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Symplectic structures in the chirally gauged Ress-Zumino-Witten model

Tadashi Inamoto
Department of Physics, University of Tokyo, Bunkyo ku-, Tokyo 113, Japan

(Received 20 September 1991)

The algebraic structure of the chirally gauged Wess-Zumino-Witten model is studied from the Hamil-
tonian point of view. The consistent chiral anomaly, which is reproduced at the tree level in this model,
is related to the Schwinger term of the Gauss-law algebra through descent equations constructed with

phase-space differential forms. The descent equations express the e8'ects of the consistent anomaly upon
the symplectic structure of the theory, and provide the Hamiltonian analogue of the Wess-Zumino con-
sistency condition in the Weyl gauge. We also clarify the canonical structure of the ungauged Wess-

Zumino-Witten model, and the algebra associated with the global Noether symmetry is derived.

PACS number(s): 11.10.Ef, 02.40.+m, 11.30.Rd

I. INTRODUCTION

In the past decades chiral anomalies have been exten-
sively studied by many physicists [1]. In particular, for
the Hamiltonian formulation of quantized chiral gauge
theories, Faddeev [2] has observed via gauge-group-
cohornological analysis that the anomaly appears as an
operator-valued Schwinger term ("commutator anoma-
ly") in the Gauss-law algebra, a conjecture which has
been established by perturbative calculations [3]. From
physical viewpoints, the difficulties associated with the
occurrence of commutator anomalies come from the fact
that one cannot consistently define gauge-invariant physi-
cal states by imposing the Gauss law as a subsidiary con-
dition. Classically, this implies that the Gauss-law con-
straint comes to have a second-class character in the
sense of Dirac [4]. Therefore, the canonical structures of
the theory drastically. change owing to Schwinger terms.

On the other hand, for chiral gauge theories, it is wide-

ly known that the covariant conservation law of a chiral
current acquires an anomaly as a result of the anomalous
gauge variation of the chiral effective action. Such an
anomaly is called a divergence (or current) anomaly. In
the presence of divergence anomalies, the Ward-
Takahashi identity is violated to spoil the renormalizabil-
ity of the theory.

The two types of anomalies stated above are usually
viewed as different manifestations of a same phenomenon,
and many authors have attempted to relate commutator
anomalies to divergence ones and describe these within a
unified framework [5,6]. These works have shed light on
the physical content of chiral anomalies.

Here we approach this problem along a somewhat
different line of argument. Namely we are concerned
with the chirally gauged Wess-Zumino-Witten (WZW)
model in four dimensions [7]. As is well known, the
chirally gauged WZW model incorporates at the classical
level the anomalous nature of the corresponding chiral
gauge theory. That is to say, the gauge variation of the
WZW action precisely reproduces the consistent diver-
gence anomaly, without going through any quantization
processes. When it comes to the Hamiltonian formula-

tion, the straightforward canonical analysis [8,9] tells us
that the Poisson brackets among Gauss-law constraints
give the Schwinger term, the form of which agrees (up to
coboundary) with that of the Schwinger term predicted
by Faddeev. Thus, for this model, one can apply a purely
classical method in studying both types of anomalies,
avoiding some technical complications characteristic to
the quantization of field theories. This is the reason why
we take up this model in the present paper.

More concretely, in the chirally gauged WZW model
the WZW action is added by hand to the original (gauge-
invariant) classical action. Then the total action is not in-

variant under gauge transformations, but develops diver-
gence anomalies. Now one is to notice [10] that the clas-
sical action (or Lagrangian) is used to define a Lagrangian
one-form on the velocity phase space —the tangent bun-
dle over the configuration space. Consequently, the clas-
sical action defines a Lagrangian (pre)symplectic struc-
ture, which in turn gives a canonical symplectic struc-
ture on the phase space (i.e., the cotangent bundle) via
Legendre transformations. Thus, the presence of the
WZW term in the action requires some modification in

the symplectic structure, with which the modified Pois-
son brackets are constructed. In this way the resulting
Poisson-bracket algebra of Gauss-law constraints will be

accompanied with a Schwinger term. It is hence interest-

ing to reanalyze, along this line [11], the canonical for-
malism developed in Refs. [8,9], and this is the main pur-
pose of this work.

The general framework for our study was given in Ref.
[12], in which the Lagrangian (or Hamiltonian) systems
with a noncanonical action of the group of symmetry
transformations were shown to be equipped naturally
with a certain cohomological structure. Here the termi-
nology "noncanonical" means that the symplectic struc-
ture is not invariant under the transformation, but ac-
quires an anomalous term. Then it was recognized that
this anomalous change of the symplectic structure
satisfies a one-cocycle condition, and belongs to a family
of cocycles taking values in differential forms on a phase
space. In fact, the classical symplectic-geometrical
analysis of the quantized chiral gauge theory has been
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given in Refs. [13,14], however, somewhat unsatisfactory
results have come out owing to quantum effects.

In this paper, we treat the chirally gauged WZW mod-
el as a system on which the group of gauge transforma-
tions acts noncanonically. The anomalous variation of
the action turns out to be realized as an infinitesimal de-
formation of the symplectic structure in the fixed-time
Hamiltonian formalism. Then it will be found that the
one-cocycle condition for the deformation is just the
Hamiltonian analogue of the Wess-Zumino condition [15]
for the consistent anomaly. On the other hand, the one-
cocycle condition is related to the algebra of Gauss-law
constraints. We also study the ungauged WZW model in
four dimensions [7,15], and propose the new method to
derive the algebra of Noether-charge densities [16,17]
corresponding to the global symmetry of the model. In
addition, we briefly comment on the "Becchi-Rouet-
Stora-Tyutin (BRST) structure" of the formalism.

This paper is organized as follows. We begin, in Sec.
II, by giving a simple but illustrative example. A short
review of the gauged nonlinear o model without a WZW
term is presented in Sec. III. We study, in Sec. IV, the
chirally gauged model, and elucidate the algebraic struc-
ture of the model from the Hamiltonian point of view,
emphasizing how both types of anomalies enter the des-
cent equations. We give a new interpretation of the
Wess-Zumino consistency condition in Sec. V, and also
make some comments concerning the cohomological
nontriviality of the Schwinger term. Section VI is devot-
ed to studying the ungauged WZW model. We give con-
cluding remarks in Sec. VII.

1
pp2m

(2.6)

[q, p']=fil [q; q, ]=0 [p'p']=F'. (2.7}

Here F'~ is a magnetic field strength. Comparing Eqs.
(2.6) and (2.7) with Eqs. (2.2) and (2.3), we find that the
effects of the magnetic interaction appear in the
modification of the Poisson brackets among the momen-
ta, while in Eqs. (2.4) and (2.5) the modification is in the
Hamiltonian. In mathematical language, modifying the
Poisson brackets as above amounts to modifying the
canonical symplectic structure 0=dp'h dq; [10]as

Q~Q+dA, (2.8)

where A:—A 'dq, is a potential one-form and d A is a cur-
vature two-form, both of which are regarded as
differential forms on the phase space rather than those on
the configuration space.

Now we return to the standard formalism (2.4) and
(2.5}, and consider the translational symmetry of the

minimally coupled Lagrangian:

X=Xo+A'q; . (2.9)

Evidently this Lagrangian is not invariant under the
translation of the coordinate,

where p '=mq, + A'=p'+ A', and A' is an external mag-
netic potential.

Sternberg [18] has claimed that the Hamiltonian sys-
tem (2.4) and (2.5) is alternatively described in terms of
the variable p', not p ', as

II. A SIMPLE EXAMPLE q;~q;+a, , (2.10)

1Xo= qq; .
2m

(2.1)

The dynamics of this system is described by the Hamil-
tonian

1 pp, p2m

with the fundamental Poisson brackets

[q; q, ]=[p'p']=o.

(2.2}

(2.3)

Once the magnetic interaction is switched on, the dynarn-
ics is governed by

In this section, we consider a very simple example-
the motion of a charged particle in a magnetic field.
Though this example has been treated also in Ref. [12],
we trace the calculation more explicitly in order to make
this paper self-contained.

First let us consider the Lagrangian of a free nonrela-
tivistic particle of mass m:

but is accompanied with an "anomaly" linear in veloci-
ties. Indeed the Lagrangian changes under (2.10} as
X~X+~„where

(2.11)

The symplectic structure associated with the transformed
Lagrangian X+~, is calculated as 0+co„with

co, = —,
' „)a"Fc"dq, h dq (2.12)

Then one may ask from where the anomalous change co,
of 0 comes. Quite evidently, it originates from the
second term in the Lagrangian (2.9). We proceed, howev-
er, in a slightly different (but equivalent) way. Namely
we consider the system in which the symplectic structure
is given by Q+hQ in place of 0, where the closed two-
fonn AQ is determined so that the transformation of the
total symplectic structure automatically reproduces the
anomalous term; i.e., EQ is required to satisfy

with

1
(p

' —A')
2m

[q; O'I=» [q; q, ]=[1',p']=o,

(2.4)

(2.5)

L(X, )60=co, , (2.13)

where X, is a vector field defined by i(X, )&=d(a~p')
with i ( " ) being an inner product operating on
differential forms of arbitrary ranks, and L(X, ) is a Lie
derivative in the direction of X, :L(X,)=i(X, )d
+di(X, ). (Note that X, is a Hamiltonian vector field
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with respect to 0, and not with respect to 0+hA. ) In
fact, the existence of b, Q obeying Eq. (2.13) is guaranteed
only when the following consistency condition holds:

L(X, )coq L—(Xq )co, =0, (2.14)

which is trivially satisfied in our case. (This is a kind of
one-cocycle condition from a cohomology-theoretical
point of view. ) We now construct b, Q explicitly by solv-

ing

of this example to the chirally gauged WZW model. In
both systems, the underlying symmetry is broken owing
to the extra terms added to the original invariant La-
grangian. When going to the Hamiltonian formulation,
the effects of these symmetry-violating terms can be im-
plemented, at least partially, in the redefinition of the
canonical symplectic structure. Thus, writing down the
descent equations in the same way as above, one can clar-
ify hidden algebraic structures of the chirally gauged
WZW model, as will be extensively studied in Sec. IV.

i(X, )b,Q= V, +du, , (2.15)

dS, t,
=L (X, ) Vq L(Xq ) V—, , (2.16)

where we have used the commutativity of exterior deriva-
tives with Lie derivatives, and have assumed the triviality
of d-cohomology. In fact the straightforward calculation
gives dS,b =0, however, in many cases dS,b may not van-

ish and we write dS,„explicitly in the following equa-
tions not to lose the generality of our formalism.

Having obtained the closed two-form EQ, the one-
form V„and the zero-form S,b, we can construct the
descent equations

O=dAO,

L(X, )EQ=d V, ,

L(X, )Vq L(Xq)V, =dS—,q .

(2.17)

(2.18)

(2.19)

instead of Eq. (2.13). Here V, =a;(BA~/Bq;)dq is a one-
form defined so that dV, =co„and U, is a certain zero-
form. The second term on the right-hand side is needed
not only to maintain full generality, but to avoid the in-
consistency corning from the nilpotency of the i operator.
[The one-form V, does not satisfy i(X, ) V, =0, and hence
the relation (2.15) in the absence of du, is inconsistent. ]
As expected, the solution of Eq. (2.15) compatible with
Eq. (2.13) is found to be b A=d A, with U, = —a; A '.

Another consequence of the one-cocycle condition is
that there exists the zero-form S,b such that

III. HAMILTONIAN FORMULATION OF THE
GAUGED NONLINEAR cr MODEL

, tr[( W„+ A„)(W"+ A")],1 (3.1)

XvM= ,'tr(F„,F""—). (3.2)

Here 8'„=8'„'T'=B„UU ', and F„,=F„',T' is a curva-
ture. The group of gauge transformations acts on the
fields as

A„~A„=g 'A„g+g 'B„g,

U~U =g 'U .

(3.3)

(3.4)

In order to proceed to the Hamiltonian formulation, we
introduce the local coordinate P on the group manifold

[16] so that

The nonlinear o. model is in general the theory of the
maps from space-time into the target manifold, which is
usually taken as a group manifold of a certain compact
Lie group G. The Lagrangian is given by
Xo=f tr(B„UU '8"UU '), where U(x)EG and f is
some constant [19]. This Lagrangian is invariant under
the left (or right) translation. Let A„=A„'T' be the
Lie (G)-valued Yang-Mills connection, then the
(left-)gauged version of the theory is described by the La-
grangian &o—=&x+&YM, where

Inspired by Eq. (2.15), we also consider the descent equa-
tions in slightly modified forms:

W„'=B„P K'($), (3.5)

O=dhQ, ,

L(X, )AQ=d( V, +du, ),
L (X, )( V„+du~ ) L(X~ )( V, +du,—) =d ( ,St +~S),

(2.20)

(2.21)
8 Kf3 'de' =f'"'K—"Kp, = a (3.6)

where K is a geometrical quantity satisfying the
Meurer-Cartan equation

(2.22)

where S,b is defined by

S,~ =L(X, )U~ L(XI, )U, = a;h —F" . — (2.23)

As will be shown in Sec. IV, the zero-form —(S,&+S,& )

comes to play the role of a Schwinger term in the algebra
of the generators of a symmetry transformation ("transla-
tion" in this case) when we pass to the description in
terms of Poisson brackets. Equation (2.22) hence pro-
vides the algebraic relation between the Schwinger term
and the anomaly V, .

Before closing this section, we emphasize the analogy

with f' ' being the structure constant. Furthermore, we

define the components K, of the right-invariant Killing
vector field with the properties K, E =6„K,%&=5&,
and

K a K~ Ka Kf'= f'b'K—' . —
a a b b a a C

(3.7)

1
h ~v'„p v"pa,

2f2 ~ P
(3.8)

where the covariant derivative V„P and the invariant
metric h & are, respectively, given by

In terms of the local coordinates, the Lagrangian (3.1) be-
comes
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VP =OP+A'K
h p=K~I .

The canonical momenta are calculated as

I"= —F'

(3.9)

(3.11)

Q —fd3&(5~ R Ja+ & fabc& Ja R Jb)

Here m., is defined by

(3.20)

(3.21)

2 h~pVOQ
13 ~ (3.12)

and the Poisson brackets among the m., 's implied by Eq.
(3.20) are written as

then the Hamiltonian turns out to be [m, (x), nb(y)I =f'"'a, ( x) 5( x—y) . (3.22)

gf = '(P'P—'+ 'F'F—')
p 2 j j 2 jj The one-form J introduced above satisfies the equation of

Meurer-Cartan type,

+ —,
' f h Pn op+ 2h pV;P V;P —AOG, . 5J=J (3.23}

(3.13) and the inner product of the Killing vector field with J is

Here h ~ is the inverse of h &, and the coefficient of the
multiplier A p is a Gauss-law function defined by

i K, (x) J"(y)=5,5(x—y),5

5$ (x)
(3.24)

G =D P'+K n D P'=d P'+f' 'A P'. (3.14)

0= f d x(5P R5A +5nR5$ ), . (3.16)

where the symbol 5 denotes a (functional) exterior deriva-
tive [21]. The resulting equal-time Poisson brackets are

I A (x),P (y)I =5;.5'"5(x—y),

IP (x),np(y)J =5p5(x —y) .

(3.17)

(3.18)

Since we have used the local coordinates on the group
manifold, the expression of the symplectic structure has a
local character from the outset. One can, however,
rewrite it in terms of global geometrical objects. We
define the one-form J'=K'5$, or, equivalently,

Applying Dirac's prescription for constrained systems
[4], we obtain the two first-class constraints: PO=0,
G, =0. These constraints play the role of the generators
of gauge transformations. In particular, the static gauge
transformation is generated by

G&= f d'x P(x)G. (x), (3.15)

with the time-independent parameter P(x).
As in the previous section, we adopt the symplectic-

geometrical description. The phase space of our concern
is an infinite-dimensional space parametrized by A; (x),
P (x), P (x), and ~ (x) [20]. This space is naturally en-

dowed with a canonical symplectic structure:

which shows that the Meurer-Cartan form J is a "dual"
of the Killing vector field.

In Sec. II, the symmetry transformation was represent-
ed by the Hamiltonian vector fields for generators. In
this case, the corresponding vector field X& is defined by

i (X~)0=5G~,

and we obtain

Xg= f d x D;P +Pf'b'Pb(x)3 a ~ a abc b

5A (x) 5P (x)

(3.25)

—PK, +P(B„KP)np(x }

[X(,X„]=X(t „}, [g,ri]"f'"'(br)', —

as expected.

(3.27}

IV. THE DESCENT EQUATIONS

A. Modification of the symplectic structure

(3.26)

which consists of the ordinary infinitesimal gauge trans-
formations lifted to the fiber. One can easily show that
the Lie-bracket algebra obeyed by the X&*s is isomorphic
to the Lie algebra of the gauge group:

J=J y' =$UU (3.19)

then the o.-model part of the symplectic structure reduces
to

The Lagrangian for the chirally gauged WZW model is
given by X=XO+Xwzw, where the WZW Lagrangian
can be written in the form [8,9]
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where D„b, ——tr(T'T T'+ T'T'T ), and B,b,z
:—tr(T'T T'T"). The last terin comes from the usual
five-dimensional integral in the WZW action:

where P,' and ~ are given by Eqs. (3.11}and (3.12},and
the extra contributions from the WZW term are calculat-
ed as

f tr[(dUU ')'] .
240vr

(4.2) OijkD g bWc
48 2 abc g k (4.6)

Here the symbol d denotes the space-time exterior deriva-
tive, and the integration is to be performed over the five-
dimensional space, whose boundary is our (compactified)
space-time. Note that the integrand is a closed five-form,
but not exact. We have hence restricted ourselves to the
specific homotopy class [22], in which one can apply a
Poincare lemma to reduce the five-dimensional integral to
a four-dimensional one. Namely, the antisymmetric ten-
sor ~~&z& is defined so that

~
tr[(d UU ')']

240~

=d r p sdP RdP~RdgrRdg . (4.3)
1

P'=P"+A'
1 I I

K.=K.+-8.

(4.4)

(4.&)

In analogy with the works of Sternberg [18] and others
[23,24], we modify the canonical symplectic structure
(3.16). Let us first introduce the canonical momenta con-
jugate to A,' and P:

+Bgb,q( Ap A~ Ak —A W~ Ak )

—3Ba(b,g) Ap W~ Wf, ]

(4.7)

where the square brackets in the subscript mean antisym-
metrization. We assume that the variables P and 5.

satisfy canonical Poisson-bracket relations, then those for
the variables P and m develop curvaturelike terms:

5A (y)
[P (x),P, (y)] =

5A (x)

5%p(y)
[rr„(x),~&(y)] =

5$ (x)

5A, (y)

5$ (x)

5A;(x)

5A, (y)

M& (x)

5$~(y)

M (x)

5A, (y)

(4.8}

(4.9)

(4.10)

These terms are collected together to give a two-form on
phase space:

,' f d'«—'y [P (x),P,"(y) I5A (x) R5A "(y)+

, f«[ —2W(5A )'+( Ad A +d A A + A '+ Wd A +d A W —A WA —A W2 —WA W —W'A —W')J'
48m.

+dg JQJ+dg JWJ —JWg Jg —WJg Jg —g WJWJ —gJ~JW —gJW J—W JWJ

+JA5A A+5A WJA+5A AJW+5A WJW+( —2dA —A + A W+ WA+ W )(5AJ+ J5A )],
(4.11)

where we have introduced the differential forms
3 = A, dx; and W= W,-dx; =dUU ', on the three-
dimensional space in which the Hamiltonian dynamics is
described. (The exterior product is denoted simply by
multiplication. ) Furthermore, we assume that the func-
tional exterior derivative anticommutes with d, i.e.,
6A =62;dx; = —dx;6A,-.

The two-form AQ is degenerate because it does not
have any vertical components. However, the combina-
tion 0, +60, is nondegenerate on the total phase space,
which one can easily observe by writing it in the matrix
form

0, +AO, — (4.12)

The inverse is now expressed, in symbolic notation, as

(0+DO) '=0 ' —0 '(AA)O, (4.13)

Thus, 0+b, A is a closed nondegenerate two-form, which
we adopt as a symplectic structure. (The closedness of
AQ is obvious by definition. )

A few comments are in order. A glance at the
definition (4.11) shows that b, Q can be expressed as
40=650, where
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50—:f d x(A'5A'+S 5$ )

f tr[(WA —A W)5A+(AdA+dAA+ A —A WA —A W + WA W —W A )J]
48m

+
2 f df~dprdp r prb5$

12m
(4.14)

Applying Stokes's theorem with an appropriate boundary
condition, one can translate the last term into the four-
dimensional expression

f tr(JW )+5 — f r & sdP dP~dPi'dP
48m 48m

(4.15)

In constructing AQ out of 68, the 5-exact form does not
contribute. Hence the essential role is played by the first
term, which has no explicit dependence on the choice of
local coordinates on the group manifold; we have elim-
inated the local coordinates by introducing the higher-
dimensional integral. This is the characteristic feature of
the theory including WZW-like terms. (Put another way,
this implies the nontriviality of 5 cohomology in the cr-

model sector, which becomes the obstruction to the glo-
bal existence of b, O within three-dimensional space. ) On
the other hand, the two-form EQ, which also has a global
expression, contains no higher-dimensional terms. Such
a situation will enable us to describe the chiral effective
theory without any recourse to the notion of "higher di-
mension" [24]. That is to say, we can start with the sym-
plectic structure in the beginning, and there is no need to
know the explicit form of 68. In this respect, note that
the symplectic structure provides enough (physically
relevant) inforination through, for example, the equation
of motion, though it is not obtained from a three-
dimensional canonical action via variational principle.

As a next comment, we point out that the effects of the
WZW term cannot completely be realized in the
modification of the symplectic structure in contrast with
the case treated in Sec. II. The WZW term also modifies
the Gauss-law function. A detailed explanation will be
given in subsection C.

B. Derivation of the anomalous Schwinger term

In the presence of the WZW term, gauge invariance is
explicitly broken at the classical level, and the gauge vari-
ation of the action reproduces the consistent divergence
anomaly. The gauge-transformed Lagrangian is given by
X+LE&, where

e" ~ tr[PT'B„(A„B A +—,'A ApA )],
24

(4.16)

up to boundary terms. The divergence anomaly can also
be represented in the following way:

again up to (spatial-)boundary terms. Here V,' is defined

by

V —= ~e 'J"(2D,b, r) Ak+3~, (b~ }4 '
48m

(4. 18)

5V~= f tr[dg(5A) ]—=co(,
24vr

(4.20)

is to be viewed as an anomalous deformation of the sym-
plectic structure (in which the Legendre transformation
is understood). The one-cocycle condition

L (X~ )co„L(X„)co~—co(—r „)=0 (4.21)

can be checked explicitly. In fact the straightforward
(but tedious) calculation leads us to the expected result
[see Eqs. (4.28) and (4.43), as well as the Appendix]

L(X()AQ,=co(, (4.22)

for EQ defined by Eq. (4.11), indicating that the two-form
co& is a coboundary. The one-cocyclic property of co& also
implies the existence of the zero-form S&„obeying

5S~„=L(X~)V„L(X„)V~
—

V(~ „}—.

Then, after some algebra, we find

S&„= f tr [ [g, rj ](dA A + Ad A + A )
48

(4.23)

+ Ag'(dA )i)—(dA )gAg], (4.24)

The first term on the right-hand side of Eq. (4.17) is linear
in velocities, which causes the modification of the syrn-
plectic structure as briefly demonstrated in Sec. II. On
the other hand, the second term is proportional to Ao,
and is to be implemented in the modification of the Gauss
law. Let us now consider the effects of the first term
upon the symplectic structure of the theory.

We first define V& as

V&= f d x P(x)V (x)5A;"(x)

, f tr[2$(5AdA+dA5A)
48m

+g(5AA +A 5A —A5AA)] . (4.19)

Being considered a one-form on the velocity phase space,
this represents the anomalous infinitesimal deformation
of the Lagrangian one-form, which one can obtain by ap-
plying a vertical derivative [10] to f d x ~&. Then the
exterior derivative of V&,

—paVabA b+(g ga) VabA b (4.17)
modulo constant terms depending only on g and 71. Note
that this expression with opposite overall sign agrees (up
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to the imaginary unit arising in replacing Poisson brack-
ets by commutators) with that of the Schwinger term for
the quantized chiral fermionic gauge theory, obtained by
perturbative calculations [3] based on the Bjorken-
Johnson-Low method [25]. It differs, however, from the
Schwinger term previously predicted by Faddeev [2] by a
coboundary term. We will show, later on, that the
difference between Faddeev's Schwinger term and ours
originates from the surface terms appearing in the in-

tegration by parts (with respect to "time") in the expres-
sion of the divergence anomaly (4.16).

Now that we have obtained a series of differential
forms on the phase space, we are led to the descent equa-
tions

0=550,
L (X~ )b.Q =5 V~,

L(X~)V„L(Xq—) Vg
—

V(~ „)=5S~„.

(4.25)

(4.26)

(4.27)

i(Xr)bQ=V(+5u~ . (4.28)

Thus it is natural to consider the modified descent equa-
tions

0=550,
L (Xr )b Q =5( V~+ 5v(),

(4.29)

(4.30)

In more familiar language, the first equation ensures that
the Jacobi identity holds for the Poisson brackets con-
structed with the effective symplectic structure A+AQ.
The second equation summarizes the effects of the diver-
gence anomaly on the Poisson-bracket structure on our
phase space. However, what the third equation means is
rather obscure at present, a problem which will be dis-
cussed in Sec. V.

As pointed out in Sec. II, the fundamental relation
(4.22) does not mean that the one-form V& can be
identified with i(X&)AQ. Instead, we introduce an extra
term such that

i(X )(Q+b, Q)=5g (4.33)

is required for X, and X& is also defined similarly. Let
X~ be the Hamiltonian vector field of g with respect to 0:
i(Xs )Q=5g, and we seek the solution of Eq. (4.33) by set-
ting

X =X —AX (4.34)

Inserting this into the defining equation (4.33), we obtain

i( AXE )(Q+bQ) =i (Xs )bQ, (4.35)

which determines EXES uniquely for given AQ and Xg,
since 0+bQ is nondegenerate. With the use of Eq.
(4.13), this is translated into the equivalent statements

i(X )AQ=i(bX )Q,

i(AXs)bQ=O .

(4.36)

(4.37)

Being specialized to the static gauge transformation, the
additional term AX& is shown to have the form

hX& —Jd x bX&(Q)
5

(4.38)

(4.30) does not contribute to the deformation of the sym-
plectic structure. (The one-form 5v& represents a canoni-
cal transformation generated by v&, which leaves the
symplectic structure unchanged. ) On the other hand, in
the third equation, the Schwinger term S&„comes to have
an additional contribution S&„owing to the presence of
v&. In this case, the relation (4.31) admits a clear-cut in-
terpretation [12], in contrast with the case of Eq. (4.27).
The rest of this subsection is devoted to the discussion on
this subject.

Since we are concerned with 0+EQ, the effective
Poisson bracket [26] between the phase-space functions g
and h is represented by the Lie bracket of the vector
fields X~ and X&, which are Hamiltonian with respect to
Q+ EQ. Namely the relation

L(X&)( V„+5v„) L(X„)(V&+5—v&)
—

( V+5u )(& „)
=5(S~„+S)„), (4.31)

Here P and Q collectively denote "momentum" and
"coordinate" variables, respectively. A straightforward
consequence is that the hX&'s commute with each other:

where S&„ is a coboundary defined by

S~„=L(X~)u L(X„)ur—
v(~ „—

)
. (4.32)

Evidently, the exact form 5v& in the second equation

[bX~, b,X„]=0. (4.39)

Then the Poisson brackets among the Gauss-law
function(al)s are calculated as

5[G(,G„],~=i([X(,X ])(Q+bQ)

i [L (X~ )hX —L(X„}AX~—X(~ „—
)
](Q+b Q)

L(X(}(V„+5u„)+—L (X„)(V~+5u()+( V+5u )(~ )+5G(~ „)

kn+ 4n +5 unl (4.40)
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=[Gr, u„]eff [ „, g]eff (g„] (4.41)

for the zero-form v& depending only on "coordinate"
variables. Combining this result with Eq. (440), we ob-
tain, modulo constant,

where use has been made of Eqs. (4.28) and the properties
of ~& clarified above. (The Lie derivative of vector
fields is defined as L (X)I' = [X,F].) Therefore, the
Schwinger term is identified with —(S~„+S&„),modulo
constant terms. Note that the zero-form S&„can depend
on the P field, whereas S&„consists of only the A field. In
fact, the P-dependent Schwinger term disappears after
the redefinition of the Gauss-law functional, as can be
seen from Eq. (4.32). Namely we find

S&„=L (X&}U„L(X—„)U& U(&
—
„)

the following expression of the divergence anomaly:

e"'~ tr[B„g'T'(A 8 A + —,'A A A )]
24~

+B„e"~ tr[PT'(A 8 A +—,'A A A )]
24m

(4.44)

which we can obtain from Eq. (4.16) through integration
by parts, keeping surface terms. Since spatial-surface
terms have been systematically neglected so far, we are
led to

( g ga ) yah A b + Eoij kD g ga A b A c

[G&+v&, G„+U„],ff—(G +U)
&(„)=—S&„, (4.42) +8 ff ""tr[pT'(A, B, Ak+ —,'A, A Ak)]

24m

in which only the A-dependent (and P-independent)
Schwinger term remains. Now let us remember that the
chirally gauged %Z% model is considered to be the low-
energy approximation of the corresponding chiral fer-
mionic gauge theory, especially owing to its anomalous
behavior under gauge transformations. Hence the alge-
bra (4.42), which is isomorphic to the anomalous gauge
algebra of the chiral fermionic theory, is a candidate for
the "gauge algebra" in the chirally gauged WZ% model,
and 6&+v& is expected to be an effective Gauss-law func-
tional. Indeed, G&+u& with

U
= — f tr[2g(d A W+ Wd A )

48

+g( A W+ WA —A WA )

—g( A W + W A + WA W) —(W3]

(4.43)

agrees with the Gauss-law functional computed in Refs.
[8,9], when the momenta P and m. in G&+U& are re-
placed by P A; and %. ——%, respectively. Equation
(4.42) is nothing but the Gauss-law algebra derived there.
[Namely, no constant terms accompany Eq. (4.42).]
Here, as a consistency check, we can verify that relation
(4.28) certainly holds for the above expression of v&, the
proof of which is outlined in the Appendix.

To conclude, the third equation of the descent equa-
tions (4.31) provides an alternative description of the
anomalous gauge algebra. (Strictly speaking, the descent
equation is related to the anomalous algebra multiplied
by the exterior derivative, which measures field-
dependent extensions of the gauge algebra. } It is also in-
teresting to recognize that Eq. (4.31) is a consequence of
the one-cocycle condition for the deformation co& of the
symplectic structure. Furthermore, the deformation co& is
calculated from the one-form V&, and V& from the diver-
gence anomaly. In this sense the descent equations offer
algebraic relations between the two types of anomalies.

As previously mentioned, these descent equations also
give a natural framework to deal with Faddeev's
Schwinger term in our formalism. Consider, for example,

(4.45)

where the time independence of P has been used. The
third term is a total divergence, and the total divergence
in the Lagrangian does not cause any change in the sym-
plectic structure. (For example, suppose that the La-
grangian X(q, q) is modified as X~X+[dI (q)ldt].
The resulting change in the Lagrangian one-form is ex-
act: (BI /Bq)dq=dI. ) Namely the third term in Eq.
(4.45) contributes to V& as an exact form, which in turn
appears in the expression of the Schwinger term as a
coboundary. Thus one will have a cohomologic ally
equivalent Schwinger term (i.e., Faddeev's one) starting
with the divergence anomaly in the absence of the surface
term in Eq. (4.45). We immediately find

yFaddeev
24' 2 (4.46)

the exterior derivative of which turns out to be co&. Then,
we obtain, modulo constants,

S&„' ""= f tr[(dgdi) drjdg)A], — (4.47)

The corresponding Gauss-law functional is given by

G&' "'=G&+U& — f tr[g(AdA+ —,'A )], (449)

as can easily be seen from the surface term in Eq. (4.45).
Moreover, subtracting the coboundary

. 6~, tr A
144m

(4.50)
eff

from the above expression, one can reduce the Gauss-law
functional to

for the Schwinger term defined by

fiSFaddeev L (X )
VFaddeev L (X }VFaddeev yFaddeev

lk nl

(4.48)
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C. Effective Hamiltonian

We now turn our attention to the Hamiltonian for the
chirally gauged WZW model. The crucial point is that
the divergence anomaly contains the term proportional to
Ao. Since the coeScient of Ao is a Gauss-law function,
this change can be realized as a modification of the
Gauss-law function defined by Eq. (3.14). Let us set the
effective Hamiltonian as &=Ho+ APE, where %o is given

by Eq. (3.13), and ~ is assumed to have the form

~=—A(')b, g, . (4.52}

In analogy with the case of AQ, the modification of the
Hamiltonian is to be subject to a relation such as (4.22).
Since we have restricted ourselves, so far, to the space of
connections with only spatial indices, the vector field X&
has been employed in Eq. (4.22) to generate static gauge
transformations. The situation is, however, different
when Ao is taken into account. Namely the generator
should include an additional contribution, which is re-
quired from the gauge covariance of the equation of
motion. Generally, the complete form of the generator of
a gauge transformation with parameter g is given by [27]

g g(k)6 +g(k —1)g +...+gg g(n) d "~

dt"
(4.53)

where Go is a primary first-class constraint and
G (1 ~ m & k ) are the linear combinations of Go and
secondary first-class constraints. The highest order of the
time derivative, k, can be determined from the constraint
structure of the theory under consideration. In our case
k = 1, and the generator in the Yang-Mills sector has the
form

d x 'P' — DP'+ ''A (4.54)

which produces the well-known four-dimensional gauge
transformation. Thus the transformation law for Ao is

given by A ~oA +of' 'Aop for the static gauge trans-
formation. Now the vector field with which one should
be concerned is X&+X&, with

6»+u» — f tr[g'(dAA+ AdA+ A')], (4.51)
24m.

which is more familiar in the literature [3].

i (X—
» )i (X„)bQ,

which one can derive by recognizing

{6», 6„],(r=i (X» )i(X„)(Q+b Q ),
{6»,G„]=i(X»)i(Xq)Q,

(4.58)

(4.59)

(4.60)

and Eq. (4.36). Now we calculate the left-hand side of
Eq. (4.56) under (4.57). Introducing the abbreviation
&6~ =fd x b, g, Ao = fd xv, Ao, we obtain

L(X»+X»)fd x~= L(X»+—X»)66„

L(X»—)b 6„bg(„—»}

L(X„)—b G»
—S»„ (4.61)

In the last line, use has been made of the relation (4.32)
with the parameter g replaced by Ao. Further calcula-
tion gives us

(4.61)= i (X—„)566—
» S»„

i(X„—)[i (X»)b Q V»] ——S»„

=i (X„)V»+ S»„ (4.62)

by virtue of Eq. (4.58). Then we are left with a simple
task to derive the identity:

=f d3x p~b(Q, Vab+ VaafabdAd} (4.63)

which ensures that the final result coincides with Eq.
(4.56). The effective Hamiltonian is, hence, given by

JVa(r
—JVO A ()Va (4.64)

and the unconstrained canonical action can be written as

S,(r= f (8+58—&,()dx ), (4.65)

EG, =v, ,

as expected. Though the explicit form of v, is rather
complicated, this can be proved in an extremely simple
way with the use of the alternative representation of the
Schwinger term in Eq. (4.40):

—(S», +S», )= {6» 6„].(r—{6» 6„]

XO —f d3 fabaca A b( 5
5Ao(x)

(4.55) where 8 is a canonical one-form:

+XO)fd3 ~ fd3 (g gaVabA b) (4.56)

where the right-hand side comes from Eq. (4.17). The un-

derlying consistency condition analogous to (4.21}can be
verified explicitly.

It is easy to "solve" Eq. (4.56}. Let u»= fd x Pv„
then the solution is given by

Here we understand that the phase space is supplemented
with the coordinates Ao and Po. Gonsequently, the fun-

damental relation to be satisfied by ~ is formulated as

8=f d x(P 5A +m.,J') . (4.66)

When the constraints are taken into account, the sym-
plectic structure is to be replaced by the one defined on a
reduced phase space. Namely, the two-form 0+AQ is
presymplectic on the larger space supplemented with A o

and Po. Then, one arrives at the nondegenerate symplec-
tic structure through successive symplectic-reduction
processes [28], a procedure which is essentially equivalent
to introducing Dirac brackets instead of Poisson brack-
ets.
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V. WESS-ZUMINO CONSISTENCY CONDITION

It is widely known that the consistent anomaly (4.16)
satisfies the Wess-Zumino consistency condition [15],
which means that it is a one-cocycle in the Lie-algebra
cohomology. On the other hand, we have already found
the analogous cohomological structure in the Harniltoni-
an formalism, and the question arises as to how the
Wess-Zumino condition is realized within the framework
of our formalism. In what follows, we show that the rela-
tion (4.27) offers partially the Hamiltonian realization of
the Wess-Zumino condition.

In order to investigate the Wess-Zumino condition in
phase-space language, let us consider the four-

When the parameter does not depend on time, the second
term becomes

5{D„("(x))fd'x d'y " A';{y)
5A'„(y) ' 5A„(x )

The Wess-Zumino condition is now formulated as

(5.2)

dimensional gauge transformation (in the Yang-Mills sec-
tor) in the velocity phase space, which is represented by

X~~= f d x D„P + (D„P)5A'(x) dx " 5A„'{x)

(5.1)

L(Xg) fd x~„—L(Xq) fd x~~ —fd x~{~q)=0. (5.3)

In fact, the above equation can be decomposed into two parts. Namely, when g=g=0, the terms linear in velocities on
the left-hand side cancel each other, and the sum of the terms linear in A 0 vanishes independently. First we pick up the
term proportional to velocities:

5V '(y) 5V;'(x)f d x d y r)'(x) [V (x)D;g (x)]A'.(y)+D;P(x) g (y) —rj (x) AJ'(y) —(/~7))
5 A~'(y) 5A,'(x ) 5A '(y )

—f d xf '~P(x)q (x)V~"'(x)A'(x), (5.4)

which is expressed by the eightfold integration. Howev-
er, apart from A '(y ), the integrand does not contain time
derivatives at all; thus, the 5 function 5(x —

y ) arising
from the (four-dimensional) functional derivative can be
factored out. What remain are the sixfold spatial integra-
tion and the integration with respect to x . Equation
(5.4) thus reads

fdx fd'x d'y[" ], (5.5)

(5.4)= fdx S&„~0 .o cf

8x
(5.6)

Here we have used the time independence of the gauge
parameters. Hence, generally, the velocity-dependent
part of the Wess-Zumino condition is described in the
Hamiltonian formalism in such a way that the coboun-
dary of the one-form V& should be an exact form, or
equivalently co& should be a one-cocycle. One can also
observe that the descent equation provides a Hamiltonian
description of the Zumino-Stora equation [29]

SC04 — 8co3
1 2 (5.7)

which states that the BRST transformation (denoted by s)

where the integrand is now evaluated on the fixed-time
surface. We apply the vertical derivative to the spatial-
integral piece of Eq. (5.5) to get 5S&„owing to the descent
equation (4.27). In other words, calculating the left-hand
side of the descent equation and integrating it over x, we
arrive at Eq. (5.4) with A'(y) replaced by 5AJ'(y). There-
fore, the descent equation asserts that Eq. (5.4) indeed
vanishes, since

of the consistent anomaly co4 is just a "total divergence"
of the Schwinger term co3. In this context, Eq. (5.6) is
equivalent to the statement

S 694—0 ~ (5.g)

b,Q„= f tr[A(5A ) ]
24m.

(5.9)

satisfies Eq. (4.22) [14]. The crucial point is that A&z &s

not a closed form [30]. Thus the effective Poisson brack-

in the Weyl gauge.
The term proportional to A o in Eq. (5.3), which is ab-

sent when the Weyl-gauge condition is employed, also ad-
rnits an interpretation in the Hamiltonian formalism; it is
equivalent to the consistency condition for Eq. (4.56).

Now let us remember that the Wess-Zumino condition
implies the existence of the WZW term, the gauge varia-
tion of which develops consistent anomalies. Analogous-
ly, in the Hamiltonian formalism, the existence of AQ is
ensured by the one-cocycle condition. The important
fact worth being mentioned here is that the WZW term
necessarily includes the o.-model degrees of freedom, and
it cannot be constructed with only gauge potentials. (Of
course, the chiral effective action in the fermionic gauge
theory produces an anomaly, but it is a nonlocal func-
tional of background gauge potentials since the integra-
tion over fermionic degrees of freedom is implied in the
effective action. ) Correspondingly, it appears to be im-
possible to find the two-form AQ subject to Eq. (4.22)
when working with only gauge potentials. However,
unexpectedly the two-form
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ets derived with Q+AQ~ violate the Jacobi identity; i.e.,
the relation

[ P,'(x), P,'(y) I„=— ', eo"kD.„&„'( )&( y—)
24~

(5.10}

does not associate [31]. Accordingly, the algebra of the
Gauss-law functions evaluated on the basis of (5.10) ac-
quires a noncocyclic Schwinger term.

In fact, the nonclosedness of AQ~ is intimately related
to the cohomological nontriviality of the Schwinger term

S&„. To see this, consider what would happen if AQ~
were closed. In such a situation, there exists the one-
form 50~ so that AQz =560~, with the 5 cohomology
in the Yang-Mills sector being trivial. Then V; becomes
exact modulo coboundary, which implies that the
Schwinger term would be a trivial two-cocycle (up to con-
stants).

When supplemented with the O. -model degrees of free-
dom, we can find the closed two-form b,Q as in Eq. (4.11},
unlike the case with only gauge potentials. Thus, on the
same grounds as above, we can say that the Schwinger
term S&„ is a trivial two-cocycle. [To be precise, the
one-form 68(568=60) is essentially a local object, and
as a result S&„can be trivialized only in a local coordi-
nate patch. ] More concretely, the modified Gauss-law
functional

[32,33]) on the one hand, and on the other hand em-

phasizing how the algebra of Noether-charge densities is
accompanied with Schwinger terms originating from the
quasi-invariance of the WZW term [16,17]. Here we give
a unified treatment of these subjects.

We adopt Qz+EQz as a symplectic structure of the
WZW model, where Oz is defined by Eq. (3.20) with

1
W(') (6.1)

and b, Qz is given by [23]

AQ~= — tr 8' J +8' JR'J
48~

(6.2)

(6.3)

One can obtain the last expression from Eq. (4.11}by set-
ting simply A, 5A —+0. In order to convince ourselves
that Qz+ b,Q& is the true symplectic structure, we
demonstrate that the Euler-Lagrange equation evaluated
with the use of Qz+ EQz indeed agrees with the equation
of motion of the WZW model.

Let us start by pulling back the symplectic structure to
the velocity phase space by means of the Legendre trans-
formation (6.1):

0 ~(A ) = d x(5W'hJ'+ 'f' 'WP'h J—)
1

(G&+U&}—[i(X&)68+v&]=G& i(X&—)b8 (5.1 1) b, A~~(b, Qx)~=6, Q~ . (6.4)

satisfies the algebra free of Schwinger terms. The mean-
ing of Eq. (5.11) is clear, that is, we immediately find

6( i(X(—)b8= f d x g'(D;P, '+K, vr ), (5.12)

where P and S. are defined by Eqs. (4.4) and (4.5), so
that the new Gauss law consists of the momenta subject
to the canonical Poisson-bracket relations, leading to the
ordinary Gauss-law algebra. This conclusion is not so
surprising, because we can trivially construct the
anomaly-free theory by subtracting the WZW term (re-
garded as a local polynomial of the field variables) from
the Lagrangian [9].

In a similar manner, we define the energy density 8 as a
pullback of the Hamiltonian,

1 2 1
(6.5)

to get

( W~W~+ W~Wo)1
(6.6)

Then, with the introduction of the "dynamical" vector
field

VI. THE UNGAUGED WESS-ZUMINO-WITTEN
MODEL IN FOUR DIMENSIONS

A. Formalism

X&= d x x +80 x
5P (x) 5WO(x)

the Euler-Lagrange equation becomes [10,24]

i (X~ )(A~+ b,Qq)~ = —5fd x 6 .

(6.7)

(6.8)

The ungauged WZW model (or simply the WZW mod-
el) in four dimensions [15,7] can also be treated within
the framework of our formalism. Namely the WZW
model has a common feature with the chirally gauged
one in the sense that the WZW term is added by hand to
the original Lagrangian to drastically change the canoni-
cal structure of the theory. Then, as in the previous sec-
tions, we modify the canonical symplectic structure so as
to reproduce an "anomaly" due to the WZW term. In
fact, the canonical formalism of the WZW model has al-
ready been developed, concentrating on its symplectic
structure [23,24] (or canonical commutation relations

The explicit calculation gives us the correct equation of
motion:1, i8"W' — e" ~ tr( T' W W„W W ) =0,f2 P 4g 2 P " P

which is obtained from the action

(6.9)

gz= f d4x tr(W W")— f tr(W ) (6.10)
240~'

of the WZW model.
Here the fact worth mentioning is that the Hamiltoni-

an formalism explained above does not use the notion of
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higher dimension at all. The higher dimensionality enters
the formalism when we try to obtain the equation of
motion through the variational principle. For example,
the canonical action leading to Hamilton s equation is to
be constructed with the "potential" Hz+68& of the sym-

plectic structure, with

8 =fdx, J', (6.11)

formation in the symplectic structure; however, it cer-
tainly contributes to the Schwinger term of the symmetry
algebra. To see this, we perform the transformation
(6.13) with the time-independent but space-dependent pa-
rameter P(x), and investigate the response of b,Qz to this
"localized" transformation [34].

Let X& be the vector field [3S] generating the transfor-
mation, i.e.,

b, 8z= f tr(JW ),
48m

(6.12) i(X~)Qz =5G~, (6.14)

which inevitably contains the four-dimensional term.

B. The algebra of Noether-charge densities

Having obtained the modified symplectic structure, we
study its behavior under a symmetry transformation.
Since there no longer exists a gauge symmetry, we are led
to consider the global symmetry of the Lagrangian
So=f tr(W„W") and clarify the effects of the WZW
term upon the symmetry properties of the model. As is
well known, the Lagrangian Xo is invariant under the
infinitesimal left translation with a global parameter P,

with

G&= fd x P(x)n, (x) .

Then the calculation results in

L (X~ )EQz =co~,

where

co = f tr[dg(2J2W + W J +JWJW
48 2

+ WJWJ+ WJ W) ] .

(6.15)

(6.16)

(6.17)

5+ = pE~— (6.13)

while the total Lagrangian (including the WZW term) is
only quasi-invariant. It should be remembered that the
quasi-invariance of the Lagrangian does not cause the de-

Obviously, the deformation co& is a one-cocycle by
definition. Along the same line as in Sec. IV, we can
derive co~ by studying how the Lagrangian X changes un-

der the localized transformation. Namely, when (=0, we
find

X+ W,'B,@+8 e ' "tr((W;W 8'z) + e ' tr[B;g(WOW Wk —
WJ WOWk+ WJ Wk Wo)] (6.18)

up to spatial-boundary terms. Thus the "anomalous" de-
formation V& of the Lagrangian (or canonical) one-form
is given by

S&z= —
2 f tr[(dgdg —dydee)W] . (6.23)

V = — f tr[dg(JW —WJW+ W J)], (6.19)
48~'

We introduce I,(x) such that 6&+v&= fd3x p(x)IO(x),
that is,

modulo exact form 5v&, with

v&= tr W
48m.

(6.20)
I =1T + E 'J" tr( T'W WW ).0 0

48
i j k (6.24)

Here we can prove the identity

i(X~)AQz= V~+5v~, (6.21)

and the current algebra implied by the descent equation
can be written as

5Sg„=L(X~)V„L(X„)V~ V(t „l— —(6.22)

plays the role of the Schwinger term (with opposite sign)
of our interest. The explicit calculation shows

and consequently 5V&=co&, as expected. On the other
hand, the remaining piece in the deformation of the La-
grangian f W,'d, P indicates the noninvariance of the
Hamiltonian (6.5) under the localized transformation,
and is not important in the present story.

The one-cocyclic property of co& enables us to write
down the descent equation, and S&„defined by

[I,(x),I„(y)],,=y' 'I, (x)5(x—y)

24
F. " D, ,d, W'(xQk5(x —y) . .

(6.25)

Here the function I,(x) is interpreted as a Noether-
charge density associated with the global transformation
(6.13) [16,17]. Indeed, the equation of motion (6.9) reads
B„I,"=0,where
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I"=— W"+ e""~ tr(T'W W W ),1

f 48
(6.26) C. Comments on the BRST structure of the formalism

which turns out to be the Noether current. The second
term on the right-hand side comes from the WZW term.
In comparing this result with that of Refs. [16,17], one
should understand that the efFects of the WZW term ap-
pear also in the noncanonical Poisson-bracket relations
obeyed by the momenta (6.1). Namely m., is to be re-

placed by E, (5 %—) with S defined by Eq. (4.7) in the
absence of gauge fields.

Faddeev's original prediction for the Schwinger term
was based on the observation that the anomalous Gauss-
law algebra is to be subject to the Jacobi identity. As was
shown in Ref. [33] with the use of the BRST technique
[29], the associativity can also be a guiding principle in
determining the possible extensions of the current algebra
in the WZ% model. The classical counterpart of the
current algebra was found to be

[n., (x), ir&(y)],s=f' 'n, (x)5(x—y) — enj" tr([T', T ] W; WJ Wi,
—W; Wi T'Wk T"+ W W T"Wi, T')5(x —y),

(6.27)

5tr(JW )= —d tr( W J + W JWJ), (6.29)

which is nothing but the statement 56Hz =AQz. Such a
construction is the four-dimensional generalization of the
technique proposed in Ref. [24].

The BRST procedure has also been applied to the
gauged WZW model [36], now treating gauge potentials
as external variables. It is also possible to interpret the
results within the framework of our formalism. Let 5z be
the exterior derivative operating only on the O. -model de-
grees of freedom; then we find

5~J = —J
5~A = —dJ —JA —A J,

(6.30)

(6.31)

where J= U 'JU and A = U 'AU+ U 'dU. Apply-
ing again the BRST method, we obtain a three-
dimensional 5z-closed form as

biz= tr[J [A dA +dA A +(A ) ]
48vr

+JA JdA ]

=
—,'S-( A ), (6.32)

which coincides with the noncanonical Poisson brackets
for the n, 's implied by Eqs. (3.20) and (6.2). In the
present formalism, the two-cocyclic property of the ex-
tension is merely a consequence of the associativity of the
underlying Poisson brackets —the closed nature of the
symplectic structure. Therefore, seeking the BRST-
closed two-form to get a two-cocycle is in some sense
equivalent, in the context of our formalism, to seeking a
5-closed two-form EQ&. Indeed, the relation
550z=hQz has the structure of a dimensional descent
equation characteristic to the BRST formulation of the
theory of anomalies. More precisely, one can observe

5W= —dJ+JW+ WJ, dJ=—dx;d;J= —8;Jdx, , (6.28)

so that (d+5)(J+ W)=(J+ W) . Then, expanding
(d+5)tr[( J+ W) ]=0 in powers of J and picking up the
terms of order J, we obtain

where we have used the notation in Eq. (4.24). This ex-
pression agrees with the J R, J part of the two-form AQ
defined by Eq. (4.11). When the gauge fields acquire dy-
namics, one should use the exterior derivative 5 rather
than 5z. The resulting expression for the two-form AQ,

includes the corrections consisting of the di6'erential
forms of the types 5A h 5A or 5A R, J.

VII. CONCLUSIONS AND REMARKS

We have applied the classical symplectic-geometrical
analysis to the chirally gauged %ZW model, which im-
plements the anomalies at the classical level. The con-
sistent anomaly aft'ects the canonical structure of the
theory in such a way that the symplectic structure is de-
formed along gauge orbits. Quite analogously to the La-
grangian formulation, the extra two-form AQ is added by
hand to the canonical symplectic structure to reproduce
the deformation. The existence of AQ is a consequence
of the one-cocyclic property of the deformation, which is
also a foundation for establishing the algebraic relation
between the divergence anomaly and the Schwinger term.

On the other hand, the one-cocyclic property is found
to be a Hamiltonian realization of the Wess-Zumino con-
dition in the Weyl gauge. Though our analysis has been
performed in the context of the WZW model, such an in-
terpretation will be valid even for the underlying chiral
fermionic gauge theory (in the Weyl gauge). Namely the
Wess-Zumino condition is formulated in terms of the
gauge fields only, and the o.-model degrees of freedom are
introduced in the process of finding the "solution" to the
condition. Similarly, in the Hamiltonian formulation of
the chiral gauge theory, one can start with the one-
cocycle condition, now regarding it as a first principle.
The o.-model fields are introduced in order to construct
the closed two-form AQ subject to Eq. (4.22).

When it comes to the ungauged model, we have been
able to obtain the algebra of Noether-charge densities by
treating a localized transformation. The algebra derived
here is considered to be more essential than Eq. (6.27) in
elucidating the symmetry properties of the model.

Our formalism is applicable to the higher-dimensional
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chirally gauged (or ungauged) model, and will reveal the
hidden algebraic structure analogous to that of the four-
dirnensional theories.

At the end we point out the interesting subjects which
deserve further investigations. In addition to the descent

equations of our main concern, we have established
another algebraic formula connecting the divergence
anomaly with the Schwinger term, i.e., Eq. (4.63). Em-
ploying a four-dimensional description, we can rewrite it
in the form

—S&„=f d yrj (y) f dx
b

—D, (y).
5A 0(y ) 5A;(y )

b

EL~(x ),

where EL~(x )= fd xM:& is a consistent anomaly integrated over the three-dimensional space. This expression has
been obtained in Refs. [6] in different lines of arguments, and is expected to give some hints to the physical understand-
ing of chiral gauge theories also within the framework of our formalism. Next, we call one s attention to the Chern-
Simons-Yang-Mills theories. When the Chem-Simons term is added to the Yang-Mills Lagrangian, the canonical mo-
menta change their forms and the Poisson brackets among them acquire the additional terms, which turn out to be
Abelian functional curvatures in the space of static Yang-Mills connections in the Weyl gauge [37]. Moreover, the cur-
vature term can be regarded as a presymplectic structure on the space of connections (not on the phase space) to give a
natural geometrical setting [38] for covariant anomalies [39]. It is interesting to interpret these works in phase-space
language, which problem remains to be studied and the results will be reported elsewhere.
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APPENDIX

In this appendix, we give a simplified proof of Eq. (4.22), which can be traced inore easily than the direct computa-
tion of L(X&)hQ. First of all, we write the two-form b,Q without using the differential-geometric notation:

bQ=, fd'x e ""D,b, Wk5A, '5A, + fd'x e ""[38(,b, )d(A,'+W,')djA„+8(,b),d, A,'A, Ak
48m 48m

+ [ab]cde +8[ac]dbc + [eb]dac ) Ai Aj Wk

8[abcde](3 Ai + Wi ) Wj Wk ]J J
l+ d e ""[ 2D,b, "d, Ak —38, (b—,d) A; A„

48m

+38b[„d)(2A&'+ Wj') Wk ]J'5 A, (A 1)

Next, we calculate i(X&)AQ —
V& to obtain

&(Xg)&Q —Vg=, fd'x e " [ 2D,b, D, pWk —3pBb(„d)(2A'—+W')Wd]5A, b

', fd'x ~"J'@[38[.„]„(A,'+W;)a, A„d+(8[.„„,+8[ „„,+8[„„., )A;A,dW„

28(,b,d, )(3A +—W )W)~Wk]J

, fd'x ~'" [ 38b(.,d)d, pA; A—k+D; p[ —2D, ,B A„'+38,(, )(2A'+ W;. ) W„]]Jd", (A2)

which agrees with the exterior derivative of v& defined by Eq. (4.43):

l
d x e 'J~P(2D, ,d, A W„'+38(, ,)„A; A'W„38, (,„)AbW'Wd —8, („,„)WbW'Wd) —. (A3)

Thus we have verified Eq. (4.28), and consequently we find

L(Xg)EQ=5( Vt+5vt) =cot,

which completes the proof.

(A4)
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