions,
it may be conceptually helpful to restrict one’s attention
for a moment to theories invariant under time reversal.
Then, formally,

<flSA'A[Af,A,-]|i>=(—iISAA,[Ai,Af]*I—f)* . @7

Thus the initial-state resolution becomes the final-state
resolution for the time-reversed process, for which one is
invited to imagine the accelerator as the detector.

For Abelian theories, as remarked earlier, so long as
the initial-state energy resolution AE; is less than the
detector resolution, the normal situation, then the matrix
element will in fact be independent of AE;. However,
this is not true for collinear singularities, and the matrix
element is not independent of the initial-state angular
resolution 86, or, alternatively, the initial-state
transverse-momentum resolution. For an electron beam,
for example, 86, will be the angle below which the ac-
celerator cannot differentiate a single electron from an
electron accompanied by a collinear photon or a photon
from a collinear electron-positron pair, and so it
behooves us to understand better what this refers to. One
would naively think one could distinguish the single elec-
tron from the electron-photon pair simply by observing
the photon or, since it has lower energy, by observing the
electron bend at a larger angle in a magnetic field. But
one cannot preclude the possibility that the photon is ab-
sorbed by the electron in the process of further interac-
tion, and so observations on the final state are irrelevant.
Indeed, looking back at the contribution of the initial
coherent state to the result in the preceding section or,
for that matter, recalling the analogous calculation using
the cross-section method [5], it is just this probability of
absorption in addition to interaction that contributes to
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the cancellation of the mass singularity in the virtual,
vertex correction.

In the final formula for the observable cross section
[Eq. (3.53)], the lower limit on the angle 0 is set by the
initial-state angular resolution 8. As mentioned in Sec.
I1, this S-matrix or coherent-state formalism may be ap-
plied to massive particles as well as to massless particles,
a point on which we shall elaborate further in our com-
panion paper [25]. But for massive particles, the near
vanishing of the energy denominator [Eq. (3.16)] is
governed not simply by the angular resolution &g or the
corresponding transverse-momentum resolution §,,, but
rather by the so-called transverse mass m, =(p2 +m?)!/?
or corresponding angle m, /E =(812+x?)!/%, where, as
before, y=m /E. This is the quantity that sets the scale
of the cutoff on the collinear singularity. Thus, if 8§ >>,
then the mass may be neglected, whereas if 82‘ <<y, it is
the mass rather than the resolution that is the important
parameter. In this latter case, treating the particle as a
single particle and neglecting the experimental resolu-
tions is a valid approximation.

In a given experimental situation, what is this initial-
state angular resolution 8§'? One would think that a clas-
sical source could have arbitrarily precise resolution,
given that there is an infinite amount of time to prepare
the beam. In such a case, the initial-state resolution
would be set by quantum limits on the precision of a mea-
surement because of the uncertainty principle. For exam-
ple, the time that it takes for an electron to travel from
the final focus (FF) of the accelerator to the intersection
point sets a limit on the electron energy resolution
AE#/T, and within this energy band, you could not tell
the difference between an electron and an electron plus a
soft photon. In fact, for a sufficiently energetic electron
and a hard photon, one can easily show from Eq. (3.16)
that a lower limit on AE already imposes a lower limit on
the degree of collinearity of the electron-photon pair.
Similarly, the knowledge that the particle lies within a
certain region in the transverse plane sets a lower limit on
the transverse-momentum resolution. Typically, such
limits are extremely small, even for the highest-energy
electron accelerators, so that there is no question that it
would be the electron mass rather than these limits that
would cut off collinear singularities. However, it seems
that, even though there is in principle an infinite time to
prepare an electron beam, the characteristics of the ac-
celerator itself rather than the geometry of the interac-
tion region are the determining factors in limiting the
initial-state angular and energy resolutions. We shall dis-
cuss this from a couple of different points of view, but
nevertheless, it still turns out that, in realistic situations,
it is the electron mass rather than the angular resolution
that is the primary regulator of collinear singularities.

As the beam approaches the intersection point, it
passes through a final focus in which the momenta of the
particles are precisely controlled so that they converge to
a tight spot at the intersection point (IP) some meters
away. At a symmetric point along its orbit, the mean
amplitude 7 and direction 7’ of the beam may be inferred
from the transverse emittance € and the amplitude func-
tion for transverse (betatron) oscillations f3, viz.,

r=VBe, r'=ve/B. (4.8)

In fact, in electron accelerators, these are very different in
the horizontal and vertical directions, which we will take
into account below. For the sake of discussion, however,
let us suppose for a moment that the beam is azimuthally
symmetric around the beam axis. After the final focus,
the beam converges through a drift region®® to the IP
where its transverse amplitude is minimum and where it
normally collides with a similarly focused beam in the op-
posite direction. Our interest is in how well differentiated
any given electron is from a nearly degenerate multiparti-
cle state, such as a nearly collinear electron-photon pair.
In the drift region, the angular divergence r’ of the beam
is constant and defines the angle of the cone within which
particles of the beam pass as they emerge from the FF
until they arrive at the IP. Quantities such as r and 7’ de-
scribe the classical statistical distribution of the particles
in the beam, each one of which has a definite momentum.
The angular resolution we seek is, however, not r’, but
the typical uncertainty with which an electron’s momen-
tum is defined. For this it is important to understand
that transverse oscillations are excited by the quantum
fluctuations in the emission of bremsstrahlung by a rela-
tivistic electron [42]. Such bremsstrahlung forms a
“searchlight,” peaking at an angle y, with respect to the
initial direction of the electron. The electron’s recoil, this
inevitable jitter in the electron’s direction due to random
emission of photons, is the mechanism that drives the be-
tatron oscillations and creates uncertainty in the
electron’s direction. Thus we anticipate that, in an op-
timally designed accelerator, the initial-state angular
resolution 8i9“ will be of the order of x,, although, since
the probability of bremsstrahlung is rather small, the
resolution may be smaller than this on the average. As
we have seen, the relative size of &g and y, is all impor-
tant in determining whether initial-state degeneracy or
coherence is important in practice, and so we need to be
more precise than this order-of-magnitude estimate. We
wish to deduce 8y directly from accelerator parameters
just as 65 is deduced from the resolution properties of the
detector. Because initial-state degeneracy is an unfami-
liar concept and because we are exploring unfamiliar ter-
ritory, we shall present two estimates of 8. In the first
we deduce an easily understandable geometrical upper
limit for a given accelerator; in the second we will infer a
more precise estimate based on the parameters of the
final focus.

This geometrical upper limit may be deduced simply as
follows: Imagine a particle emerging from the final focus
on the beam axis, but with some transverse momentum.
If the characteristic uncertainty in the transverse momen-
tum carried the particle outside the cone formed by the
final focus, the particle would lie outside the transverse

36In practice, the beam is usually surrounded by a detector
where, in principle, there is little or no external field affecting its
motion.
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area at the IP. To put it another way, an electron emit-
ting a photon just as it emerged from the final focus may
not arrive at the IP if its change in direction is too great.
Moreover, if this electron or photon were not obscured
by the other electrons in the beam bunch, then presum-
ably this state could be distinguished from a single-
particle state. So it appears that 8 <r(IP)/L, where
rIP) represents the characteristic size V'eB(IP) of the
beam at the IP and L is the drift distance from the FF to
the IP. These quantities are readily available [43]. How-
ever, we must face the fact that an electron beam is far
more elliptical rather than cylindrical, the amplitude in
the plane of the orbit being much larger than vertically.
What amplitude should be used in estimating 8;'? Imag-
ine the extreme in which the vertical amplitude were very
small so that the beam profile were nearly planar. We
have argued that ultimately the electron’s resolution is
related to the emission of bremsstrahlung, and we know
that this searchlight is azimuthally symmetric about the
electron’s direction of motion at an angle of order y,. If
such an emission angle were large compared to the angle
defined by the vertical amplitude, then it would be very
infrequent that the emitted photon or recoiling electron
would lie in the plane of the beam. Thus we would argue
that for the highly skewed beam profile one ought to use
the smallest dimension, the vertical height y, in estimat-
ing 8. At the SLC, for example, where the beam is very
narrowly focused, this corresponds to about 2-3 um di-
vided by about 3 m, giving y /L =10"% This is to be
compared with y,=m,/E~10"°. Thus it is the mass
rather than the angle that is relevant and cuts off the col-
linear singularity.’’” At LEP the beam radius and drift
distance are larger, so that we find y/L =12 um/3.5
m=3.4X10"9%, and so the angle remains less than y,.
The final-state angular resolution is typically much
worse, with 65 typically on the order of 10™* or more. _

Our second, somewhat less intuitive, estimate of the &y’
is based on the properties of the final focusing of the
beam just before the intersection region. The momentum
of the beam is precisely defined by the FF, and corre-
spondingly, the amplitude of the beam reaches a max-
imum in the FF, where the angular dispersion is
minimum, 7., =V €/Bna(FF). If the typical uncertain-
ty in direction were not smaller than this, the FF would
not work as designed. On the other hand, the uncertain-
ty cannot be smaller than this, since this is the highest-
momentum resolution in the accelerator. Thus we sug-
gest that this minimum of r;, in the FF corresponds to
the initial-state angular resolution 8 that we seek.

By way of consistency, one can show that this value is
certainly less than our previously estimated upper limit.
Clearly, the maximum amplitude S3,,,,(FF) inside the FF
is greater than its value at the face of the FF when the
beam enters the drift region. Using the free-space equa-

37By way of contrast, the angular divergence of the beam, not
to be confused with the initial-state angular resolution, is on the
order of 200 prad, an order of magnitude larger than X, .
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tions, one can relate B at the face to B(IP) at the intersec-

tion point. To a good approximation, at the face,
B~=L?/BUP). Therefore,
pap) |7 _ rap)
, € r
rminS L2 = L ’ (4.9)

which we recognize as our geometrical upper limit. In
the normal case that B, ,,(FF) is very different in the hor-
izontal and vertical directions, once again, we would ar-
gue that it is legitimate to use the larger of the two in es-
timating the resolution. While the order of magnitude is
important, in many applications, it is sufficient to know
the initial-state resolution approximately, because the
resolution appears in a logarithm multiplied by the fine-
structure constant. However, evanescent processes are
directly proportional to the ratio x, /8, and so it is im-
portant to determine these quantities precisely.

It may seem paradoxical that the initial-state angular
resolution could be deduced to be much smaller than y,,
the angle at which bremsstrahlung is maximum and the
ultimate cause of imprecision in the knowledge of the
direction of the electrons. The answer, we believe, is
that, because the fine-structure constant is small, the
probability of bremsstrahlung remains small, so that, on
average, the direction may be relatively better defined
than the recoil angle.

In the design of future linear accelerators with elec-
trons of energy on the order of 1 TeV, y,=m,/E
~0.5X 107 % However, to obtain the necessary luminos-
ity, the radius r(IP) of the beam spot at the intersection
point falls to 50 nm or so, so that the angular definition is
reduced by at least as much as m,/E. Thus the same
conclusion will continue to hold for future machines, a
dramatic illustration that the high-energy limit is not
necessarily the same as the massless limit.

V. DISCUSSION AND CONCLUSIONS

In this section we wish to reflect further on the impli-
cations of our formalism, on remaining questions, and on
potential future developments.

Although it would be unconventional in the case that a
particle’s mass really is nonzero, one may choose an
asymptotic Hamiltonian H , other than H,, since H ,
and H, are in the same equivalence class. What is more,
this could even be useful in situations where the energy is
very high and/or the experimental resolutions are large
compared to the mass. An example in QED is the
helicity-flip process discussed in Ref. [25]. One appealing
aspect of our formalism is that both the massive and
massless theory are in Fock space, and so no conceptual
modification of the usual way of thinking is required. In
such cases the particle’s mass is physical and not just a
regulator for the massless theory, and the calculations,
for example, in Sec. III, should be viewed in a different
light. Then whether a mass is experimentally relevant
can rather easily be decided. The massive theory will ap-
proximate the massless theory so long as the mass frac-
tions x,,Y, are smaller than the corresponding experi-
mental resolutions {AE,56}.

Besides being able to treat the high-energy and mass-
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less limits in a uniform manner, there are other advan-
tages of the S-matrix method over the conventional
cross-section method: (a) The experimental degeneracy
of states, necessary to achieve finite transition rates, is
taken into account at the S-matrix level and not at the
cross-section level (as an incoherent sum of cross sections
within a Lee-Nauenberg degenerate set [5]). This is espe-
cially advantageous in the discussion of evanescent pro-
cesses [25]. (b) The formalism naturally accounts for de-
generacy both in the initial as well as the final state. In
this sense initial- and final-state resolutions are treated on
the same footing. The calculations in this paper, in the
context of a well-studied example, establish that the S-
matrix method is reliable and equivalent to the tradition-
al cross-section method, at least where the latter method
has been applied. The treatment of the collinear singular-
ities in this example illustrates the general result that
initial-state degeneracy must be taken into account in or-
der to establish that observables are nonsingular as a
particle’s mass tends to zero. This is, of course, not new
[5].*® Although we have not proved the equivalence be-
tween the S-matrix formalism and the cross-section
method in general, our results make it at least plausible
that they will lead to identical predictions for observ-
ables, provided initial-state degeneracy has been properly
taken into account. This has far-reaching implications:
The KLN results [4,5] concerning the cancellation of
mass singularities in observables undoubtedly can be gen-
eralized to show that properly defined observables have a
finite, smooth limit as any mass tends to zero. This limit
is uniquely described by the corresponding massless
theory and is independent of the method introduced to
regulate the mass singularities at intermediate stages of
the calculation.

In particular, as indicated in the preceding section, the
radiative corrections which have been performed at SLC
and LEP to take into account initial-state bremsstrahlung
and, in particular, to extract the Z° mass and width,
should be numerically reliable. In a hypothetical situa-
tion in which the weak interactions were unbroken and
the electron, neutrino, and vector bosons were all mass-
less, one would be forced to take the initial-state resolu-
tion into account. This might be relevant to early
universe calculations, where the temperature sets the
scale of the soft and collinear cutoff.

As another related application, the naive calculation of
the background in the search for right-handed charged
currents at HERA, first discussed in Ref. [21], does in
fact survive for the experimental resolutions.’® This is

38However, just because a process may not involve a collinear
divergence, it does not follow that initial-state degeneracy can
be ignored because there are finite effects, such as the helicity-
flip process to be discussed in detail in our companion paper
[25], which require initial-state degeneracy to avoid faulty con-
clusions about observables.

3This contradicts our conjecture made in Ref. [21], although
it remains true that, strictly in the limit m,—0, it would be
suppressed and become of order amez/ s.
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relevant also for radiative corrections [44,45] to the po-
larization asymmetries as SLC and LEP. These were
quantitatively small corrections in any case, but our work
shows that, for realistic experimental resolutions, these
calculations are in fact approximately correct, effectively
being of order a and not of order am?/s. These matters
will be discussed further elsewhere [25,46].

One consequence of our work is that the apparent
anomalies in massless QED that have been attributed to
such mass singularities [23] are spurious, a feature of the
method of calculation in terms of Feynman-Dyson S-
matrix elements, but absent from observables, calculated
either in the S-matrix S 4 discussed herein or in a proper-
ly defined observable cross section. These pseu-
doanomalies will be discussed further in our companion
paper [25].

Of course, for QCD, the discussion is further compli-
cated by the fact that there are no asymptotic quark and
gluon states because of confinement. We are speaking
here of the perturbative contributions used for the discus-
sion of the ‘“hard processes” factorized from wave func-
tions in the formalism of perturbative QCD. Thus the
closest one may come to a description in terms of mass-
less quarks and gluons is probably the replacement of the
usual parton distributions by coherent-state distributions
corresponding to an asymptotic Hamiltonian correspond-
ing to a characteristic energy and transverse-momentum
uncertainty on the order of Agcp. This resolves the para-
dox concerning the failure of the KLN theorem noted in
Ref. [32]. Our results also invalidate the suggestion of
Ioffe and co-workers [23] that protons acquire a longitu-
dinal gluon structure function.

There are many other potential applications of our
general results, some of which we will treat in future pub-
lications. One natural application of the preceding is to
QCD, where it has been suggested [34,32] that there are
very large corrections proportional to In(Q?/m?) associ-
ated with gluon bremsstrahlung from light quarks. As-
suming our results extend to non-Abelian theories—and
we see no reason why they should not—these results
must be incorrect. The mean transverse momentum of a
parton in a hadron is set by the scale of confinement
Aqgeps which, although not well known, is on the order of
100-200 MeV. Thus light quarks (and gluons) appear in
parton-model calculations as beams of partons whose
transverse momentum is large compared to their mass,
quite unlike the case of electron bremsstrahlung dis-
cussed above. For u and d quarks, for which Aqcp >m,
the mass singularity will be cutoff by Agcp rather than
m. So the large In(m) terms in Ref. [34] are spurious, a
point made earlier in Ref. [32]. However, in Ref. [32] it
is remarked that in order for the KLN theorem to hold in
deeply inelastic scattering, there would have to be a very
special relation between the single-particle structure
function for a quark, say, and the two-particle structure
function for a quark plus a gluon.** We have seen for the

40« .. - such a cancellation would require a miracle for which
we cannot see any reason’ [32].
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case of QED that the asymptotic states of the massless
theory are not the usual eigenstates of the free Hamiltoni-
an H, but of a modified Hamiltonian H ,, and the same
would be true for the non-Abelian case. For any given
measurement, these describe the flux of incoming and
outgoing particles, and when the initial resolution is
larger than the mass, these remain the appropriate states.
Correspondingly, the correct basis for describing the par-
ton states in a hadron are not the quark eigenstates of
H,, but the eigenstates of H ,(A), where we would expect
the characteristic energy and transverse-momentum reso-
lution to be of order Agcp. It follows that, for quarks
whose masses are small compared to Agcp, the situation
more nearly resembles the massless rather than the mas-
sive case. When expressed in terms of states with definite
numbers of particles, the single- and multiple-particle
states enter in precisely the right combination to remove
mass singularities in S-matrix elements; i.e., the “mira-
cle” referred to in the preceding footnote becomes natu-
ral. Alternatively stated, the “in states” which are ap-
propriate to a perturbative evaluation of ““hard-scattering
processes” are not the single-parton states (whose matrix
elements involve mass singularities), but rather coherent
states (whose matrix elements are free of mass singulari-
ties) associated with a resolution on order Agcp. Al-
though we have not proved that such a relation exists in
QCD, we believe it must obtain, since the quark masses
ought to play no role whatsoever in determining the
short-distance results. From our point of view, it is
better to think of the incoming quark parton not as a
single-particle state in perturbative QCD, but rather as a
coherent state with quark quantum numbers. A modified
formalism then should allow a consistent treatment of
higher-twist phenomenology of hard scattering, but we
have not attempted to develop that application.

Other topics for future development are more formal.
It would be theoretically satisfying if a formalism could
be developed in which there were no need for regulators
of mass singularities to be introduced. It would be of
practical significance as well, since it would reduce the
need for extreme accuracy on calculating terms having
singularities that cancel when added. This seems very
likely to be possible; we saw in our calculations of § 4 for
the regulated theory that when we combined the in-
tegrands of the various Feynman diagrams occurring in a
given order, no mass singularities remained.*! Thus it
would seem to be a matter of organizing the calculation
more efficiently at the outset, perhaps by developing a
different set of Feynman rules. An attractive but as yet
not fully developed possibility in this regard would be to
use an alternative to the interaction picture, replacing H
everywhere with H,. We call this the “asymptotic in-
teraction picture” and anticipate returning to it in future
work. We shall offer some preliminary considerations in
Appendix C, indicating why this might be a mass-
singularity-free formalism for the asymptotic S matrix.

41This contrasts with the cross-section method where cancella-
tions occur only after adding together incoherent cross sections.
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Other potential formal developments include a more
manifestly covariant formalism, such as might be provid-
ed by light-cone or infinite-momentum-frame techniques
[47]. Moreover, although we do not expect to encounter
any new matters of principle, we have not fully explored
the complications that arise in generalizing this formal-
ism to non-Abelian theories.

We wish to reflect on the fact that the finite S-matrix
elements in theories with massless particles depend on pa-
rameters, generically labeled here by the parameters A in
our asymptotic Hamiltonians H ,(A). Correspondingly,
as we have remarked at the outset and elaborated in Sec.
IV, all observable cross sections depend inextricably on
experimental parameters. Unlike familiar Feynman-
Dyson S-matrix elements, there do not exist transition
amplitudes involving only the parameters of the Hamil-
tonian H determinable, in principle, in the idealized limit
of infinitely precise measurements. This does not mean
that the dynamics specified by H is necessarily incom-
plete, but it does mean that it cannot be isolated so easily
from the measurement process. One must specify pre-
cisely the characteristics of the measurement, such as the
finite time over which the measurements are made and
the finite extent over which the measurement is carried
out. This stands to reason, since a soft photon corre-
sponds to a quantum of nearly infinite wavelength, and so
the notion of its localization or its association with either
the initial- or final-state detector becomes meaningless, as
one of the pioneers of this subject has emphasized [48].
In field-theoretic language, this suggests that one is
measuring certain finite-time, finite-length correlation
functions associated with gauge-invariant sources. What
then is the meaning of the S matrix S 4, which is defined
by discussing transitions between the infinitely distant
past and the infinitely far future? Our conjecture is that
the S-matrix method, embodied in S 4, is a technique for
isolating the leading dependence on the measurement pa-
rameters, up to terms that vanish in the idealized limit
that the experimental resolutions tend to zero. It would
be quite illuminating to demonstrate this explicitly, but
we have not attempted to do so.

A related aspect of the differences between theories
with mass singularities and those without concerns the
analytic properties of the Green’s functions. It is well
known [20] that in QED the ordinary Green’s functions
do not have simple poles at the electron mass, but rather
a branch point characteristic of the threshold for inelastic
processes. And Kulish and Faddeev also emphasized
that the “relativistic concept of a charged particle does
not exist” [19].

Finally, we wish to reflect on the meaning of a massless
electron in QED. Over the years there has often been
speculation that such a theory makes no sense, at least
not in perturbation theory. Occasionally, people have ar-
gued that there are nonperturbative effects that rescue it
and lead to a very different physical spectrum than the
perturbative one [49]. While it is certainly possible that
massless QED has a nonperturbative, strong-coupling
phase [50], we see no reason to question the existence of
the usual perturbative, weak-coupling solution. We know
from the renormalization group that the B function is
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infrared-free, and so there certainly does not exist a mass-
less charged particle, defined as the interaction of a fer-
mion with a static electric field (photon of infinite wave-
length). Stated otherwise, the vacuum polarization com-
pletely screens the charge of the fermion. Thus there is
no correspondence (in the sense of Bohr) of the quantum
field theory with the massless limit of a charged particle
in classical electrodynamics, which certainly seems
fraught with inconsistencies. Nevertheless, there is no in-
dication of problems in a perturbative solution of the
quantum field theory defined by the usual Feynman rules,
provided only that one does not attempt to define a finite,
on-shell renormalized charge. However, the usual Feyn-
man rules defined for example in minimal subtraction can
be used. Of course, as emphasized throughout this paper,
the usual Feynman-Dyson S-matrix elements do not ex-
ist, but we understand that this is no indication of an un-
derlying inconsistency, but rather a reflection of the in-
correct choice of asymptotic Hamiltonian in H,. In
short, if one is careful, it seems that massless QED makes
perfect sense, and massless perturbation theory is inter-
nally consistent.

Note added in proof. N. Nakanishi has kindly called
our attention to an early paper by Morota [51] in which
S 4 was first defined and, indeed, in which the asymptotic
interaction picture of Appendix C was employed.
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APPENDIX A

Here we contrast our view of the physical Hilbert
space as Fock space with the conventional view in terms
of coherent states: In the text we have built up field
theories of massless particles in Fock space #f in pre-
cisely the same manner that theories without massless
quanta are defined. This represents a departure from
what has become common practice over the past 20
years, wherein the physical states associated with mass-
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less quanta, such as photons, are taken to be non-Fock
coherent states. We will argue here that either approach
is permissible and that physical predictions are the same
in either case.*?

We have described how the Mgller operators Q- o, H in

Eq. (2.2) do not exist as unitary operators in 7fr. Howev-
er, 7y may be embedded in a larger space, the infinite
tensor product space of von Neumann [35] #,y. This
space has been described elsewhere [35,14,19], and these
discussions will not be duplicated here. Suffice it to say
that von Neumann dealt with the meaning of operators
(and their products) of the form exp(iF), with F a formal-
ly Hermitian but singular operator, such as Hqpgp. Even
though matrix elements of F may be singular, exp(iF) can
be made well defined. Essentially, von Neumann’s trick
is to interpret matrix elements with factors of the form
exp(i o) as zero and to show that this can be made con-
sistent with precise notions of convergence and continui-
ty. In our context examples of such formally unitary
operators are those having mass singularities such as the
Qf j, and Spp. Similarly, for any Fock state |¢), the

corresponding states
[¥g) =05 [v)

exist not in Fock space #p, but in the larger Hilbert
space #,y of von Neumann. In fact, they are orthogonal
[with von Neumann’s convention that exp(i « )=0] to all
of #r, a property necessary for consistency.

The conventional construction [14,19] is the reverse of
ours: The free-particle subspace associated with H| is
built up as a Fock space ¥, while the space Q(If},()?{o of

physical states and the space # , of asymptotic states
[19] involve coherent states orthogonal to #, In con-
trast, we have associated the Fock space Ffp with the
physical space, while the unphysical Q% 7-[ F must be

thought of as a space of non-Fock, “coherent states.
The two viewpoints simply correspond to choosing
different, unitarily inequivalent representations of the
canonical commutation relations [17].

We may describe the use of non-Fock spaces further as
follows: Consider the Eﬂ . There is no question that
the Mdller operators Q ) do not exist in #; however,

to interpret this relatlon, one has a choice. Conventional-
ly, the in or out states |43 ) are regarded as Fock states,
and so the space associated with QY |1/J0 ) is regarded

(A1)

as the non-Fock space of physical states and Q% ", Hohpo

is the non-Fock space of asymptotic states [19]. We, on
the contrary, choose the physical space as Fock space, so
that the |5 ) defined in Eq. (A1) become non-Fock. In
this approach the free-field Hamiltonian is defined on a
non-Fock space, but since H plays no role in the physics
associated with H, we find this point of view attractive.
Another advantage of this viewpoint is that the asymp-
totic states lie in the same physical Fock space #f as the

42This is not entirely original with us, as the possibility was
noted by Blanchard [17], and the equivalence is expressed in
Sec. V of that reference.
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physical states, because the Mgdller operators Q}}r},/‘ exist

for any acceptable asymptotic Hamiltonian H 4. In the
more conventional view [19], the space of asymptotic
states (at least for QED) is a denumerable subspace of the
larger, nonseparable von Neumann space #, -

Less mathematically speaking, one might well ask
whether one choice is preferable on physical grounds.
We would argue that our choice is the more natural and
easily interpretable. Let us recall the motivation [14] for
introducing coherent states in the first place: Kibble con-
sidered the response of the quantized electromagnetic
field to a classical electromagnetic current. He showed
that, if the current carries a nonzero charge, then the no-
photon state evolves in general to a coherent state with
an infinity of photons. This is all well and good and has
been interpreted as evidence that the physical states with
their cloud of photons created by charged particles lie
outside Fock space. However, our point is that the no-
photon state is itself an unphysical state in a world of
nonzero charge. The correct asymptotic states in the
presence of an external J fl' current may be obtained quite
analogously to the manner in which H, has been ob-
tained from Hggp in the text. In the presence of a
nonzero charge, asymptotic states would always involve
soft photons and would be defined by retaining the low-
frequency components of the current in the asymptotic
Hamiltonian H ,. Explicitly, we may simply take the
asymptotic interaction of the form

(A2)

— d4k cl 4u
V4 fk#<€(2ﬂ)4.l“(k) A*k)

With either choice a consistent formalism for transi-
tion amplitudes can be developed because observables al-
ways involve square-integrable amplitudes, free of mass
singularities (and, as we have argued, free of ambiguities).
There are conceptual advantages of identifying the physi-
cal space with Fock space. For one thing, massless and
massive particles can be treated on an equal footing.
Moreover, if one wishes, one may use an asymptotic
Hamiltonian H , with nontrivial interactions for treating
massive particles as well. This is not just aesthetically at-
tractive; it enables us to answer the question when a
particle’s mass is relevant or irrelevant for a given mea-
surement. In other words, in a certain experimental situ-
ation, is the massive theory well approximated by the
massless limit? This is crucial for the sort of processes
discussed in Ref. [25]. Aside from the uniformity of
treatment of massless and massive particles, there are
conceptual advantages for massless particles as well.
Physical transition amplitudes exist between states within
the same space instead of as mappings between unitarily
inequivalent subspaces [14].** Moreover, there is no

43By explicitly extracting a Coulomb “phase factor” ®, Kulish
and Faddeev [19] finesse this aspect of Kibble’s construction
and succeed in having transitions occur within a single space of
asymptotic states. It is not clear whether it is possible to extend
it to collinear singularities or how to generalize their technique
beyond QED.
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question that the familiar mathematics of Fock space is
simpler than the subtleties of von Neumann space. In
fact, in principle, it is unnecessary to consider the larger
von Neumann space #,y in which # is embedded, a re-
sult that is philosophically attractive [36]. In practice,
however, one may be forced to face up to #,y when one
attempts to develop Feynman rules in the usual interac-
tion representation. However, even this is not compel-
ling, since there is no problem interpreting the evolution
operator exp(—iHyt) in Fock space. The niceties arise
when one discusses the limits as t —1+o. With massive
theories the full Hamiltonian H may be expressed as a
Hamiltonian taking the form of H|, but with in or out
creation-annihilation operators replacing the original
creation-annihilation operators. These two sets of
creation-annihilation operators are unitarily equivalent,
provided an ultraviolet cutoff is present. However, for
massless theories, the unitary equivalence breaks down
because of mass singularities, requiring the discussion of
coherent states and von Neumann space.

Just as with uv divergences, if the mass singularities
are regulated, then the unitary equivalence is resurrected,
and perturbation theory may be developed as usual. This
is illustrated in the text by our discussion of the regulated
theory and the limit e—»0. We have remarked that, in

the regulated theory, all the states in Hilbert space may
be regarded as Fock states. However, the usual
Feynman-Dyson S-matrix elements become singular as
the regulator is removed. This singular behavior is
reflected by the fact that the limit

+ .
QY g, = lim Q7
€

(e) prie) (A3)
—o HHS

does not exist as an operator in Fock space, but only as
an isometry in von Neumann space. Therefore, the limit
of the asymptotic states of Eq. (2.17) and the coherent
states of Eq. (2.18) cannot be in the same space as the lim-
it of the eigenstates |E,n )'© of H{f'. While it is conven-
tional to insist that the last remain in Fock space, our ap-
proach is to require the asymptotic states |¢;7(E)) 1€ to
remain in Fock space # in the limit that e—0. Note
that this implies that the coherent states arising in the
limit € —0 in Eq. (2.18) are neither in Fock space nor in
the space of the free-particle Hamiltonian to which the
|E,n )€ tend.

This concludes our brief discussion of some of the
mathematical niceties associated with coherent states,
inequivalent representations of the canonical commuta-
tion relations, and von Neumann space. We wish to add
a few remarks concerning some points of disagreement
with Ref. [19]. For purposes of this discussion, we shall
follow their notation and treatment of the canonical com-
munation relations and asymptotic space. First of all, it
is clear that their W(z) and W'(¢) lead to inequivalent
asymptotic spaces.** The true asymptotic states are in
WT(t)ﬂp, whereas it is W (t) that occurs in the definition

44W (1) is like our exp(iH ,t), but with a Coulomb phase
exp[i®(¢)] factored out.
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FIG. 7. Arbitrary vs experimental degeneracy domain. The
shaded region denotes the arbitrary domain. Region C denotes
its complement up to the experimental one.

of their asymptotic operator U, (¢). They argue that, in
fact, W(t) can, in the limit t — & o, be replaced by the
identity operator in the modified S matrix, so that their
equivalent of S, reduces to a Fock-space operator. We
believe this is incorrect; this is a very singular limit. As
evidence of just how delicate the situation is, we note
that, at the same time, they argue that the asymptotic
states in W'(1)# do not, in the limit  — F oo, reduce to
Fock states, but remain orthogonal thereto. We believe
that this is inconsistent. In fact, in their application to
scattering in an external field, they show that a Chung
coherent state is equivalent to the state exp b fO)
and not to the asymptotic state exp(—R ;)b; |0) as they
claim. This sign difference is absolutely essentlal show-
ing that what was really calculated was Sgp[H ] between

2Ref{e(1";i)|SP(A)e(I;1))[(e(l5iNSPle;i)) ]

Ae
+3 [ dogl(et

=2Re{{e(l’;i

1'—k;i )y (0[S P Ay e z)>|2+2 f g, [Ce(l ;i
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FIG. 8. First-order asymptotic transformation of the two-
particle final state.

coherent states, as we have derived, and not between
asymptotic states, as they have claimed.

APPENDIX B

In this appendix we shall prove that there is a continu-
ous transition between the S-matrix and cross-section for-
malisms, depending on the choice of the parameters in
the asymptotic Hamiltonian.

Denoting the S, matrix by S ,(A)=Q_
we may prove the equality

(A)Spp Q% (),

A
;+zf d®|Ce(l'—k;i" )y (kM)|SP(A)e(L;i)) 2

IS V(AR y(k;A)e(I—Kk;i)) |2

i SP(A)|e(l;i)) (eI ;i)SPet;i) ] . B

In the above d @, is the photon phase space of either the initial or final degenerate Fock state, and the decomposition
of the asymptotic phase space into soft and hard-collinear regions is denoted by A=A ;UA,  and A*=AjUAj, for the
arbitrary and experimental degeneracy domains, respectively (see Fig. 7).

To prove the above statement in the soft region,* let us compute the matrix element

Die(l;i))

(kA)[SQ oM A,)e(l;i))

(SP) = (el "—k;i" Ny (kM) [Q_(A,)Sep (4]
=(e(l'—k;i")y(kM)|QV(A)SB le(1;i)) +{e(l'—k;i")y
+(e(l'—k;i")y(k;A)|SV]e(l;i)) =810+ 50D 4 gD

Computing the first term, we find

S1O=—¢ 3 (e(l;a)|SPle;i)T U

This term corresponds to the diagram of Fig. 8(a). Similarly,

SOV=¢ 3 (e(l'—k;i")|SV)e(l —k;a)) U

—K)EHKIUXT)

*(1—k)5 (KU

O(A—Y)
2 (Il )r °

O(A—v)
20(l—k,m, v

45The hard-collinear region can be treated in a completely analogous manner.
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The corresponding diagram is shown in Fig. 8(b). Finally, the bremsstrahlung matrix element, represented by the Feyn-

man graphs of Fig. 9, is

S =T (1 —t0g )TV oG —kr e )
¢ M Do m ) vl ] ¢ (I—k)P—m2* '
Note that
Dplo(l',m)+v;1"' 1=V [v' +20(l,m,)]
and
(I—k)Y—m2=v[v—20(l—k,m,)] .
We may perform the Taylor expansions
1 1 1 e
— _ —1 k k’
Drlo(l',m,)+v51']  20(,m,V  [20(l,m,)]? k§o( X
1 __ 1 . 1 k
(I—k)y—m? 20(l—k,m,)v  [20(l—k,m,)]? kgol’v ’
with x,,=v'/2w(l,m,) and x,=v/ 2wl —k,m,).
Therefore, the asymptotic S-matrix element in the soft region will be
B(v' —A,) B(v—A,))

My =, "— Y
(S0 =eT "' —k) |G+ m )=

Tyt (2T o . —20(lm,)
JyOék( )Zw(l—k,me) é}\.( [ me @ ’me ‘}/0]

T~ K+ m, e (K) 1

Note that the arguments of the ® functions that multi-
ply singular denominators in this region of the degenerate
domain have their arguments reversed, as a result of a
partial cancellation between the diagrams of Figs. 8 and
9, respectively. Therefore, when individual diagrams are
combined, the total S ,-matrix element is completely reg-
ular in the masses even without the use of an explicit set of
regulators. The only contribution of the above quantity
in the soft region is

()
(k)

(ex])

(DY — L7701 i
(S);=eT (1) JUKT) A

O(z—8;) .

(B2)

(a)

(b)

FIG. 9. Final-state bremsstrahlung in the soft region.

~—J(Y—K+m,)Er (k)

20l —k,m,) ] <o

20(l —k,m,)v

1 < ko k
J———————— (—1)*x%
Ro(l,m,)]? ;Zo X

oo

> Xk Ui .

r
Therefore, the contribution to the cross section will be

% ey |2
ny d’k|(S4")si]
=l(S(0))f[|2
. ml 20
(Ik)?  (I'k)?  (Ik)XI'k)

m

2 (3 73
Xe d’k
5E

(B3)

We see immediately that this contribution shifts the arbi-
trary parameter &y of the interference term on the left-
hand side (LHS) of Eq. (B1) to the correct experimental
value of the corresponding terms on the RHS. A similar
proof can be given for the hard-collinear region. We note
that, had we chosen the asymptotic Hamiltonian to coin-
cide with the one describing exactly the experimental
asymptotic states, which in terms of asymptotic phase
space would mean that we would identify the arbitrary
degeneracy domain A with the experimental one, A°, we
would not need the inelastic terms appearing in Eq. (B1).
Hence, in a sense, the transformation of the Fock states
into coherent states can be fine-tuned according to the
values of the degeneracy domain. When we tune the
coherent states onto the experimental ones, the cross-
section formalism (inelastic approach) goes over continu-
ously to the S-matrix formalism (elastic approach).
Although we have only proved it in lowest nontrivial
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order, it is a plausible conjecture that, with the particular
asymptotic Hamiltonian chosen to simulate the experl-
mental resolutions, there are no contributions from Qt
acting on multiparticle Fock states to all orders. This
shows that all asymptotic Hamiltonians lead to the same
observables, but choosing H , with a particular measure-
ment in mind enormously simplifies both the interpreta-
tion of the associated asymptotic states and the complexi-
ty of the calculations that must be performed.

One can actually show that Eq. (B1) as well as the com-
plete symmetry between initial and final states, even in
the soft region, follows from the unitarity of the asymp-
totic S matrix. One could argue against the symmetrical
status of Eq. (B1) on the ground that it only contains a
final-state soft photon. We show that one of the corol-
laries of unitarity is the fact that the treatment of the soft
region is indeed completely symmetrical, but only the
usual Bloch-Nordsieck soft bremsstrahlung survives.
This establishes the physical intuition that a soft photon
has really no direction.

Proceeding with the proof of the above statements, we
shall restrain the discussion to the soft region. Given
that the process is factorizable, the hard-collinear region
may be treated in an analogous manner. By constructlon,
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sta)s,(a)=1 (B4)

The soft degenerate Hilbert subspace of an electron of
four-momentum / is spanned by a complete set of Fock
states defined as

{ln)}= ‘ IIlrk)Ne
i=0
Completeness in the soft region may be written as

n

>

i=0

e |l1—

[n){n|=1. (B5)

s/ d3k|n><nl—fn°°=0

n=0i=0

In the above we used the notation |n=0)=le(l’))

e d L
and d°k,=d"’I'. Note that we have taken the boundary
of the degenerate soft subspace A{ to coincide with the
experimental energy resolution, since this is to be thought
of as a completeness relation containing those states that
are experimentally indistinguishable. Also, in Eq. (B5)
we have not included states containing more than one
electron, since those states will not contribute in this or-
der.
From Egs. (B4) and (BS5) follows the identity

<e(l) sk [ 7 |n n ><nISA(A )Ie(/)>—<e(1)lSA(A T ><n|SA (ADle(D)) VA, AL SAC .

Making a perturbative expansion of S, and keeping the second-order terms from the above identity, we have

f ” 02 Re{(n|S'P(A,

n=

e[S D(A)]e(d))

=/

+J"

2Re (n|SPA]eD)

|<n IS(A,)e 1)>|2

|<n)S‘A“(A;)|e(l))|2. (B6)

Mn|SY f

Let us now see what the degenerate states contributing in Eq. (B6) are. Concentrating ﬁrst on the interference term,
we can see that S'? contains four soft “virtual” integrations (i.e., integrations with an upper limit A;) and six particle
operators. On the other hand, the second factor of the interference term survives only for In )— [n=0)=le(l"))
Hence we obtain three § functions and one soft “virtual” integration survives.

Looking at the square term, we remark that S/’ contains two soft “virtual” integrations and three particle operators
The degenerate Fock state contributing is |n ) = In =1). That means that the total number of extra particle operators*®
is four; hence two & functions are produced. Consequently, no soft ‘“virtual” integrations survive. Nevertheless, a
“real” integration over the degenerate phase space is introduced from the completeness of the degenerate subspace.*’

Noting that the matrix element of S}’ is regular, as was explicitly shown earlier in this appendix,*

Eq. (B6) leads to the identity

2Re{{e(I")|SP(A)]e(D)[{e(I)]S'D(

Aé ~~
=2Reg<e(1')|s§,2’(A;)|e(1)>[<e(1')|55,°’(A;)le(1)>]T;+fA,‘d3k|<1|S‘A”(A;>|e(1))

Choosing A; =A{, we recover the soft part of Eq. (B1).
An interesting corollary follows from Eq.
liY=le(l—k)y(k))=l|ey(l
survives. The matrix element {i|S?(A

(B6)
1)). If we now concentrate on the interference term, we see that only the state |n)=]1)
A;)|1) contains four integrations and six plus two additional particle operators;
therefore, four 6 functions are mtroduced and no soft ‘““virtual” integration survives.
reasoning as before, that the only state contributing is the |n )=

we conclude that

A ~
Aple T+ [, “d*kIC1IS A )le(D)]?

2 WA, A <AS . (BY)

if we apply it to a two-particle initial state

For the square term we find,
[n=0) one. On the other hand, all matrix elements

are regular; i.e., they contain ® functions with inverted arguments. Therefore, integrating Eq. (B6) on the degenerate

final space, we obtain the equality*’

46Extra” meaning in addition to the two electronic operators necessary to produce zeroth-order electron scattering.
47To be precise, an overall integration d 37' also remains for all the terms in Eq. (B6). This is canceled by the overall energy-

momentum conservation characterizing the zeroth-order process.

48This was shown to result from the reversal of the argument of the ® function.
49Note that the n=1 integration is cancelled by the disconnected matrix element { 1|/S'(A,)]i ).
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Al ~
Jodk[Re [ [ CUSPaIDISPAINT | +IC0IsEanln? |

Ae
=fAfJ?IE'[2Re[f _ ASP@pn s PanlnT | +<olsPaniid k| . @)

Hence, choosing A; =0, we verify that the sum of the
inelastic contributions, which should in principle be in-
cluded to restore the symmetrical status of Eq. (B1) in the
soft region, is equal to zero. In other words, the usual
Bloch-Nordsieck mechanism is recovered in the soft re-
gion, but this mechanism is proven here to be indeed
symmetric as far as initial- and final-state degeneracies
are concerned.

APPENDIX C:
ASYMPTOTIC INTERACTION PICTURE

Let us define an ‘“‘asymptotic interaction picture” by

. . H
transforming by the unitary operator e"4" from the
Schrodinger picture. Schrodinger picture operators O

iH —iH .y
become O(H)=e" “'O5e " *' and Schrodinger states

|4(2)) go over to | (1)) EeiH”tldz(t)). It is straightfor-
ward to show that

A
L0, (O=V,0Q (0, 1)

dt

iH 4t

. L N\ iHyt =
where the interaction is defined as V;(t)=e “ Vje
and V;=H—H ,. If H, were replaced by H, here, one
would recognize this as the familiar evolution equation in
the interaction picture. Note that, by the choice of H ,,
H—H , involves vertices that specifically exclude in-
frared or collinear quanta; that is, these vertices precisely
vanish for those phase-space configurations that poten-
tially give rise to mass singularities. The solution to Eq.
(C1) is, as usual,

Qfy (1)=Tex —if’dt'tf(\z')] (€2)
HH P o I .

Lest there by any confusion, this operator has no mass
singularities. They could potentially arise in the limit as
the time ¢t — F o} i.e., the operators

PN
—ifzwdt V,(t)] ,
w N\
—if:r dt V,(t)]

might have mass singularities. By our assumption about
asymptotic convergence, such operators do not have
mass singularities when evaluated between states of 7 4.
It is the purpose of this discussion to argue that not just

Q(If},A =T exp

S =T exp (C3)

f

the matrix elements in #f ,, but also the matrix elements
in #F are free of mass singularities.®

Imagine evaluating Fock-space matrix elements of
Q‘,}: },A. In the asymptotic interaction picture, the propa-

gators take the form of the exact propagators in a theory
with Hamiltonian H ,. Whereas the vertices associated
with V;=H —H , involve no infrared or collinear quan-
ta, the propagators do. This is a great advantage of the
asymptotic interaction picture, inasmuch as all mass
singularities are isolated in the propagators, and we know
that these singularities will show up only when one at-
tempts to go on mass shell. Fock-space matrix elements
involving external on-shell particles manifest mass singu-
larities when an internal propagator goes on mass shell,
but these regions of phase space are specifically excluded
by the vertices coming from V;. So the potential singu-
larities coming from propagators multiply vertices that
vanish precisely where those singularities would occur.
Thus the proper vertices [one-particle irreducible (1PI),
truncated n-point functions] of the theory and matrix ele-
ments of operators such as Q(Hi,’HA that only involve

noninfrared and noncollinear particles have no mass
singularities at all.

In this argument we have finessed a subtle complica-
tion here, inasmuch as the relation between n-point func-
tions and properly normalized matrix elements involve
on-mass-shell ‘““wave-function” renormalization con-
stants. But in the massless theory, the exact propagator
and the propagator evolving by the asymptotic dynamics
H , do not have a simple particle pole, but rather only a
branch point for the continuum of states that, in the ordi-
nary interaction picture, consist of a particle together
with any number of soft or collinear quanta. Thus the
very definition of wave-function renormalization is prob-
lematic, although it can be dealt with [14] and one can
even develop an LSZ-type reduction formalism [15]. This
is best addressed in the context of regularization of mass
singularities, similar to the discussion in Sec. II, but we
note that the wave-function renormalization is gauge
dependent, and one might even find gauges in which it
does not have mass singularities. So we think these com-
plications are technical rather than fundamental.

501t is plausible that if an operator is a unitary operator in one
equivalence class, it changes occupation numbers by a finite
amount and so is unitary in all the equivalence classes in the
F£,n- This seems to be conjectured by Barton [40], and if it
could be proved, our subsequent argument could be omitted.
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