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Spinless Salpeter equation as a simple matrix eigenvalue problem
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We propose a new method for solving the spinless Salpeter equation. Choosing a special set of ortho-
normal basis functions we are able to calculate analytically the integral over the corresponding kernel as
well as the matrix elements of a class of potentials. In this way the problem can be reduced to the solu-
tion of a simple matrix eigenvalue problem with explicitly known matrices, which can be solved very fast
numerically. The method is demonstrated in detail for S waves using a typical interquark potential as an
example.

PACS number(s}: 11.10.st, 03.65.6e, 12.40.Qq

I. INTRODUCTION

The spinless Salpeter equation represents a standard
approximation to the Bethe-Salpeter equation [1]. Upon
elimination of any dependence on timelike variables in a
suitable manner, the Bethe-Salpeter equation reduces to
the Salpeter equation [2]. Neglecting, furthermore, any
reference to the spin degrees of freedom and restricting to
positive-energy solutions, one arrives at the spinless Sal-
peter equation, which is well suited for the description of
bound states consisting of scalar bosons as well as of the
spin-averaged spectra of bound states consisting of fer-
mionic constituents.

Unfortunately, all previous attempts to obtain the en-
ergy eigenvalues and corresponding wave functions of
bound states from the spinless Salpeter equation rely very
heavily on numerical methods [3]. Here we would like to
present a technique for solving the spinless Salpeter equa-
tion which aims at the derivation of, to the utmost extent,
analytical results, i.e., which tries to avoid sticking to nu-
merical computations at a too early stage. The basic idea
of the proposed procedure consists of two main steps.

(1) The solutions of the spialess Salpeter equation are
approximated by a truncated expansion in terms of a
complete set of orthonormal basis functions.

(2) These basis functions are chosen in such a way that
the integral over the kernel representing the kinetic ener-
gy as well as the matrix elements of the interaction poten-
tial entering in the spinless Salpeter equation can be, at
least in principle, evaluated analytically.

The outcome of this procedure is the formulation of
the spinless Salpeter equation as a simple matrix eigenval-
ue problem with explicitly known matrices. The solution
of this matrix equation should then pose no unusual
problems.

This paper is organized as follows. Section II recalls
the conversion of the spinless Salpeter equation into an
equivalent integral equation [4]. Section III sketches the
general procedure for treating the spinless Salpeter equa-
tion analytically. In Sec. IV, we discuss, for the sake of

simplicity, only the case of states with vanishing angular
momentum, whereas in Sec. V we apply our technique to
the simplest potential capable to describe the strong in-
teractions between quarks. Section VI concludes with a
brief summary of the proposed method. A collection of
relations needed in the previous derivations is given in
the Appendix.

II. THE SPINLESS SALPETER EQUATION

(2)

where 'Pt (8,$) are the spherical harmonics of angular
momentum l and projection m. For this reduced radial
wave function u(r), an integral representation of the
spinless Salpeter equation (1) may be found [4]:

[M —V(r)]u (r)
oo

dr'Gt(mr, mr' )
7T 0

d l(l +1) 2
(

dp
(3)

The spinless Salpeter equation may be regarded as the
Schrodinger equation generalized to relativistic kinemat-
ics. For the case of two particles with equal masses m in-
teracting via a spherically symmetric potential V(r),
r =—~x~, x denoting their relative coordinate, the
configuration-space representation of the spinless Sal-
peter equation in the center-of-momentum system of the
two particles reads

[2+—6+m + V(r) ]tt (x)=M/(x) .

In the center-of-momentum system the energy eigenvalue
entering the spinless Salpeter equation is nothing else but
the mass M of the bound state.

For states of definite orbital angular momentum l, we
define the reduced radial wave function u (r) by
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where the kernel G& is defined by
I

G, (x,y) =2'z'+' — —[(s z—)'i Ki(&s —z )
Z BZ Z

This (scaled) form of the spinless Salpeter equation is the
starting point for our considerations.

III. STRATEGY FOR SOLUTION

d l(l +1)
dy 3'

(5)

In the free case, i.e., V(r)—:0, as well as for potentials
which are less singular than the Coulomb potential, i.e.,
V(r) ~ 1/r" with g(1, the reduced radial wave function
u ( r ) behaves for small r, r —+0, asymptotically like
u (r) ~ r'+'. Accordingly, we make the ansatz

u(x)=x'+'w(x) .

Because of the identity

(6)

—(s+z)' K, (&s+z )], (4)

with s—:x +y, z—:2xy. Here I(:I is the modified Bessel
function of the second kind of order I [5].

Since we only consider the equal-Inass case, we may
eliminate on the right-hand side of Eq. (3) any depen-
dence on the constituent mass rn by rescaling the radial
variable r like x =mr. Defining the scaled radial wave
function u (x):= u (x/m) =u (r) as well as the dimension-
less bound-state mass M:=M /m and potential
V(x):=V(x/m)/m = V(r)/m, the spinless Salpeter
equation (3) becomes

[M —V(x ) ]u (x ) =—f dy G, (x,y)
1T 0

F„=f dx f„(x)F(x) .
0

(10)

The main point of the present discussion is our rather so-
phisticated choice of the basis functions f„which, at
least in principle, allows for a thorough analytical treat-
ment of the spinless Salpeter equation (1):

f„(x):=&2e 'L„(2x),

where L„(x)are the Laguerre polynomials [5]

n

L„(x)=g
k=0

1)k n

k (12)

It is easy to convince oneself that the functions [f„(x)]
in (11) indeed form an orthonormal set, i.e.,

In order to solve Eq. (8), we expand any function F(x)
we encounter into a complete orthonormal system
[f„(x),n =0, 1,2, . . . ] of basis functions for L2(R ):

N

F(x)= g F„f„(x).
n=0

For finite X, the above expansion is, of course, only an
approximation to the exact function F(x). Because of
the assumed orthonormality of the basis functions

[f„(x)] the coefficients F„ in the above expansion may be
found from

d 1(l +1)+ x w x
dX X

f "dxf„(x)f„(x)=S„k.
0

(13)

r

d 2(l+1) d
( ) (7)

dX 2

In the above spirit, the solution w (x) of the spinless Sal-
peter equation (8) is approxilnated by a linear combina-
tion of the basis functions (11):

Eq. (5) is equivalent to
N

w(x)= g A.„f„(x)
n=0

(14)

[M —V(x)]x'+'w(x)= —f dy G&(x,y)y'+'
7T 0

with real coefficients k„.
Noting that

d2
X 1— 2(l + 1) d n

+ $
0 (15)

Xw(y) . (8) and introducing the shorthand notation

D(&;n, k)=2&2 2" (k+I+1) k +(k+21+2) k
( 1)k Pl n

k!
the action of the differential operator in (8) on our basis functions f„ is given by

(16)

d
X 1—

dX

2(l +1) d
X dX k=0

(17)

Accordingly. we expect to encounter in the kinetic term of the spinless Salpeter equation (8) integrals of the type

Ik"(x):—f dy G&(x,y )y
'+ "e

0
(18)
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Expanding these integrals in terms of our basis functions f„,Eq. (11),
N

Ik"(x)=: g c (1;k, m)f (x),
m=0

c(l;k, m}=J dx f (x)Ik"(x),
0

the right-hand side of Eq. (8) becomes

(19)

—f dy G& (x,y)y
'+ ' 1—

77 0 dy

2(1 +1) d 2
w(y) =—g A,„f dy G&(x,y)y 1—

y dy m„o" o dp

2(l +1) d

N n

g A,„g D(1;n, k) f dy G&(x,y)y'+"e
n =0 k=0

N

g A,„g D(l;n, k)I„'"(x)
n=0 k=0

g A,„gD(l;n, k) g c(l;k, m}f (x) . (20)
n=0 k=0 m=0

Consequently, the kinetic term in the spinless Salpeter
equation (8) may be represented by the operation of a "ki-
netic matrix" E„'" acting on the vector of basis functions

may be cast into the form

N

[M —V(x}]x'+'w(x}=g A,„[M—V(x}]x'+'f„(x}
n=0

d2—f dy G& (x,y)y
'+ ' 1—

77 0

2(l +1) d
w y n=0 m=0

N N

g (MP„'" —V„'" )f (x) .

N N=:g A,„g E„'„"f (x), (21)
n=0 m=0

where the kinetic matrix E„'" is given by

E„'"=—g D(1;n, k)c(l;k, m) .
k=0

(22)

Similarly, in order to handle the left-hand side of Eq.
(8), we define a "power matrix" P„'" and a "potential ma-
trix" V„'" by

(26)

Summarizing, with (26) and (21), the spinless Salpeter
equation (8}reads

N
A,„(MP„'" E„'"—V„'" —)f (x)=0 .

n, m =0
(27}

From this, one may obtain an eigenvalue equation for the
coefficient vector A, :—IA,„] in the expansion (14) of the
solutions w(x). In self-explanatory matrix notation, this
eigenvalue equation is given by

and

Nx'+'f (x)= g P'"f (x)
m=0

P'" =f "dxx'+'f (x)f (x)=P'"

N
V(x)x'+'f„(x)=: g V„'"f (x),

m=0

V'" =f dx x'+'V(x)f (x)f (x)= V'"

(23)

(24)

MA, =(P'") '[(E'") + V'"P, . (28)

u, (r)=(mr)'+' g A, '„'f„(mr) .
n=o

In this way, the solution of the spinless Salpeter equation
(1) can be reduced to a siinple matrix eigenvalue problem.
The eigenvalues of this equation are the masses M; of the
bound state under consideration. The corresponding
eigenvectors A, '„' give the radial wave functions u;(r):

n m n m
P(l) — y y ( 1)P+q

2 poqo .P . . q

(p +q +1+ I )!

p fq t
(25)

With the above definitions, the left-hand side of Eq. (8)

With the help of expansion (12) of the Laguerre polyno-
mials, we may immediately give an explicit expression for
the power matrix P„':

For N =00 in the expansion (9) the above treatment
would be exact. For N & ao it provides an approximation
to the exact solution of increasing accuracy with increas-
ing 1V, that is, with increasing size of the involved ma-
trices.

IV. S%'AVES

We illustrate the prescription given in the preceding
section for the case of bound states with vanishing angu-
lar momentum, so-called S waves. In order to deal with
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the eigenvalue equation (28), we need the explicit expres-
sions of the kinetic matrix (22) and of the inverse of the
power matrix (23).

A. The kinetic matrix

For a vanishing angular momentum I of the bound-
state constituents, l =0, the spinless Salpeter equation (8)
reduces to

[M —V(x) ]xw (x)

Iki&] k +1
Ip (x):2k

where

pXg( —1)~
q=0

k —q+I
X I(.q (x), (32)

2k —2q+1!!

2 6
dy Go(x,y)y 1 — —— w (y) (30)

0

with the kernel

k
for k even,

k
2, k —1

for k odd,
2

(33)

Go(x,y) = [Eo( ~x
—

y~ ) —Eo(x +y) ] . (31)
and

(2n +1)!!=1X3X X(2n —1)X(2n +1) . (34)

For this kernel one finds, for the integrals I(', '(x) in (18)
with the help of the formulas given in the Appendix,

Projecting out the coefficients c(0;k, m) according to the
second of Eqs. (19), one obtains

[k/2] p m k +1
c(0;k,m)=2&2k! g g g (

—1)q+"
2

p=O q=pr=o

P m 2"(r +1)(2k —2q +r +1)!
q r (2k —2q +1)!!(2k—2q +2r +3)!! (35)

Multiplying according to (22) these expansion coefficients by

D(0 n, k)—:2+2 2" (k+1) k +(k+2) k+1
1)k n n

k!

resulting from (16), yields, for the first few entries in the kinetic matrix F.„'
' for the case I =0,

(36)

E„(p) 2 8
m (2n+2m+3)!!

1 —3 —5 —21
—1 81 —375 —1029
—1 —225 13 125 —77 175
—3 —441 —55125 3565485

(37)

(Note the range of the indices n and m:
n, m =0, 1, . . . , N. )

B. The power matrix

For I =0 the power matrix (23) explicitly reads

2P„"':— "dx xe "I.„xI. x
0

2n +1 for m =n,
—m for m =n+1,
—n for m=n —1,
0 else

N

for n =0, 1, . . . , N,
k=n

( p(0) )
—)

(
p(0) )

—1
( p(0) )

—1
(39)

for n =0, 1, . . . , N, m =0, 1, . . . , n —1 .

For instance, for N =3 this inverse reads

I

The inverse of this matrix, required for the eigenvalue
equation (28), depends explicitly on the size N of the in-

volved matrices and is given by

1 —1 0
—1 3 —2

0 0 ~ ~

0 ~ ~

0 —2 5 —3

0 0 —3 7

(38)

25 13 7 3

13 13 7 3

6 7 7 7 3

3 3 3 3

(40)
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V. A PROTOTYPE POTENTIAL

Let us apply the previously developed ideas to hadrons,
considered as bound states of (constituent) quarks which
are bound by the strong interaction.

We have at our disposal a generally accepted quantum
field theory of the strong interaction, namely, quantum
chromodynamics (QCD), a non-Abelian gauge theory for
quarks and gluons. Nevertheless, because of the intrinsi-
cally nonperturbative nature of the bound-state problem,
in non-Abelian gauge theories it is up to now not possible
to derive the forces acting between the quarks inside a
hadron from first principles; that is, QCD. Consequently,
the corresponding interquark potential has to be deter-
mined phenomenologically.

The reasoning leading to the various proposed poten-
tials V(r) is rather simple. For small distances between
the quarks, one expects from one-gluon exchange, by
analogy to one-photon exchange in quantum electro-
dynamics, a Coulomb-like contribution to the potential;
that is, V(r) o- 1 lr. For large distances, in order to be
able to describe confinement, the potential has to rise to
infinity. From lattice-gauge-theory computations, there
are hints that this rise is a linear one; that is, V(r) ~ r.
The most reasonable possibility to construct an inter-
quark potential which satisfies both of the above con-
straints is to simply add these two contributions. This
leads to the so-called funnel potential [6—8]:

P„"„'+i= n(n—+2)—1 for n =0, 1, . . . , N —1,
7

P(, ) n (n +3)+2
for n =0, 1, . . . , N —2,

7 4

P„'"=0 else .

Explicitly, the first entries of P'" read

(46)

1(i)
2

1 —2 1 0 0 I ~

—2 7 —8 3 ~ ~ ~

1 —8 19 —18

3 —18 37
(47)

ShufHing together the results of Sec. IV for the kinetic
matrix E' ' and for the inverse of the power matrix P' '

as well as of this section for the potential matrix of the
funnel potential, which, as already mentioned, serves only
for illustrative purposes, one ends up with a well-defined
matrix eigenvalue equation, which represents the (l =0)
special case of the general matrix form (28) of the spinless
Salpeter equation (1).

The suminations in (25) may be performed, giving for the
(l = 1}power matrix P„'" the result

(i) 3n (n +1)+1
nn for pl 0) 1 y ~ ~ ~ p g

K
V (r)= ——+ar,p (41)

VI. SUMMARY

a
Vz(x) = ——+ x,

Pk
(42)

which entails for the corresponding potential matrix Vz",
Eq. (24},

V( l) p(l —1)+ p( l + 1)

m
(43)

In particular, specializing again to the case l =0, the ma-
trix elements of the funnel potential, taken with respect
to S-wave states, are given by

which depends on just two parameters, viz. , on the
Coulomb coupling constant ~ and on the slope a of the
linear term. This funnel-shaped potential represents the
prototype of all of the proposed realistic interquark po-
tentials. A closer inspection reveals that all phenomeno-
logically acceptable "QCD-inspired" potentials are only
variations around the funnel potential [9].

From (41), according to the definition given in Sec. II,
the scaled funnel potential Vz(x) reads

In this work we demonstrated how, by a suitable
choice of basis in the vector space of wave functions, the
spinless Salpeter equation may be converted to an eigen-
value equation for an analytically known matrix, which
only depends on the interaction potential responsible for
the dynamics of the bound state. The action of the
difFerential operator in the kinetic term of the Salpeter
equation on the basis functions is represented by a "kinet-
ic matrix" which can be determined exactly. Since this
matrix has to be calculated only once, the complexity of
the required expressions, such as, for instance, Eqs. (35)
and (36), is no drawback. We gave this matrix explicitly
for S-wave states, i.e., l =0. For the case of l %0, see Ref.
[10].

As an application of the developed formalism, we con-
sidered, for simplicity, only the most naive realistic inter-
quark potential; that is, the funnel potential. From the
structure of the involved integrals, however, it is evident
that the method works analytically, at least for all poten-
tials of the type "power times exponential, " i.e., for all
potentials of the form

)+
m

(44)
V(r) =g a„r"e (48)

V"'= —~+ ' P(')
m

(45)

Since P' " is identical to the integral on the left-hand
side of the normalization condition (13) for the basis
functions [f„(x)],we have P' "=1:

with an, b„constants. Examples for the above are the
funnel potential discussed in Sec. V as well as its exp( r)—
improved versions [11,12].

In the literature there can be found some other
methods proposed for the conversion of the spinless Sal-
peter equation into an equivalent matrix equation by con-
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n,

3.3923
3.3924
3.7345

3.9022

4.1469
4.1481

4.3229
4.2925
4.5449
4.4972
4.4963

TABLE I. Energy eigenvalues (in units of GeV) of the states
with radial quantum number n, =1,2, 3 and orbital angular
momentum 1=0,1 for the funnel potential VF(r)= —a/r+ar
with parameters m, =1.45 GeV, ~=0.25, and a =0.18 GeV .
The "exact" values, taken from Table IV of Ref. [4] or Table I
of Ref. [14],are given in italics. N+ 1 denotes the minimal ma-

trix size required to reproduce these numbers by the "analyti-
cal" method of the present paper.

monium (cc ) system: m, = 1.45 GeV, )c=0.25, and
a =0.18 GeV [4,14]. The resulting energy eigenvalues
of the states with radial quantum number n, =1,2, 3 and
orbital angular momentum 1=0,1 are given in Table I.
Comparing these numbers with the "exact" values taken
from Table IV of Ref. [4] or Table I of Ref. [14], we find

that, as far as the matrix size necessary to achieve a given
precision of the eigenvalues is concerned, our method is
slightly superior to the admittedly already very fast
method of orthogonal collocation developed in [14]. The
reason for this is, of course, that in our approach the
analytical expressions of the encountered integrals are at
one s disposal, which is the main difference with all previ-
ously developed methods for solving relativistic wave
equations, such as, e.g. , the spinless Salpeter equation.

APPENDIX: NECESSARY FORMULAS

structing a (at least approximate) matrix representation
of the nonlocal differential operator +—t)), +m originat-
ing from the relativistic kinetic energy. Reference [13]
uses a method similar to the one presented in this work,
but with a different choice of the set of basis functions,
namely, one which involves the generalized Laguerre po-
lynomials. The kinetic term is treated in momentum
space, where the basis functions involving generalized
Laguerre polynomials become functions involving Jacobi
polynomials of a somewhat complicated argument, and
no attempt of an analytical computation of the encoun-
tered integral is made. Reference [14] uses a method
which is closely related to the method of orthogonal col-
location. The action of the square —5+m of the
kinetic-energy differential operator on a set of orthogonal
basis functions at some points in coordinate space,
chosen in order to optimize the convergence of the nu-
merical procedure, is determined exactly. The square
root of the resulting matrix is then assumed to be an ap-
proximate matrix representation of the above square-root
differential operator. For the explicit tests of the accura-
cy of this method, the same type of basis functions as in
Ref. [13] is chosen.

The final question about the method proposed in this
paper is the one about its rate of convergence with in-
creasing size 1V of the involved matrices. In order to get
an idea of this, we solve the spinless Salpeter equation
(28) for the prototype interquark potential motivated in
Sec V, the .funnel potential Vz(r)= )r/r+ar. We-
adopt a standard set of values for the quark mass and po-
tential parameters which is characteristic for the char-

In this appendix we collect without any further com-
ment all the formulas needed in Sec. IV at some inter-
mediate steps for the computation of the kinetic matrix
E„'o), Eq. (37), from the general expression (22). (For
more details, see Ref. [10].)

Computation of the integral I& '(x) in (32) from Eqs.
(18) and (31).

Ko(x)= f "dt ' ', x &0,1+t'
00 k —x ~ k1

0
dx x e slnxt

2 (k+I)/2(1+t )

X sin[(k + 1)arctant],

sin[(k + 1)arctant]

(Al)

(A2)

[k/2] k + 1

(1+t ) ~=o
2 (k+))/2 + 2 +1

t I'+'sinxt

q=0 J

k —q+1

(2k —2q + 1)!!Kk x

(A4)

Extraction of the expansion coefficients c(0;k, m) in (35)
from the result (32) for the integral Ik '(x):

f (n +m)!(n —m)!
(2n + 1)!!

m (n +1 . (A5)
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