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5 expansion for local gauge theories. II. Nonperturbative calculation
of the anomaly in the Schwinger model
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This is the second paper in a series in which we show how to use the principles of the 5 expansion to
obtain nonperturbative solutions to gauge theories. The approach consists of replacing the usual
minimal-coupling term g(i 8 eA—}Pby g(i8 —e A ) tP and then expanding the new theory in powers of 5.
For all values of 5 the theory is locally gauge invariant. Thus, local gauge invariance holds order by or-
der in powers of 5. In this paper we show how to calculate the photon propagator and thus the anomaly
in the Schwinger model (two-dimensional massless quantum electrodynamics) to first order in 5. At
5= 1 the exact value for the anomaly, e /m, is obtained.

PACS number(s): 11.15.Tk, 03.70.+k, 12.20.Ds

I. INTRODUCTION

In the first paper in this series [1]we showed how the 5
expansion can be used to solve theories having a minimal
covariant momentum of the form

We introduce the perturbation parameter 5:
's

(1.4)

tP(i tl eg }g—.

The procedure is to introduce a small parameter 5 into
the exponent of the coupling term

P(i8 ej ) —P (1.2)

and then to solve the theory as a series in powers of 5.
The expansion in 5 has two advantages. First, it is non-
perturbative in the coupling constant e and, second, it
preserves local gauge invariance order by order in powers
of 5 [2].

In Ref. [1] we considered a simple model in one-
dimensional space-time whose coupling has the form in
(1.1). The advantage of such a model is that there is no
complication coming from the y matrices, which, in one-
dimensional space-time, are completely absent. The pur-
pose of this paper is to explain how to extend the calcula-
tional procedures developed in Ref. [1] to interaction
terms such as that in (1;2) in which y matrices 'are
present.

. Specifically, we consider the Schwinger model (mass-
less two-dimensional quantum electrodynamics) de-
scribed by the Lagrangian

where M is a mass parameter that maintains the dimen-
sional consistency of (1.4). Note that when 5=1 the La-
grangian in (1.4) reduces to that in (1.3). We illustrate
and describe the technical details of the 5 expansion by
computing the anomaly in the Schwinger model. To
summarize, the general procedure is rather easy to under-
stand but the details involve combinatoric arguments that
are somewhat lengthy and elaborate in coordinate space.
Thus, in this paper we limit the discussion to the deter-
mination of the erst term in the 5 series, namely, the
coefficient of 5. The result for the anomaly is 5ei/n as
was shown in Ref. [2]. At 5=1 this reduces to the well-
known value e /nfor the Sc. hwinger model.

To obtain the first term in the 5 expansion we follow
the general rules described in Ref. [3]. We expand the
Lagrangian (1.4}to first order in 5:

L = — (F„„)+Mgf—+5M/in g+O(5 ) .

(1.5}

Then we replace (1.5) by a provisional Lagrangian having
a polynomial interaction term

'N

L = (F ) +P(i tI eA )P —. ——
4 pv (1.3) LN = — (F„„)+Mug+—5M/ (1.6)

'Permanent address: Physics Department, Technion-Israel In-
stitute of Technology, Haifa 32000, Israel.

where we think of N as a positive integer. To obtain the
solution to (1.5) we must solve (1.6) for all N. Then we
differentiate with respect to N and set N =0 to recover
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the solution to (1.5).' This differentiation process of
course requires that we analytically continue the solution
of (1.6) off the integers. Clearly, this procedure is not
rigorously justifiable. However, in all models we have
studied thus far, including the gauge model described in
this paper, we have always found the unambiguous and
correct result. In particular, we show that to leading or-
der in 6, the anomaly for the Schwinger model is 6e /~.

This paper is organized very simply. In Sec. II we re-
view brieAy the standard diagrammatic calculation of the
anomaly in the Schwinger model using weak-coupling
perturbation theory. Then, in the next two sections we
give a detailed calculation of the anomaly to leading or-
der in 5 and to leading order in e . Section III illustrates
the calculation with three special cases and Sec. IV
presents the complete and general calculation. Finally, in
Sec. V we redo the long calculation presented in Secs. III
and IV in a very brief and simple fashion: by doing the
calculation in momentum space rather than in coordinate
space we reduce it to just a page.

II. CONVENTIONAL CALCULATION
OF THE ANOMALY IN THE SCHWINGER MODEL

In this section we review the conventional computation
of the anomaly in the Schwinger model using weak-
coupling perturbative methods. In Minkowski space, the
Lagrangian in (1.3), or that in (1.4) evaluated at 5=1,
yields the following Feynman rules: —ie y" for a
fermion-fermion-boson vertex and i (P )

' for a fermion
line. The anomaly is determined by computing the one-
fermion-loop contribution to the photon propagator (see
Fig. 1):

—leY

FIG. 1. The diagram from which one computes the anomaly
in the weak-coupling expansion for two-dimensional massless
electrodynamics.

dd
~

Tr —1 —ie y" y
(2n) P+g

(2.1)

Next, we introduce a Feynman parameter a,
1 1

q (p+q) o [(1—a)q +a(p+q) ]

perform a shift in the momentum integration variable q
to eliminate terms linear in q in the denominator, and
then drop terms in the numerator that are odd in q:

where q is the internal loop momentum. We have regu-
lated the integral by computing it in d-dimensional
space-time.

We simplify the formula in (2.1) algebraically by ra-
tionalizing the denominators,

»Tr r"
(2m)" (p+q) q

and perform the trace

d~q (p +q)"q —(p +q) qg""+(p +q)"q"
(2') (p+q} q

(2.2)

d q 2q"q"—2a(1 —a)p"p' —[q —a(1 —a)p ]g"'
e 22d I~ d ~

d

d

V ~ ~
2

v ~
~

2 ~
2 2

~ 2 V

o (2m. )" [q +a(1—a)p ]
(2.3)

Thus, (2.3) reduces to the sum of two integrals:

q
——1 +a(a —1)p

d, 2 ~gP-
(2~)" [q +a(1 —a)p ]

d
+ ~2~n „d d q 2a(1 —a)

e p p cz
o (2n} [q +a(1 —a)p ]'

(2.4)

'As noted in Ref. [1] to leading order in 6 this technique bears
a close resemblance to the replica method of statistical mechan-
ics. In higher order this resemblance does not persist.

Using rotational symmetry in d-dimensional space we
have, in general,

pv

ff(q )q"q'd"q= f f(q )q d"q .

p 7T
(2.&)

Had we attempted to evaluate (2.1) directly in two-
dimensional space-time using a momentum cutoff to re-
gulate this integra1, we would have encountered an ambi-
guity, namely, a logarithmically divergent integral multi-
plied by zero. To resolve the ambiguity, we would have
imposed the requirement that the result be transverse.
Since the coefficient of p "p /p is finite, the coefficient of
g" is then uniquely determined. The advantage of di-

When d =2 the coefficient of p"p" [the second of the
two integrals in (2.4)] is finite and this term evaluates to
e p"p'/(p n) The seco.nd. term in the first integral in
(2.4) is also finite at d =2. The first term in the first in-
tegral in (2.4) is infinite at d =2, but it contains a factor
of (2 —d)/d which vanishes at d =2. We thus evaluate
this integral keeping d arbitrary and compute the limit
d~2 afterwards. Our final result for the evaluation of
(2.4) is
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mensional regularization is that it enables us to obtain
the answer in (2.5) directly without having to impose the
requirement that the answer be transverse; transversality
emerges naturally because dimensional regularization is
consistent with gauge invariance.

Our objective in the remainder of this paper is to show
how to calculate (2.5) from the Lagrangian L~ in (1.6).

DIRECTION OF LOOP MOMENTUM

w «('!~ ~li~~
~/fP

P DERIVATIVES ON A

III. ORDER-e CONTRIBUTION TO THE ANOMALY
IN THE 5 EXPANSION: THREE SPECIAL CASES

Our purpose here is to examine the e term in this expan-
sion, and, using graphical methods, to calculate its con-
tribution to the photon two-point Green's function.

The term of order e is complicated for two reasons.
First, the derivative operator 8 does not commute with
the field A (x). Second, the y-matrix algebra must be
taken into account. A typical e term in the expansion of
(3.1) has the form

e 2f d dX yy
a g p b g y N —a b —2y— (3.2)

where a, b, X —a —b —2&0 are all integers and the
derivatives 8 operate forward. This term is characterized
by the two integers a and b. However, we now show that
the integer a is superfluous if we are only interested in
graphs of order 5. We integrate by parts a times so that
the derivatives (8)' now operate backward on Q. Now
(3.2) becomes

2( 1)af dd yp ggbagpN —a —b 2y—(3.3)

Now let us consider the kinds of graphs that will ap-
pear in this calculation. All graphs of order 5e that con-
tribute to the anomaly have two external photon lines
and one fermion loop (see Fig. 2). The graph shown
arises from a vertex of the type

As shown, the Ei derivatives on g correspond to a
momentum insertions that have a direction opposite to
the fiow of the fermion loop momentum, while the (8)r
derivatives on P correspond to y momentum insertions
that are in the same direction as the loop momentum.

In this and the next section we show how to calculate
the photon two-point Green's function to order 5 from
the Lagrangian Lz in (1.6). In this paper we are con-
cerned only with the coefficient of 5 to order e .

Let us examine the term in L~ proportional to 5:

5M' f d x g(x)(i8 eA ) —g(x), (3.1)

where we regard N as a positive integer. This term gives
rise to a large collection of vertices. To identify these
vertices we can expand the gauge derivative term in the
form of a polynomial in e:

5M' fd x 1(Ii 8 ttI+(term of order e)

+(term of order e )

+(term of order e3)+

DIRECTION OF LOOP MOMEN'IVM

(X~ DERIVATIVES ON LP

NO DERIVATIVES ON I)I

+jy. —————x (-1)

P DERIVATIVES ON A

FIG. 2. A typical graph of order Se for the anomaly in
massless electrodynamics. Note that a graph arising from an in-
teraction term having a derivatives on IlI and y derivatives on IlI

is equal to a graph from an interaction term having no deriva-
tives on IT and a+ y derivatives on IlI multiplied by ( —1)'.

Thus, the graph is equal to one in which there are a+y
derivatives on the g field and there are no derivatives on
the It(I field if the new graph is multiplied by ( —1} .
Furthermore, since a trace on the y matrices is taken
around the fermion loop and traces are cyclical, we can
simplify the expression in (3.3). Taking a =a, (3.3) takes
the much simpler form

2f dd yggbgyN b —2y— (3.4}

We emphasize that (3.3) and (3.4) are, of course, not equal
but they give the same graphs of order 5 having two
external photon lines.

Thus, we can expand the original interaction Lagrang-
ian in {3.1) as a sum of terms

N —2

g 5M' +JYb fd x f(x)A(i8) A( 8i) Q(x),
b=0

{3.5)

where 8"b is a combinatoric weight (like a binomial
coefficient) that we will now determine.

For a given value of b there are N —b —1 terms of the
form in (3.2) having b derivatives (EI)" between A and A.
This is because the N —2 factors of 8 can be distributed
in X—b —1 possible ways:

yy N b —
2g pbbs y—

1(E(" '-'aabaay,

Q8 A8 A(B) |lI,

$8A8A8

@gpbbs yN b —2y—
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Each of these terms becomes identical after integration
by parts. Thus,

8'b=N —b —1 . (3.6)

A. Special case P =0

The simplest special case to consider is that in which
all derivatives in the expression (i8) in (3.5) act on g(x)
and no derivatives (P =0) act on A. Thus, the derivative
structure of (3.5) takes the form fd x QAA(ia)
However, we must also take into account the y matrices
that accompany each factor of 8 and A. There are thus
two subcases to consider: subcase even b is that in which
an euen number of operators 1t( lie between A and A and
between A and 1/ in the sum in (3.5), and subcase odd b is
that in which an odd number of derivative operators tl lie
between A and A and between A and 1/t in the sum in
(3.5). Remember that N is always even.

Subcase even b. If P =0 then every even-b term in the
sum in (3.5) has the form

The expression in (3.5) must be decomposed further be-
cause the term (i8)" contains derivatives that operate for-
ward; some of these derivatives operate on g and
others operate on P(x). We distinguish each of these
cases by the integer P. Thus, we will consider separately
the cases where no derivatives operate on A (P =0), two
derivatives operate on A(P =2), four derivatives operate
on A(P =4), and so on. Note that we cannot have a
graph in which an odd number of derivatives acts on 1/

because the fermion momentum loop integral would van-
ish by symmetry (replacing p by —p in the momentum in-
tegral shows that the integral equals its negative). Furth-
ermore, since N is the number of y matrices in the typical
graph shown in Fig. 2, N must be even. If N is odd, then
since the trace of a product of an odd number of y ma-
trices vanishes, the graph vanishes. Thus, both N and P
must be even integers.

Thus, the total contribution from odd b is

N N
2 2

X f d x 1/(x)Ay Ay+ atria Q(x) . (3.9)

f d'x a.ag(x') = „' S—.~f d'x a'f(x') . (3.10)

Hence (3.9) becomes

2g N —2~1—N N
2 2

X f d"x 1/j(x)Ay Ay& a 1/(x) . (3.11)

Finally, we make use of the y-matrix identity

Ay Ay =(2—d)A

to simply (3.11) to

(3.12)

e2giN —2M1 —N
1 ddx y(x) A 2aN —

21/j(x)
d 2 2

(3.13)

Combination of even band odd b-subcases -Combi.ning
(3.8) and (3.13) gives the effective action

N2
e2giN —2M1 N+ —

N(N 2)
4 4d

The expression in (3.9) may be simplified further if we
recall that it is the effective action that will be used to
evaluate diagrams of the type shown in Fig. 2. The fer-
mion loop integral in this case is an integral whose gen-
eral form can be simplified by making use of rotational
symmetry:

e 5M' ~Wz f d"x 1/(x)A (ia) 1/(x) (3.7)
X f d"x 1/(x)A2a"-'q(x) . (3.14)

(N/2) —1 (N/2) —1

g Wb = g W2k = Q N —2k —1=(N/2)
k=0k=0even b

because tl =a and A = A . Summing over all such
terms is easy:

Hence, when we evaluate the diagram in Fig. 2, which in
this case has no powers of the momentum on the external
photon lines, we obtain, for the amplitude [4],

Ne2$M1 —N + N(N 2) Pv2d/2
2 2d

where we have used the expression for Wb in (3.6).
Hence the total contribution from even b is

d
q qN 2

M
(3.15)

e 6i M' d"x1/J(x)A a 1//(x)
4

(3.8)

where we have again used the expression for Wb in (3.6).

Subcase odd b Every odd b. term in the sum-in (3.5)
has the form

5M' Wb fd"x 1/j(x)Ay Ay+ ag 1/(x) .

Summing over all such terms is again easy:

(N/2) —
1 (N/2) —1

W„= g W2„, = g N —2k= ———1
2 2

where the factor of 2 comes from computing the trace
around the fermion loop. The loop momentum is q and
there are N —2 mornenturn insertions as is clear from
(3.14). The factor of 1/M comes from the fermion propa-
gator (which is a constant), the minus sign comes from
the fermion trace, and the factor of g" comes from the
vector interaction term A = A "A„ in (3.14).

Now that we have determined the amplitude in (3.15)
we must differentiate this result with respect to N and set
N =0 (regarding N as a continuous parameter). Observe
that since the even-b case gives a term proportional to N
this case cannot contribute to the final answer. Only the
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term proportional to N in the odd-b case gives a nonvan-
ishing contribution:

d
pvdn d9 —2

(2~)'
(3.16)

B. Special case P =2

The P =2 case is more complicated than the P =0 case
because when the derivative operators in the summation
in (3.5) are moved to the right, exactly two derivatives
must remain operating on the A field. An additional
complication arises because the indices on the derivatives
acting on the A field may or may not be contracted. To
assist our analysis we introduce the new parameter L
which counts the number ofpairs of contractions of the in
dices on the derivatives on the A field

Subbase even b. When L =0 we have terms of the form

This is our final result for the contribution of the P =0
terms to the anomaly.

Observe the remarkable similarity between the result in
(3.16) and that in (2.4). In both expressions there is an in-

tegral that is divergent when we set the dimension d =2
but the integral is multiplied by the vanishing quantity
d —2. The delicate limit d ~2 must be performed in or-
der to obtain a finite and nonvanishing value for the
anomaly in two-dimensional electrodynamics. We can-
not perform the limit d~2 in (3.16) yet. We must first
combine the P =0 calculation in (3.16) with the results of
the calculations for P =2, 4, 6, . . . . These more difficult
calculations are described below.

Note also that the P =0 calculation is proportional to
g""but that the exact result in (2.5) for the anomaly con-
tains a p"p term as well as a g" term, in order that the
result be transverse. We will see that contributions pro-
portional to p"p" come from the P =2,4, 6, . . . calcula-
tions even though no such term occurs in the P =0 case.

(() ) A f= A((l )"f (P =0 term already considered)

+u,„„(a.apA )a.ap(a')" -'@

+u ($2A )($2)k )$
'(P =2 terms)

+(additional terms with P =4, 6, . . . ) .

(3.18)

It is easy to show that

u2k 0 2 2k(k —1)

and that

(3.19a)

&2k, 1,2
—k (3.19b)

To illustrate the probabilistic nature of u 2k L p we note
that this coefficient is a binomial coefficient multiplied by
a probability:

2k 2k-2
2k, 0,2

2k
2k, 1,2

(3.20a)

(3.20b)

Observe that sum of the probabilities is unity,

2k 2+ 1

2k —1 2k —1

so that

2k
~2k, 0, 2 ~ 2k, 1,2 (3.20c)

tive operators 8 having the same index u with both end-

ing up differentiating the photon field A is small. Let
u2k I r be the coefficient of terms of the form in (3.17) ap-
pearing in the expansion of 8 "A 1i/=(B ) A g. That is,

QA(() i)pA)() ()p((l )' ' g (L =0)

and when L = 1 we have terms of the form

fA ((12A )((l2)(N/2) —
2P (L —1)

(3.17a)

(3.17b)

Terms with L =0 can be replaced by terms of the
L =1 form using the same rotational symmetry that we
used in the odd-b case for P =0. Specifically, we may ap-
ply the identities (3.10) to the fermion momentum loop
integral to replace

(In general, L takes on the integer values
L =0, 1,2, . . . , P i2.)

The problem is now to determine the relative weights
of the terms in (3.17a) and (3.17b). This problem is in
fact a simple problem in probability: When terms of the
form in (3.5) are simplified by allowing the derivative
operators to act, it is much less likely that we will obtain
a term of the L =1 form in (3.17b) than a term of the
L =0 form in (3.17a). Clearly, the change of two deriva-

yA (a.apA )a.Bp(a')'""'-'y

5 p~/A„(B BpA„) (8 )'
d

($2A )($2)(N/2) —
2y

d

Thus, combining the L =0 and L =1 terms, we find that
the P =2 contribution of the even-b terms in the sum in
(3.5) is

N —2

e g 6M' Wb fd x $(x)A(i8) A(iB) gP(x)
b=2

even b

(N/2) —1

=i e gM' y (N —2k —1) +k fde y(x)A (g2A )(g2)(N/z) —
2((i(x)

I =I
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where the y matrices have disappeared because b is even:

+2—&N
—2e2t)M) N—

1 4 d +N(d 3)+ ddx g(x)A ($2A )((12)(N/2) —
2$(x)

12d 2 P P
(3.21)

To evaluate finite sums such as that in (3.21) we rewrite the summand as a sum of terms of the form
(k +a)(k +a +1)(k +a +2) . (k +a tn —1); then we recall the siinple and general identity

N2

g (k ta)(k ta t 1)(k ta t2) . (k+a +n —1)
Ni

' (k+a)(k+a+1)(k+a+2) (k+a+n) (k—+a —1)(k+a)(k+a tl) . (k+a+n —1)
n+1

1

(N2+a)(N2ta+1)(N2+a+2) (N2+a+n) (Ni—+a —1)(N)+a)(N)+a+1) . (N, +a+n —1)

n+1
(3.22)

The sum in (3.22) is the discrete analogue of the integral

N2 (N2 ta )"+ —(Ni ta)" +

f dk(k+a}"=

Subcase odd b When .b is odd, b =2k —1, the sum in (3.5) contains terms of the form

e W2„)SM' f d x lb(x)A(i8) " 'A(i8) " 'g(x)

i
N —2e2 /fr 5M l N f ddx f—(x) A ($2)k —(PA/((l2)(N/2) —k —

1$(x) (3 23)

Now we recall that we are only interested in graphs of order 5 and such graphs have only one vertex and one fermion
loop. The fermion loop involves a trace and we choose to compute this trace in advance of drawing the graph; that is,
we perform this trace for the interaction Lagrangian in (3.23). Of course, such a procedure would make no sense if we
were going to compute a two-vertex graph, but for graphs of order 5 it provides a useful and valid siinplification of
(3.23). Specifically, taking a trace reduces (3.23) to three distinct terms which must be considered in turn:

Tr[AiNB )" 'A8](B )' ' " '=(T l)A 8 ((} )" 'A 8 ((} )' ' " ' (t -I t r )

—(Trl) A aya2)"-'A. (},(a2)(N/2)-"-' (type-II term)

+(Trl)A ()&((} )" 'A&(} (8 )' ' ' (type-III term) . (3.24)

Terms of type I. Let us consider terms of type I. After allowing the derivative operators to act to the right with the
provision that exactly two derivatives must remain acting on A& (P =2), there are two possibilities that can arise: ei-

ther the derivative operator (} acts on A & producing a term of the form

(2k —2)(Trl)A (8 (}rA&)B„B&(B )' ' (L =0, a inside) (3.25a)

or it commutes past A & producing terms of the form

(2k —2)(k —2)(Trl)A ((}&BsA&)B Be()&Bs(B )' / ' (L =0, a outside)

and

(k —1)(Trl) A ((3 A&)() B&(B )' / ' (L =1, a outside) .

(3.25b)

(3.25c)

It is of course necessary to find the correct coefficients 2k —2, (2k —2)(k —2), and k —1 of the terms in (3.25}. These
coeScients are determined by simple counting arguments.

We simplify the term in (3.25a) using the identity in (3.10):

—(2k —2)(Trl)A (8 BpAI))(() )' (3.26)

The terin in (3.25c) is simplified using the same identity:

—(k —1)(Trl) A ((} A )((12)(N/2) —21 (3.27)

To simplify the term in (3.25b) we must use a slightly more complicated identity:
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fd'x a.aP,aZ(x') = „„' (fi.P„+fi.,fi„+fi.,S„)fd'x(a'Pf (x ) .d(d+2 (3.28)

This identity is the second in an infinite sequence of identities that rely on the rotational symmetry of f (x ) in the in-
tegrand. The first such identity is given in (3.10}. The Nth integral identity in the sequence is

~ ~ ~d xa. a. . a. f(x )= „r(d /2)
(5 . fi +all permutations of indices) d x(B ) f (x ) .

~ ~ d 2 N 2
) 2 2N 2Nr(N +d/2) ( 2 2N —) 2N

Using (3.28) we simplify (3.25b) to

(2k —2)(k —2)(TrI) A [(8 A )+2(B Bt)At))](B )'
d+2

(2N —1)!!terms
(3.29)

(3.30}

Terms of type III. The type-III term in (3.24) may be treated in the same way as the type-I term. The results are ex-
actly the same; namely, we obtain the three expressions in (3.26), (3.27), and (3.30). (To observe the symmetry, inter-
change a and P and integrate by parts to make the derivatives act to the left. )

Terms of type II. As in the case of terms of type I we can expand the type-II term in (3.24) into three terms. These
terms are

—2(k —l)(TrI)A (Bt)(3 A )Btit)r(B )' / ' (L =0, P inside),
—(k —1)(TrI)A (B A )(8 )' / ' (L =1, P outside),

—2(k —1)(k —2)(TrI)A (BsB A )B&B (8 )' / ' (L =0, P outside) .

These terms may be combined using rotational symmetry and the identity in (3.10) to

2(k —1) +k —1+ 2(k —1)(k —2) (Trl)A (8 A )(82)()v/2) —z

d d
r

(3.31a}

(3.31b)

(3.31c)

(3.32)

Combination of terms of types I, II, and III. Next we combine the results in (3.26), (3.27), and (3.30) and multiply by
2 (these are the type-I and type-III terms) and add the results in (3.32) (type-II terms) to obtain

(TrI ) A ((}2A )( }2)((Ã/2) —2+ (Tt I ) A ((} Q A )(()2)(N/2) —2 (3 33)d(d+2)
Finally, we multiply the result in (3.33} by the weight W&=N —2k and sum over odd b =2k —1 from k =1 to

k = (N/2) —1. The sum is performed using the identity in (3.22) and the result is

(N —2)(N 4)(N+2d ——2)(TrI)A (O'A )(&')'
48(d +2)

+ (N —2)(N 4)(N+2d —2)(Tr—I)A (8 BtiAt))(B )' / ' . (3.34)
12d (d +2)

Combination of euen band od-d bcases We ca-n. now write down an effective action that produces the combined re-
sults in (3.21) and (3.34) to first order in 5:

.N g 2fi� NN(N 2}(N 6N +2Nd +3d 2d + 8) dd ~( ) A (~pA )(~2)()v/p) 2~( )24d (d +2) P P

+& N —2e2$M1 —N d4x g(x) A (Q Q A }($2)(N/2) —
2$(x) (3 35)12d(d +2) P P

The next step is to apply the operator 8/BN to the expression in (3.35) and then to set N =0. We obtain

(3.36)

The first term in (3.36) gives a graphical amplitude [4] proportional to p g" and the second term gives an amplitude
[4] proportional to p "p" (the graphs have the form shown in Fig. 2):

3d —2d+8 d/2 2 2 y, i d q 4 8(d —1) 2d/2 2' „„d"q 4

6d (d +2) " (2~) 3d (d +2) (2')
(3.37)
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Note that when d =2 the integrals in (3.37} are strongly
infrared divergent.

C. Special case P =4

In preparation for the general case discussed in the
next section (arbitrary P) we consider one last special
case: namely, P =4. In this case four derivatives remain
between the two A fields when the expression in (3.5) is
expanded.

Subbase coen b. When we expand a typical even-b
(b =2k) term in (3.5),

g (a2a2g )(a2)(N/2) —3 (3 42a}d(d+2)

and the identity in (3.10) simplifies (3.39b) to

~ (a2a2 ~ )(a2 )(N/2) —3 2k ( k —1 )(k —2)
d

(3.42b)

This formula is the analogue of that in (3.20c).
Next we use rotational symmetry of the fermion loop

integral to simplify the formulas in (3.39). The identity in
(3.28) simplifies (3.39a) to

g (a2)kg (a2)(N/2) —k —i

there are three P =4 terms that result:

(3.38) The expression in (3.39c) is already in rotationally sym-
metric form:

p (a2a2g )(a2)(N/2) —3 k (k —1 )

2
(3.42c)

(L =0, P =4), (3.39a)

(L =1, P =4),
g (a a2g )(a2)(N/2) —3 (L 2 p 4)

(3.39b)

(3.39c)

Simple counting arguments

Q2k, L, p are given by
r

2k 2k —2 2k —4
2k, 0,4

2k 2k —2 2k —4
4 2k —1 2k —2

show that the coefficients

2k —6 1

2k —3 0!

4
2 ]!
4 2

1

2k —3
(3.40)

2k 2k-
2k, 2,4 4 2k 1 2k 2 2k 3

1

2!2 2

2

~2k, L,4
L=0

2k

4 (3.41)

As we saw in the P =2 case, the coefficients Q2k 0 4 have

the form of a binomial coefficient multiplied by a proba-
bility:

g (p)2k
—(g (y)N

—2k —i

or

A 8(a')" -'A 8(a')'""'-"-' (3.43)

Following the approach taken in the P =2 case we take
the trace and identify three types of terms which we must
consider in turn. These terms are listed in (3.24) and are
called terms of type I, type II, and type III.

Terms of type I. If we allow the derivative operators in

(Try)g a (a2)k
—) g a (a2)(N/2) —k —)

to act to the right with the constraint that exactly four
derivatives remain acting on A& (P =4}there are exactly
two possibilities that may arise. If the derivative opera-
tor 8 acts on A& it produces terms of the form

The three expressions in (3.42) must now be multiplied
by the weight 8'b = 8'2k =N —2k —1 and summed from
k =2 to (N/2) —1. We will carry out this part of the cal-
culation later.

Subcase odd b Atyp. ical odd-b term in (3.5) has the
form

2k —2 2k —4 2k —6 (3.44a}

and

2k —2
A (a a a'A )a a (a')'""'-'

cx cx Al P ex( P 3
1 2k —4 2

2k —3 2k —3 2k —4
(L =1, a inside) . (3.44b)

On the other hand, if the derivative operator 8 commutes past A& it produces terms of the form

2k —2
~.(a. a. a.,a.,~,}a.ap. a. a. a. (a'}(""'-' 2k —4 2k —6 2k —8

2k —3 2k —4 2k —5
(L =0, a outside), (3.45a)

~.(a. a.,a'~, )a.ag. a. (a'}(N"'-' 2k —2 2k —4 2k —6 1 (L = 1, a outside),
4 2k —3 2k —42k —5

(3.45b)
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and

2k 4 1 1 4 2 1
{3.45c)

(Note that the a outside case has the same coefficients as
the even-b case with 2k replaced by 2k —2. ) The proba-
bilistic nature of the coeScients of these terms is easily
demonstrated. For the a-inside terms in (3.44) the sum of
the coeScients is the binomial coef6cient

3k —2

and for the a-outside terms in (3.45) the sum of the
coefBcients is the binomial coeScient

2k —2

Next we use rotational symmetry to simplify the a-
inside expressions in (3.44}. The identity in (3.28)
siinplifies (3.44a) to

"~ (a'a a ~ )(a')'""'-'
d(d+2) a a P P

(3.46a)

and the identity in (3.10) simplifies (3.44b) to

—(k —1)(k —2)A (a a apA )(a )' ' (3.46b)

In a similar way, we simplify the a-outside expressions in
(3.45). The identity in (3.29) with N =3 simplifies (3.45a)
to

the I'=2 terms, the contribution of type-III terms is
identical to the contribution of type-I terms.

Terms of type II. We can expand the type-II term in
(3.24) into P-inside and P-outside terms. The two P-inside
terms are

—~.(ag. a. a. ~.)ag. a. a. (a'}(""'-'

X —(k —1)(k —2)(k —3) (3.48a)
4
3

—a (ap. a'a. )ag. (a')'""' '2(k —1)(k —2) .

(3.48b)

Using rotational symmetry these two terms become

4(k —1)(k —2)(k —3) 2(k —1)(k —2)
d(d+2} d

J

{a2(P g )( a2)(N/i) i (3 49)

The three P-outside terms, after we use rotational symme-
try, contribute

2(k —1)(k —2)(k —3)(k —4)
d(d+2)

2(k —1)(k —2)(k —3)+
d

2(k —, 1)(k —2)(k —3)(k —4)
d (d +2)(d +4)

x [~.(a'a'~. )+4~.(
'a.aa~, )](a')'""'

(a2a2g )(a2)(N/2), —3

2 a a (3.50}

The identity in (3.10) simplifies (3.45c) to

(k —1}(k—2) ~ (a2a2g )(a2)(N/2) —3

2d a a (3.47c)

Terms of type III. As we observed in our discussion of

(3.47a)

The identity in (3.28) simplifies (3.45b) to

[A

(aalu

)+22 (aaa A )]d(d +2) a a a a p p

x (a2)(N/2) —3 (3 47b)

Observe that this result is identical to that in (3.42) for
the even-b terms except that the sign is changed and k is
replaced by k —1.

p"p term. We ean look ahead to the final answer and
determine the origin of its structure. The final answer
contains one term proportional to p~p" and another pro-
portional to g" . The p "p" term arises from an eftective
I.agrangian containing an interaction of the form
A (a a))a A&) and the g"" term arises from an interac-
tion of the form A (a a AI)). Hence the p"p' term
comes only from the type-I and type-III terms in the
odd-b ease. Thus, we must collect aH the p"p"-producing
terms in (3.46}and (3.47) and multiply by 2:

16(k —1 )(k —2)(k —3) 4(k —1)(k —2) 16(k —1 )(k —2)(k —3)(k —4) 2 ~ ()((/2)
d (d +2) d d (d +2)(d +4} (3.51)

We must then multiply by the weight JY(, =N —2k and sum over odd b =2k —1 from k =1 to k =(N/2) —1. To per-
form this sum we use the identity in (3.22}. The result is
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N(N —2)(N 4—)(N —6)(5d~ —18d +8—12N +6Nd +2N ) p p (~gp) —3

120d (d +2)(d +4) a a 0 (3.52)

It is easy now to insert the expression in (3.52) into (3.5) to construct the eifective order-5 action:

N(N —2)(N —4)(N —6)(5d' —18d +8—12N+6Nd +2N ) p I ~ ~ p f d
—

p p (Nyp) —3

120d (d +2)(d +4) e 5M l fd x (x)A.(B.B0 Ao 0 (x)

(3.53)

Finally, we differentiate with respect to N and set N =0:
2 5d —18d +8

e 5M f d x l(t(x)A (a.a,a'a, )(a') g(x) .

This action produces a two-photon amplitude from a graph of the form shown in Fig. 2 [4]:

4(5d —18d+8) 2 dxz z p „ f d"q
5d (d +2)(d +4) " (2~)

(3.54)

(3.55)

g" term. The g" comes from both even-b and odd-b terms. The contribution from even-b terms is taken from
(3.42),

2k(k —1)(k —2)(k —3) 2k(k —1)(k —2) k(k —1) p p ~p (~gp)
d(d+2) d 2

(3.56)

and the contribution from odd bterms -is taken from (3.47) (multiplied by two to account for terms of type I and type
III, (3.49), and (3.50):

4(k —1)(k —2)(k —3)(k —4) (k —1)(k —2) 2(k —1)(k —2)(k —3)(k —4)
d (d +2)(d +4) d d(d+2)

2(k —1)(k —2)(k —3) (k —1)(k —2)
(N —2k) A (8282M )(B2)(N/2) —3

d 2 a a (3.57)

We now evaluate the sums in (3.56) and (3.57) using the identity in (3.22) and combine the results to obtain a form for
the effective action to order 5:

240d (d +2)(d +4) (N +3dN 12N +5d N——12dN+60N+5d +4d —144)

Xe 5M' i fd"x g(x)A (a'a'~ )(a')' " 'lt(x) . (3.58)
P P

Finally, we differentiate with respect to N and set N =0:

5d +4d —144
e ™fd'x y(x)~ (a'a'~ )(a')-'q(x)

30d (d +2)(d +4) P

This action produces a two-photon amplitude from a graph of the form shown in Fig. 2 [4]:

Sd'+4d —144, „„4„. d "q

15d (d +2)(d +4) (2~)"

(3.59)

(3.60)

D. Summary

Here is a summary of the results derived in this section taken from (3.16), (3.37), (3.55), and (3.60). Terms containing

g pv.

d
Pv g2d 2

(2~)"

3d —2d+8 ~p d q 4

6d (d +2) " (2~)"
144 4d —5d" 4 p d q

15d (d +2)(d +4) " (2~)

(P =0)

(P =2)

(P =4)
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Terms containing p "p:
P"P" 2 dn 8(1—d) 2 d q 4

p2 3d (d +2) (2n. )
e 52 p

4(5d —18d+8) 4 }. d q
5d (d +2)(d +4) " (21r }

(P =2)

(P =4)

+ s o ~

(3.62)

Observe that while the scale mass M appears in the La-
grangian in (1.4), it does not appear in the formulas (3.61)
and (3.62). This convenient cancellation occurs because
the fermion propagator is the constant 1/M and the ver-
tex amplitude is proportional to M', which becomes
Mat N =0.

Note also that subsequent integrals in (3.61}and (3.62)
are increasingly infrared divergent. It will be necessary
to perform a summation over P (under the integral) be-
fore attempting to evaluate these integrals. We will see in
the next section that this summation gives an integrand
that is no longer infrared divergent.

IV. ORDER-e CONTRIBUTION TO THE ANOMALY
IN THE 5 EXPANSION

In this section we show how to find the general term in
the series in (3.61) and (3.62) for arbitrary values of P. It
is easier to derive the coeScient of p"p so we consider
this case first.

A. p"p" terms

From our experience with the special cases considered
in Sec. III it is clear that p"p" terms come only from

I

A g((}2)k 1A P((12)1Nn1

When the trace is taken we obtain a type-I term of the
form [see Eq. (3.24)]

(Tr}()A g (g2)k —1A g (g2)(Nn) —k —1 (4.1)

Now, when we allow all derivatives to act to the right we
obtain two types of terms: a-inside terms (where the
derivative with index cz acts on A& and remains between
the two A fields) and a-outside terms [where the deriva-
tive with index a commutes past A& and acts on g(x) ].

u-inside terms. When P =0 there are no a-inside
terms, when P =2 there is one such term corresponding
to L =0 [see (3.25a)], and when P =4 there are two such
terms corresponding to L =0 and L =1 [see (3.44a) and
(3.44b)]. In general there are P/2 such terms corre-
sponding to L =0, L =1, . . . , L =(P —2)/2. The
coefficients of these terms fit a relatively simple and
recognizable pattern. For example, for P =6 we have

terms of type I and type III for the case of odd b. Recall
that a typical odd bter-m in (3.5) has the form

A (P)2k
—1

A (y)N
—2k —

1

(2k —2)(2k —4)(2k —6)
5t (2k —8)(2k —10)

5
+ (2k —8)2

5 3
+

2 2 2t

(L =0 term)

(L = 1 term)

(L =2 term)
(4.2a)

For P =8 we have

(2k —2}(2k —4)(2k —6}(2k —8} (2k —10)(2k —12)(2k —14} (L =0 t }
7f

7
+ (2k —10)(2k —12)2

7 5
+ 2 2 2l

—(2k —10)

7 5 3

2 2 2 31

(L =1 term)

(L =2 term)

(L =3 term)
(4.2b)
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and for P = 10 we have

(2k —2)(2k —4)(2k —6)(2k —8)(2k —10)
(2k —12)(2k —14)(2k —16)(2k —18) (L =10 term)

9!

9
+ (2k —12)(2k —14)(2k —16)2 (L =1 term)

9 7
+ 2 2

—(2k —12)(2k —14) (L =2 term)

9 7 5
+

2 2 2
—(2k —12) (L =3 term)

9 7 5 3

2 2 2 2 4!
(L =4 term}

(4.2c)

The pattern is now clear; the coefficient of a term for a
particular value of P, 2k —1, and L has the form

2P —L —1

u (2k —1,L,P) =
(P —1)!L!

P —L —1 P+1—2l
X P (k —n)P

n=1 1=1

(4.3)

This formula reproduces correctly all of the odd-b results
we have seen so far; namely, (3.25a) for P =2, (3.44a) for
P =4, and (4.2) for P =6, 8, and 10.

The formula in (4.3) can be generalized to include even
b as well as odd b [5]:

2P —a —'
u (2k a, L,P)=-

(P a)!L!—

Imposition of rotational symmetry. Next we apply the
identity in (3.29) to the a-inside terms. Rotational sym-
metry reduces the coefficient in (4.3) to

2P L1 L P+1—21 P L1
TT (k n)—TT

(P 2L —1)!!—
P/2 —L 7

[d+2(n —1)]
n=1

(4.6)

where L =0, 1,2, . . . , (P/2) —l.
Applying the identity in (3.29) to the a-outside terms

changes the coefficient in (4.5) to

P —L —1 P +2—a —2l
X g (k n)g-

n=a 1=1

(4.4)

P+2 —2I
g (k n)—
n=1 1=1

(4.7)

where a =0 for the case of even b and a =1 for the case
of odd b. Now, when a =0, (4.4) gives the even-b results
in (3.7) for P =0, in (3.19) for P =2, and in (3.40) for
P =4.

a-outside terms. Next, we examine the a-outside
terms. When P =0 there is one a-outside term [see (3.9}],
when P =2 there are two a-outside terms [(3.25b) for
L =0 and (3.25c) for L =1], and when P =4 there are
three a-outside terms [(3.45a) for L =0, (3.45b) for L = 1,
and (3.45c) for L =2). Once again, the coefficients for
these terms fit a simple pattern:

P+2 —2I
u (2k —1,L,P) = g (k —n) QP!L!

n 1 1 1
2

(4.5)

(P + 1 —2L)!!—(P —1 —2L)!!
(P/2) —L + 1

[d +2(n —1)]
n=l

where L =0, 1, . . . , (P /2) —1.
Summation on k and L. Just as we did in the special

examples considered in Sec. III we multiply the expres-
sions in (4.6) and (4.7) by the weight Wb=X —2k and

sum over the odd b =2k —1 from k =(P+2)/2 to
k =(N/2) —1. To perform this summation we use the
elementary identity in (3.22). We also sum on L from 0
to (P/2) —1 [6]. We must multiply these sums by 2 be-

cause we have identical contributions coming from terms
of type I and terms of type III, as we saw in Sec. III. We
spare the reader the algebra in performing these sums

and merely present the Anal result, which is a sum over P:
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4~N + f dqqN p + p
p (27r) 6q 15q

3p 2p

140q 315q'
2

P P pt p2 2
+ ~ ~ ~ +

(P+1)!q +

+ ~ ~ ~ (4.8)

where we have set d =2. For large N the first few in-
tegrals in this sum are strongly ultraviolet divergent.
However, recall that we must differentiate with respect to
N and set N =0. Performing this operation before at-
tempting to integrate removes all ultraviolet divergences
and gives the result

even-b terms, part of the type-I and type-III odd-b terms,
and the type-II odd-b terms.

The even-b case is given in (4.4) with a =0. Imposing
rotational symmetry [see (3.29)] now gives

P +2—21

ptL!,&

)
(P 2L ——1)!!

(P/2) —I-

ff (d +2n —2}
n=1

(4.13)

(P —1 —2L)!!X P (k n) (p~~-

nn=1 (d +2n —2)
(4.14)

The corresponding formula for odd-b terms of type I
and type III is

P +2—21

p tL!,+, 2

—[(P/2)!] p

p (2n') (P+1)'q +

even P

(4.9)

n=1

and the corresponding formula for odd-b terms of type II
1s

z "n(n!} 1 d 2

o (2n+1)! 2 dz iz—
ln —++I—z /4

2l

&1—z'/4

Thus, substituting (4.10) into (4.9) gives

(4.10)

pPpPv f ~ dz d 2

p o 4 d

ln —.++1—z /4
2l

&1—z'/4

If we set d =2 in (3.62) we obtain the first two terms in
this sum corresponding to the special cases P =2 and
P =4.

Of course, each term in (4.9) gives an integral that is in-
frared divergent. However, if we perform the sum over P
first, we obtain a convergent integral. Taking P =2n and
z =

~p ~ /~q~ we have the identity

P +2—2l r —L (p 1 2L)1Irrk- „„,,1=1 (d+2 —2)
n =1

(4.15)

for the a-outside terms and the result in (4.15} times
[(Pl2)—L]l(k P+L) for th—e a-inside terms.

As before, we multiply the even-b terms by the weight
N —2k —1 and the odd-b terms by the weight N —2k
and sum over k, making use of the identity in (3.22). We
sum over L using the identity in Ref. [6]. In the final re-
sult we must set d =2, differentiate with respect to N,
and set N =0. The resulting series is identical to that in
(4.9) except that the opposite sign occurs:

2
P P pt p2 2

+4eg„' . 416
(27r) p=q (P+1)!q +

even P

which can be evaluated trivially:

(4.11) Indeed, if we set d =2 in (3.61) we obtain the first two
(nonzero) terms in this series.

Summing the series in (4.16) as we did above and per-
forming the integration over q we get

e PpPv 2

p
—iZ

ln —++1—z /4
2l

Vl —z'/4

2e pip
7Tp

(4.12)

This answer agrees, of course, with the correct result in
(2.5).

—e 2

gpv .
'TT

This answer agrees with the correct result in (2.5).

V. MOMENTUM-SPACE CALCULATION
OF THE PHOTON PROPAGATOR

(4.17)

B. g""terms

As we have seen from the special examples considered
in Sec. III, there are three sources of g" terms: the

The calculation presented in Secs. III and IV is easy in
principle but technically complicated because the struc-
ture in (3.2) contains both y matrices and derivatives.
Since the derivatives do not commute with A (x) and the
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y Inatrices are also noncommuting objects, the calcula-
tion required to find the photon propagator determined
by (3.2) as a function of 1V is rather complicated.

The coInbinatorics for this problem can be simplified
enormously if we rework this problem in momentum
space. Now the derivative operator 0„ is replaced by the
commuting object p„. We describe the calculation in this
section.

We begin by rewriting the interaction term in (3.2) in
momentum space. We substitute

for the Fermi field,

d k
A (x)= f d A (k)e'"",

(2n )

d "I
A(x)= f g(l)e'",

(2n )

for the two photon fields, and

d s
g(x) =f ~ p(s)e

(2n. )

(5. lb)

(5.1c)

(5.1d)

ddq
g(x) =f d

g(q)e'q"
(2~)

(5.1a)
Inserting (5.1) into (3.2) and keeping the factors of 5 and
M' in (3.1) gives an interaction term of the form

be'M'-~y. f f f " q, " ", " ', q(q+k+I)(y+I/+r)'W(I)(y+u')'W(k)y" ' " 'q(q) .
(2n. ) (2n ) (2n )

(5.2)

This interaction term is represented by the four-point
vertex shown in Fig. 3. The amplitude for this vertex fac-
tor is
—5e M' (4(+k'+f)'yP(g+g)"y'g ' . (5.3)

To construct the photon propagator Ilp'(p) we connect
the two fermion legs on the vertex in Fig. 3 together to
make the graph shown in Fig. 4. Recall that the ampli-
tude for the fermion propagator is I/M. Thus, the
order-5 contribution to the photon propagator Ilp"(p) is

2 dd
IIP"(p)=5M' g f d Try (gP+P) y "g

M. ,
(5.4)

To obtain (5.4} we set q +k + I =q and integrate over q.
There are two ways to construct such a graph, one for

I

which k = —l =p and another for which —k =I =p; let
us now consider just the first. The closed fermion loop is
associated with a negative trace. Under the trace sign a
structure such as

Trg 'yP(g+P) y "g

simplifies to

yp(y+p )by vy N —b —2

Note that the total number of y matrices must be even or
else the trace vanishes. Thus, N is even as we concluded
at the beginning of Sec. III and we write X=2n. There
are now two cases to consider: b even (b =2k) and b odd
(b =2k+1).

Even b. When N=2n and b =2k the expression in
(5.4) collapses immediately:

2 n —1N —2k —2 dd
pv ( ) gM1 Ny —y f 'q

( + )2& 2n —2& —2T ( py~)
M k=o .=, (2~)d

e'g"'2 ' g (q+p)'"q'" '" '(2n —2k —1) .
dd

I =o (2n. )
(5.5)

Next we sum over k using the identities

l

Note that each sum in (5.6) vanishes at N =2n =0 and
that

and

n —1

k=0

1 —x"
k

1 —x
(5.6a)

and

n —1

~& k=O

1 lnxx
2 1 —x

(5.7a)

n —1

k=0
[1 (+—n 1)x" nx" '] . —

(1—x}
(5.6b)

n —1

g kx"
BN k o N=O

1 x 1
lnx — . (5.7b)

2 (1—«) 2(1 —x}

q+k+1
lf

q

Thus, after differentiating with respect to N and setting
N =0, we have

FIG. 3. The four-point vertex represented by the interaction

term in (5.2).

P P

FIG. 4. The graph constructed from the vertex in Fig. 3
representing the photon propagator.
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d 2 2 2 d
II",„,„( )= 5—""2dnf dq q+q+p

1
q+p +5 "2tf dq 1

(2') [q (—q +p) ] q (2') q (—q +p)
Hence, as we saw in Secs. III and IV, the even-b case only produces terms proportional to g" .

Odd b. Substituting N =2n and b =2k + 1 into (5.4) gives

n —1 2n —2k —3 yd
IPdd(p)=e 5M g g f d (q+p) "q " " "Try(g+gf)y'g .

k=u .=O

Evaluating the trace and summing over a gives

IPdd(p)=e 2 5M g (2n 2k——2)f (q+p) "q " " [(q"+p")q'+q"(q'+p ) g""(—q +q p)] .G

k=o (2m )

Finally, we sum on k, compute t)lt)N, and set N =2n =0:
d 2

IP'(p)=5e 2
d q 1

1
(p+q) + 1

d
q

2
p +q

2 2
q

2
q

2
q

2
p +q

2

T

x (p +q)"q + q "(p +q)" g""(q —+q p)

(5.8)

(5.9)

(5.10)

Combination of odd-b and even bterm-s. We combine IP,„",„(p) in (5.8) and IP&d(p) in (5.10) to obtain II" (p):

d q ln[(q+ ) Iq )II" (p) =5e'2'"f, ; » [ ,'g~"p'+(-p+q)~q "+q~(p+q) ](2n) [q —(q+p) ]

22d/2 f d "q (p +q)"q "+ q "(p +q)" g""q p-
q'[q' (p +q)']— (5.11)

Contribution of the second graph Finally, .we must add
to the result in (5.11) the contribution from the second
graph of the form in Fig. 4 coming from the vertex in
Fig. 3. The amplitude for this graph is obtained simply
from that in (5.11) by replacing p with —p and inter-
changing p with v. If we make a shift of the integration
variable of the form q ~q+p in the new amplitude and
add it to (5.11) we obtain the result in (2.2) multiplied by
5, which is easily evaluated to give the result (2.5).
Again, we have successfully evaluated the photon propa-
gator and the anomaly.
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