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We discuss the implementation of the dressed skeleton expansion (DSE) and analyze various features
of this perturbative calculational method in simple field-theory models in 1+1 dimensions. In particu-
lar, we investigate issues concerning loop skeleton diagrams, renormalization in the massive case, and
the usage of the DSE for vertices involving matrix strucures.
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I. INTRODUCTION

In a previous paper [1],we pointed out that the dressed
skeleton expansion (DSE) ofFers a calculational method in
perturbative quantum field theories without the scale-
ambiguity problem. In particular, we illustrated the
usage of the method for P theory in six dimensions. The
basic motivation in choosing this theory resides in its
resemblance to quantum chromodynamics (QCD) in the
aspects of both being renormalizable theories and
presenting asymptotic freedom. However, the high
dimensionality of the theory hampered the discussion of
higher-order skeleton graphs.

In this paper we study the application of the DSE to
field-theory models in 1+1 dimensions. Our purpose is
to analyze and discuss the various features and technical
details for the implementation of the DSE method by us-
ing simple models as the testing ground. It is not our
goal to obtain new results in these simple field-theory
models, for there exists abundant literature on the subject
[2,3].

This paper is organized in the following sections: In
Sec. II, we discuss the general scale-setting problem in
quantum field theories, and present the DSE as a scale-
ambiguity-free calculational method. In Sec. III we give
an overview of the general skeleton expansion. In Sec. IV
we describe the details of the DSE. We also point out
there its relationship with the Brodsky-Lepage-
Mackenzie (BLM) [4] scale-setting method in QED. In
Sec. V we apply the DSE method to the massless Gross-
Neveu model in leading 1/N expansion, and show that
the DSE leads to an exact four-fermion vertex function,
regardless of whether we choose to dress up the charged
two-point function or the three-point function. In Sec.
VI we apply the DSE method to the N=2 Gross-Neveu
model without the 1/N expansion. Here we offer an ex-
plicit example of a nontrivial loop skeleton diagram,
showing that it indeed can be done and yields a finite re-
sult, despite the singularity of the coupling vertex at the
Landau pole. We give an argument for the insensitivity
of loop skeleton diagrams to the infrared behavior of ver-
tex functions. In Sec. VII we apply the DSE method to
the super-renormalizable massive Yukawa model in 1+1
dimensions. This is an example where the vertex func-
tion has a nontrivial matrix structure, and special atten-

tion is required to select a coupling function that ensures
the continuity of the off-shell to on-shell transition. Also,
in this example, we show how to isolate the mass renor-
malization from particle propagators and absorb all re-
normalization effects of two-point functions into effective
wave-function renormalization constants. Finally, in Sec.
VIII, we make some comments and summarize the main
conclusions.

II. SCALE-SETTING PROBLEM AND
THE DRESSED SKELETON EXPANSION

Perturbative calculations in quantum field theories are
usually expressed as power series in a fixed coupling con-
stant. At high squared momentum transfer, the fixed
coupling constant must be replaced by a running cou-
pling constant. This procedure is usually referred to as
the renormalization-group-improved perturbation, which
leads to the absorption of the large logarithmic terms into
the running coupling constant. In simple words, given a
truncated series of a physical quantity expanded in
powers of a coupling constant in a given scheme,

R„=a'(JM)[re+ r
&
(p)a(p)+ +r„(p)a"(p)],

the coupling p must be chosen appropriately for the per-
turbative series to be useful. The unknown dependence
of the truncated series on p is commonly referred to as
the coupling-scale-ambiguity problem. There is also
another source of ambiguity in the perturbative expan-
sion arising from the freedom in the choice of the renor-
malization scheme. However, we have argued in our pre-
vious paper [1] that the scale ambiguity is a more funda-
mental problem than the corresponding scheme ambigui-
ty in the sense that, if one is able to solve the general
scale-setting problem, then there is no ambiguity in how
to implement different schemes.

Several methods have been proposed to solve the
coupling-scale ambiguity. Among them we shall mention
the following.

(1) Fastest apparent convergence (FAC) [5,6]. The idea
behind FAC is that one should choose the coupling scale
that makes the series look like most convergent. Fre-
quently it is defined as the condition of a vanishing
second-order term (i.e., next to tree level) coefficient. A
related topic is the "effective charge" [5] or the
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"renormalization-scheme-invariant" (RSI) [7] method,
where one effectively requires all higher-order coeScients
to be zero.

(2) Principle of minimal sensitivity (PMS) [6]. We shall
define it here as the choice of the coupling scale at the
stationary point of the truncated series:

dR

dp (c

(2)

The PMS method also aims toward the choice of a renor-
malization scheme, and beyond two-loop order this
method requires the variation of scheme parameters in
addition to the coupling scale.

(3) Brodsky-Lepage-MacKenzie [4]. This method is in-
spired from QED. The philosophy is to absorb all fer-
mionic vacuum-polarization effects into the running cou-
pling constant. In one-loop-order massless QCD it is
operationally equivalent to the condition of a vanishing
coefficient of the nf (number of light fermions) term.
Therefore, the BLM results are formally invariant under
the change of number of light favors:

BR
(a(p), nf ) =0 .

Bnf
(3)

The usual impression is that, as long as the coupling
scale p is chosen near the typical scale Q of a given pro-
cess, the perturbation series would give a reasonable re-
sult. We should notice, however, that, due to dimension-
al transmutation (i.e., the presence of AQCD), the correct
scale in some cases might not be proportional to Q but
rather to some other power of it, or even in a more com-
plicated way. So the naive form of assigning a coupling
scale to typical physical scales runs the danger of being
too simplistic. Also, for processes involving many scales,
in general, it is not clear how a "typical scale" can be
defined.

For multiscale processes, the conventional way of as-
signing a uniform coupling throughout all vertices be-
comes questionable. Consider, for instance, the exclusive
process e e ~p+p y (Fig. 1). In QED the vertices a
and b should have a coupling strength -a'~ (Q )

whereas the vertex involving the radiated photon should
have a strength -a' (0)=1/&137.

This observation and the existing controversy on the
various scale-setting procedures prompt us to explore the
dressed skeleton expansion instead of the conventional
power-series expansion. The ingredients of a skeleton-
type calculation are the following: (1) The basic vertex
functions are calculated by using renormalization-group
equations [8]; (2) any other Green's function is expanded
in skeleton graphs of the basic vertices.

More details on DSE are discussed in the next two sec-
tions, but let us point out here some of its features. One
property of this calculational procedure is that it is au-
tomatically scale-ambiguity-free because there is no exo-
genous coupling constant. In fact, this automatic scale-
setting feature in QED is the basis of the BLM scale-
setting method. The DSE effectively extends BLM's
method in QED to other field theories. Let us stress here
that, unlike conventional perturbative methods, DSE is

FIG. l. A typical QED process, where the coupling strength
at vertices a and b is expected to be stronger than the coupling
strength at c.

not a power-series expansion in a coupling constant: it is
a functional expansion in term of a dressed vertex func-
tion. In DSE there are no coupling constants. In gen-
eral, the results in DSE calculations are expressed direct-
ly in terms of functions that involve a scale analogous to
AQcD. This should not come as a surprise. In fact, the
concept of a coupling constant is also lost in conventional
perturbation theory with the scale-fixing procedure.
After scale fixing, the results in perturbative QCD are
directly expressed in term of AQCD In this sense, the
coupling constant merely serves as an intermediate device
and is discarded after scale fixing. Another argument in
favor of the dressed skeleton expansion is that many of
the renormalon-type contributions [9,10] are automatical-
ly resummed into the full propagators and vertex func-
tions; therefore, there is good reason to expect higher-
order skeleton results to have better convergence proper-
ties than the conventional power-series expansion.

III. WHAT ARE SKELETQNSY

The skeleton expansion is a particular way of organiz-
ing Feynman diagrams that are equivalent up to self-

energy and vertex insertions. The original idea of the
skeleton expansion can be traced back to Dyson [11] in

the late 1940s. In the development of quantum field

theories, the skeleton expansion has been a common tech-
nique in the proof of perturbative renormalizability
[12—14]. The skeleton analysis has also been studied with
the hope that some nonperturbative features can be re-
vealed by solving the set of coupled integral equations
[18]. However, the Bogoliubov-Parasiuk-Hepp-
Zimmerinann (BPHZ) [15] formalism based on
Bogoliubov's R operation [15,16] and Zimmermann's
forest formula [15,17] has proven to be much more
effective in tackling questions on perturbative renormal-
izability, and hence has become the standard approach
taken by most modern textbooks [20]. Although the
skeleton expansion was once widely known to the com-
munity, an increasing general unfamiliarity with it makes
us believe that a brief review of its basic ideas would be
helpful to the reader.

Skeleton graphs represent Feynman diagrams that
differ only by vertex and self-energy insertions. To fix the
idea, let us consider Feynman diagrams in P6 theory [21].
Take, for instance, the graph depicted in Fig. 2 (adapted
from Bjorken and Drell [13]). To obtain the skeleton

graph of this particular Feynman diagram, we draw a
box around each vertex or self-energy insertion. We ob-
serve that the boxes are either disjoint or nested, with one
exception: within self-energy insertions the boxes may
overlap. The nonoverlapping property is actually true
for all graphs: the boxes enclosing vertex and self-energy
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(a) (b) (c)

FIG. 4. (b) is a skeleton graph, whereas (a) and (c) are not
skeleton graphs.

FIG. 2. An example of Feyman diagram where we have
boxed some of the vertex and self-energy insertions.

insertions may always be drawn in such a way that they
never overlap, except for a vertex insertion within self-
energy parts (see Ref. [13]for proof).

As a consequence of this nonoverlapping property, we
may associate in a unique way with each graph 6 another
graph called the skeleton graph of G. For instance, Fig. 3
corresponds to the skeleton graph of Fig. 2.

In Fig. 4 we give some more examples to clarify the
concept of skeleton graphs. Notice that by definition
skeleton graphs are those that cannot be further reduced
by removing vertex or self-energy insertions. Thus, Fig.
4(b) is a skeleton graph, while Figs. 4(a) and 4(c) are not
skeleton graphs.

Because of the nonoverlapping property, we can gen-
erate the complete set of Feynman diagrams correspond-
ing to a particular scattering amplitude (i.e., any connect-
ed and amputated n-point Green's function with n ) 3) by
(1) first drawing all the possible skeleton graphs with n

external legs, then (2) replacing the propagators in the
skeleton graphs by full propagators and the vertices by
full vertex functions.

As an example, the two-body scattering amplitude in

P6 theory will contain the skeleton graphs shown in Fig.
5. The full propagator and full vertex graphs are shown
in Fig. 6. From the nonoverlapping property, we can
convince ourselves that all Feynman diagrams of this
scattering amplitude are effectively contained once and
only once in the skeleton expansion.

The basic idea behind the standard approach of renor-
malization by employing skeleton expansion analysis lies
in the following.

(1) Let Zos be the on-shell wave-function renormaliza-
tion constant, that is, the residue of the full propagator at
the physical mass pole. Define the renormalized propa-
gator by dividing the full propagator by Zos (see Fig. 7).

(2) Define the renormalized vertex function by multi-
plying the full vertex function by Zos (see Fig. 7).

(3) According to the Lehmann-Symanzik-Zimmermann
(LSZ) [19]reduction formula, we also multiply the overall

amplitude by Zos in order to obtain the renormalized
scattering amplitude, where n is the number of external
legs.

(4) As a consequence, renormalized scattering ampli-
tudes can be written in terms of renormalized skeleton
graphs consisting only of renormalized propagators and
renormalized vertex functions. This is shown schemati-
cally in Fig. 7 for the two-particle scattering amplitude.

It is a rather involved task to rigorously prove that
skeleton expansion indeed leads to a finite theory for all
renormalized Green's functions. We shall assume in the
following that the set of skeleton graphs to a given order
in the number of vertices yields a finite result. The proof
of this statement in QED is given by Bjorken and Drell
[13],and in Pz theory by Zinn-Justin [14].

IV. DRESSED SKELETON EXPANSION

The dressed skeleton expansion [1] is an adaptation of
the standard skeleton expansion. Two essential
modifications are introduced.

(1) Local effective wave-function renormalizations. In-
stead of a unique, on-shell wave-function renorrnalization
constant Zos, there is a diagrammatically local effective
wave-function renormalization "constant" Z(p ) per
each full propagator. The idea is to absorb all self-energy
renormalization effects into effective wave-function re-
normalization constants. More precisely, full, unrenor-
malized propagators are defined to be

.~( 2) iZ(P )

p Pl ph

(4)

+ +

where m h is the physical mass. The effective wave-
function renorrnalization constant coming from a partic-
ular full propagator is used to renorrnalize the vertices
immediately adjacent to it. That is, at each vertex, the
full, unrenormalized vertex function is to be multiplied
by

Z 1/2( 2)Z1/2( 2)Z1/2(r2)

permutations
and

higher orders

FIG. 3. Skeleton graph of Fig. 2.
FIG. 5. Skeleton expansion for the two-particle scattering

amplitude in P theory.
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- =z(p) =

+ ~ ~ ~

FIG. 8. Propagator and vertex function renormalization in
DSE.

p, q, and r being the squared momentum of the three
legs attached to the particular vertex function (see Fig. 8).

Observe that this prescription is consistent with the
LSZ prescription of multiplying Zos (the on-shell wave-
function renormalization constant) per each external leg.
Electively, for all external legs we have
Z' (p =m

h ) =Zos ,'thus, all vertices attached to
external legs are (and hence the overall amplitude, too, is)
multiplied by the correct power of Zos.

The two-body scattering amplitude in DSE to one-loop
skeleton order consists of the skeleton graphs given in
Fig. 9. Notice now that, in order to compute the skeleton
graphs in Fig. 9, we have to know only one single func-
tion: the DS (dressed skeleton) vertex function. Obvious-
ly this holds true for any n-point ( n ) 3 ) connected and
amputated Green's functions: once known the DS vertex
function, all higher-order Green's functions can be ex-
pressed as functional expansions in terms of the DS ver-
tex function, being the functional expansion graphically
represented by the DSE graphs. This is, in fact, why
DSE is scale-ambiguity-free. In DSE there is no coupling
constant and, thus, no undetermined coupling scale. In-
stead of the coupling constant we have a DS vertex func-
tion, and the (known) momenta fiowing into it are
eff'ectively replacing the role of the (unknown) coupling
scale of the conventional power-series expansion.

(2) Vertex function through a renormalization-group

ZOS

= Zos + + s ~ ~

permutations
+ + + and

higher orders

FIG. 6. Full propagator and full vertex functions in the P'
theory.

equation. The vertex function can be obtained by mul-
tivariable renormalization-group equation or other suit-
able techniques.

The multimomentum renormalization-group equation
is an intuitive generalization of the usual p-function for-
malism. If the perturbative DS vertex function
A,DS(k„k2, k3 ) in terms of the bare coupling constant is

XDS(ki, k2, k3)=Ap+Aof i(ki, k2, k3)

+Aof2(k„k2, k3 )+ (6)

where the coefficient functions f; contain both divergent
and finite parts, then we can obtain the multimomentum
renormalization-group equation by (1) taking the deriva-
tive of Eq. (6) with respect to the external momenta,

Bk/" Bkt' Bkf'
(7)

(2) formally inverting the Eq. (6) to expand Ao in power
series of XDs,

~0 ~DS ~DSf 1 ~DS(f2

and (3) replacing Eq. (8) into the right-hand side of Eq.
(7),

~DSP1( I ki I )+~DSP2( I ki l )+ (9)

When the underlying theory is renormalizable, all the
coefficient functions p;(Ik, I) of the multimomentum p
function should be finite. The DS vertex function A, Ds
can be obtained by solving this equation with the
specification of an integration constant (usually in the
guise of a quantity analogous to A&cD).

To one-loop order, however, the renormalization-

group equation is equivalent to the we11-known trick of
eliminating the bare coupling constant through the intro-
duction of an integration constant. That is, if

XDS ( [k, I ) =A.o+ A,o
—+f ( I k, I ) +0 ( A, (') ), (10)

R R R

R + R R

R R R

DS

DS

OS OS

DS OS

~ permutations

FIG. 7. Renormalized skeleton expansion in the P' theory for
the two-particle scattering amplitude.

FIG. 9. DSE graphs for the two-particle scattering amplitude
in P' theory.
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where the divergent part in the order-A, O term is taken
care of through the 1/e pole term, then formally

1 1

~Ds(Ik j) ~o
—2f(Ik; j )+O(A2o) .

This last equation is valid for any set of values of Ik, j;
therefore, we also have

1 1

~Ds(tk j) ) o

—2f ( [k j )+O(Ao2) . (12)

Taking the difference between these last two equations
and neglecting higher-order terms, we obtain

k
1

Ds[E]C2f(Ikj) (13)

where C=2f(tk j )+1/)i.Ds(tk j) is effectively an in-
tegration constant.

The exact formula for the vertex function to one-loop
order in P6 theory is somewhat complicated, but in the
small-mass limit, and when some of the legs are on shell,
the corresponding simplified expressions can be obtained
[1].

We notice that the expansion order in DSE is twofold,
we have to specify (1) the number of vertices that is used
in expanding a general scattering amplitude in term of
the DS vertex function, and (2) the number of terms that
is used to compute the renormalization-group equation
for the DS vertex function. This actually also happens in
the conventional method of perturbative calculations:
the results in perturbative QCD also contain two expan-
sion orders, one corresponding to the order of the result
itself in terms of the running coupling constant, and the
other one corresponding to the order that is used in ob-
taining the running coupling constant through the P-
function formalism. In principle, there is no requirement
in matching one order with another, but, in practice,
these two orders are often kept the same.

The case of QED. In QED, because of the Ward iden-
tity Z, =Zz, it is not necessary to perform a full skeleton
expansion in order to renormalize the charge. In fact, as
a consequence of this identity, the photon "charged prop-
agator" (photon full propagator multiplied by the
squared bare charge) (see Fig. 10)

ieo p~„
ie oh„„(p )= g„„— +

ie (p2) pppv
N v2 P~ 2 (14)

is a finite function by itself [22]. Therefore, in QED, we
have the alternative of using the dressed-photon expan-
sion instead of the dressed-vertex expansion. That is, the
renormalization-group equation is performed on the pho-

FIG. 11. Lowest-order dressed-photon diagram for the com-
putation of the muon anomalous magnetic moment.

ton two-point function [effectively the "running coupling
constant" e(p )] rather than on the fermion-photon-
fermion vertex, and all other Green's functions (including
the fermion full propagator and the fermion-photon-
fermion vertex) are to be expressed in terms of dressed-
photon diagrams.

This is essentially the basis behind BLM's [4] method
of an automatic scale-setting procedure in the case of
QED. For instance, the lowest dressed-photon graph for
the computation of the muon anomalous magnetic mo-
ment is given in Fig. 11. The result from this diagram
can be expressed as

(Qe2) e2(Qe2)
a

2~ 8~'
(15}

where Q" is the effective scale. Notice that the loop in-
tegral of this diagram is performed with the running cou-
pling constant (i.e., the photon charged propagator) in-
side the integrand; therefore, e (Q' ) effectively is the
value obtained though the mean-value theorem by pulling
the running coupling constant out of the integral. By us-
ing the running coupling constant e(p ) to one-loop or-
der and neglecting the muon loop effects, this effective
scale can be shown to be [23]

Q" =m„exp( —
—,
' } . (16)

The fermion full propagator (mass and wave-function
renormalization effects) is also to be computed with
dressed-photon diagrams. The diagrammatic expansion
is depicted in Fig. 12, but we shall not get into detailed
discussion on this subject here.

The association of charge renormalization to a two-
point function rather than a vertex function is not an ex-
clusive property of QED. As we shall see shortly, the
leading 1/N Gross-Neveu model in the auxiliary field
form also exhibits this feature.

Finally, we wish to point out a general misconception
about BLM scale-setting method. In QED to the one-
loop level, the BLM method is equivalent to the absorp-
tion of the light-fermion family number nf into the run-
ning coupling constant. From our point of view, this use-
ful coincidence is peculiar to QED, and should probably
not be regarded as the strict definition of the BLM scale-
setting method when extending to other field theories
[24].

2 2e, AIM~ = e, ~~+ + - ~ .

FIG. 10. The photon charged propagator in QED.

+ ~ ~ ~

FIG. 12. Full fermion propagator in the dressed-photon ex-
pansion.
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V. GROSS-NEVEU MODEL
IN LEADING 1/N EXPANSION

p3, C p4, d p4, d p3, c

i5'b
)DO b

gf+i E

—ir, 'b = —ig, a'b .

(18)

Let us analyze the off-shell fermion four-point function.
Although this is not a "physical" quantity in the usual
sense (because of its off-shell nature), it nevertheless pro-
vides a simple Green's function where various ideas
about scale-fixing methods can be tested. For our pur-
pose, we shall only deal with perturbative quantities and
bypass all nonperturbative effects arising from dynamical
symmetry breaking [28]. The fermion four-point func-
tion to leading order in 1/N has the structure (Fig. 14)

G(P»P2 P&,P4),„——igo[b(s )5', 5 „b(u—)5', 5, ],
(19)

where h(s ) is the full propagator of the scalar particle to
leading order in 1/N, s =(p, +p3 ) and u =(p, +p2 ) .

Notice that, for the Gross-Neveu model in the auxili-

ary scalar field context, every vertex in a given Feynman
diagram counts as a negative unit power in N, while

every scalar propagator represents a positive unit power
in N Thus, in th. e leading 1/N expansion there is no ver-
tex fermion self-energy corrections since these effects are
higher order in 1/N [26]. Thus, only the full scalar prop-
agator multiplied by the squared bare charge needs renor-
malization. In the following we shall refer to this func-
tion as the "charged scalar propagator. " That is, we can
choose to "dress up" the charged scalar propagator in-

stead of the three-point vertex function. This resembles
the case of @ED, where, due to the fact that Z, =Z2 [4],
only the charged photon propagator needs to be renor-
malized in order to renormalize the bare charge.

This section is motivated by Stevenson's analysis of the
PMS method in the Gross-Neveu model [25]. We shall
consider this model with the presence of the auxiliary
scalar field o. [3,26]. The Lagrangian density of this mod-
el is given by

X=4'(ir))%, —,'cr g—o+'—%,o, a =.1,2, . . . , N . (17)

The bare propagators and vertex functions of this theory
are depicted in Fig. 13 and are given by

—lA—0

P), 8 P2 b pq a P2, b

FIG. 14. The fermion four-point function to leading order in

1 /N. The double-dashed line represents the full scalar propaga-
tor to leading order in 1/N.

+( i )[[—igolI(p )]( i )j-
= —ig2 [1+g',11(p2)+g,'112(p 2)], (20)

where the subscript DS stands for dressed skeleton. The
vacuum-polarization correction is given by (Fig. 15)

2) (. ) (. d "k Tr[k(lt'+p)]
(2m)" k (k+ )

(21)

A straightforward calculation leads to

II(p') = —N —+1 ( —p' — )2'
1 1—=——ln4m+ y E ~

(22)

where we have used dimensional regularization in
d =2+2m. Equation (20) can be rewritten as

g2(p2)g2+g41I(p2)+g6 112(p2) (23)

and, by formally inverting this power series to expand go

2
lQpS(P ) =

Qp :::::::~

Naturally one can insist on "dressing up" the three-
point function rather than the two-point scalar function.
But, as we shall see shortly, both procedures will lead to
the same result. Let us consider now the first case. More
concretely, let us illustrate the application of the
renormalization-group equation (RGE), temporarily up
to sixth order in the bare coupling constant.

The charged scalar propagator to sixth order in go is

(Fig. 15)

igo—h(p ):—i—gDs(p )

=go( —i)+( i )[ig—oII(p )]( i )—

c i + cp

b a ~ ~aa o- iDpo
P P' + ia

2
Qp

~- ——W +

+ 0 ~ ~

a . &ac l @gal
c lgp Sb

FIG. 13. Bare propagators and coupling vertex of the mass-

less Gross-Neveu model.

iQ II(P)
k+p

FIG. 15. The charged scalar propagator and the vacuum-

polarization diagrams in Gross-Neveu model to leading order in

1/N.
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inpowerseriesofgDs(p ),

g =g (p ) —g II(p )+g (p )II (p )+O(g ) .

Q4)

-ig {p )
z'" (p')

p2

Now let us obtain the RGE for gDs(p ). The first step is
to differentiate Eq. (23) with respect to the scale variable
x = ln( —p —ie). Noting that, from Eq. (22),

FIG. 16. Dressed three-point function in Gross-Neveu model
to leading order in 1/N.

dH
dx 2p'

(25)
constant (Fig. 16). Let us designate the renormalized
three-point function by gDs(p ):

we obtain

2dg DS 4 N=go ——. +2goll(p )—
dX 2l

(26)

ign—s(p )= ig—oZ' (p ) .

But this would imply

gDS(p )=goZ(p )=gDS(p ) .

(31)

(32)

+2gDs(p')11{p') ] (27)

To order gDs, this equation is simply

2
dgDs N 4 8gDS+ (gDS) (28)

Notice that the order-six coefficient has all but vanished.
This is a general result for this model: no matter how
many terms we start with, all higher-order terms in the
RGE (28) will vanish. (This result would be obvious if we
had applied the RGE to g Ds instead of g Ds, but here we
have chosen to present the RGE for g Ds in order to indi-
cate the procedure for a general field theory. ) In other
words, we always obtain the exact infinite-order solution:

The next steP is to rePlace go by gDs by means of the Eq.
(24). After this substitution we obtain a finite RGE for
gDs(p'):

2

(p ) g {p )11(p )+''']

Thus, dressing up the three-point vertex amounts exactly
to dressing up the charged scalar two-point function.

The result for the fermion four-point function is ob-
tained by replacing the b, function in the Eq. (19) by us-

ing

2'
g05($) gDs($)

N ln( —$/AoN —ie)
(33)

I I~R+exact
1.0

R (3)

As shown in Refs. [3) and [25], this is also the exact
answer. That is, for the leading 1/N massless Gross-
Neveu (GN) model, the exact answer is equivalent to the
DSE. This should be contrasted with conventional per-
turbative expansion, where the results are not exact even
after applying standard scale-setting methods. In Fig. 17
we plot the symmetrized and the antisymmetrized four-

2 2 = 2'
gDs{p

N ln( —p /AoN is)— Q9)
~R exact

WR (e)

independent of the number of terms we have included in
the original equation for the charged scalar propagator
[Eq. (20)]. This is true even if we have only included the
lowest loop correction.

Naturally, we could have chosen to dress up the three-
point vertex function rather than the two-point scalar
function. But we can see that, in this particular model,
these two approaches are completely equivalent. More
specifically, to dress up the vertex function we need to ob-
tain first the effective wave-function renormalization con-
stant of the scalar propagator:

ib{p )= i+( i—)[igoII—(p—)]( i)+. . .—

CO

0 0
II

1.0

0.5

0.0
10—2

R+exact

I

10—1
I

100
ll S

102

—= ( i )Z(p ) . — (30)

Noting that there are no fermion self-energy nor vertex
corrections, to renormalize the three-point function we
simply multiply the bare vertex function by the square
root of the effective scalar wave-function renormalization

FIG. 17. Symmetrized (R+ ) and antisymmetrized (R ) fer-
mion four-point functions to leading order in 1/N in Gross-
Neveu model. The dashed lines represent the exact results. The
solid lines are the results obtained by applying the PMS optimi-
zation method. (a) and (b) correspond, respectively, to the
second- and third-order approximant.
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point function [27] for spacelike s and u (s &0, u &0),
where the scale has been fixed by applying second-
(without scheme variation) and third- (with scheme varia-
tion) order PMS scale-scheme setting methods. Follow-
ing the convention given in Ref. [25], these functions are
defined by

should perform the RGE on the three-point vertex func-
tion. We shall carry out our calculation within the con-
text of dimensional regularization, with d=2+2e To
one-loop order, the fermion self-energy correction
remains zero (see Fig. 18):

R+(s, u)= [h(s)+b(u)],g
2m-

2goN
R (s, u)= [b,(s)—h(u)],~ln u/s

(34)

(35)

Zf (p ) = I+ O(go ) . (36)

Hence, there is no fermion wave-function renormaliza-
tion to this order:

and are to be calculated in power series of a running cou-
pling constant g(u ). We do notice from the figure that
the third-order approximant improves remarkably over
the second-order approximant. This is especially true for
the R component, which is practically indistinguishable
from the exact result in the range plotted. However,
these approximants would start to differ from the exact
result at higher values of u/s. The conventional scale-
setting methods do not give the exact result in this simple
model because they assign a single coupling scale to both
skeleton graphs. In fact, had the conventional scale-
setting procedures (FAC, PMS) been applied to the two
skeleton graphs individually, they would have given the
exact result, too.

What is the moral of the story? The moral of this exer-
cise is that different skeleton diagrams possess individual
renormalization properties, and that by separating
different skeleton graphs, at least in this case, one obtains
a more exact answer.

VI. N=2 GROSS-NKVEU MODEL

In the following we shall consider the %=2 Gross-
Neveu model without the 1/N expansion (this is
effectively a two-fiavor Thirring model [29,30]). The
main purpose of considering this model here is to illus-
trate the DSE calculation beyond the tree skeleton level.
As before, we shall only be interested in performing per-
turbative calculations, and all nonperturbative effects
(dynamical mass generation, spontaneous symmetry
breaking [26,29,30], etc.) shall be bypassed. Since the
vertex correction is no longer trivial, we cannot choose to
dress up the charged two-point function. Instead, we

2

1 — —+ ln( —k —is)go 1 2

7T
(37)

from here the effective scalar wave-function renormaliza-
tion constant is

2

Zi, (k )=1— —+ ln( —k —is)2 go 1 2

7T

1 1—=——ln4m. +y
E

E

The vertex correction (Fig. 18) is given by

(38)

igoI—,(p, q ) =( i )( ig—o)—
(2m ) i(t+f P+f

(39)

I,(p, q)=I, (k )= —+ ln( k —is—)1 1

4m

Combining the self-energy, vacuum-polarization, and ver-
tex corrections, we obtain the renormalized vertex func-
tion:

—igDs(k )=— igoZf' (q—)[1 +g IO, ( k)]

XZ' (p)Z' (k )

This equation can be put into the form

1 1 1 1 2 ~+ —+ ln( —k —is)
2 (k2) 2 2~ g

(40)

(41)

From the previous section, the scalar propagator for
N =2 (see Fig. 18)

ih—(k )= i+—( i)[—ig,'II(k')]( —i)

igo Z(p) =
p k p

and its solution is given by

gDs«)=2 2 = 27K

ln( —k /ADs —is)
(42)

i g
2 n (k2)-

k

r+k

-igor, (k )=
k

FIG. 18. One-loop, self-energy vacuum-polarization and ver-

tex correction diagrams in the N=2 Gross-Neveu model.

Notice that, if we had used the 1/N expansion [compare
with Eq. (29)], we would have erred by an overall factor
2. Also notice that the vertex function to this order de-

pends exclusively on the squared momentum of the scalar
particle. Now, let us use this vertex function to study the
elastic-scattering amplitude of two particles of the same
Aavor. Consider the process indicated in Fig. 19, where
we have chosen the center-of-mass frame to express our
kinematics. The corresponding tree skeleton diagrams
are indicated in Fig. 20.
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before collision

2

after collision

4 3=so=
Pq (P. P) P2 (P -P) P4 (P -P) P3 (P P)

p) P1 pa p)

ky $k
I )

P2 P2+k P4-P2

P& @~& ~ Ps P)

I I(
I %

/

P2 p2-k &4-&2

FIG. 19. Kinematics of the elastic collision between two
same-Aavor particles in the N=2 Gross-Neveu model in the
center-of-mass frame.

(a) (b)

FIG. 21. One-loop skeleton diagram for two-particle elastic-
scattering amplitude in the N =2 Gross-Neveu model.

We shall use here yo=o„and y, =io . The external
fermion wave functions are given by

1 0
u, =&2p 0, u, =&2p

u3=&2p (0 1), u4=&2p (1 0),
and the tree-level amplitude is simply

(43)

tM««=tg Ds(t)(u3u ~ )(u4u2)+tg Ds(u )(u4u, )(u3up)

=l4p gDs(u)

i 8~p

ln(4p /ADs)

The Mandelstam variables have the values

s=4p, t =0, u = —4p2 — — 2

(44)

(45)

The one-loop-order skeleton diagram is given in Fig. 21.
Let us take some time to discuss these diagrams. First of
all, let us compute the box diagrams in the usual pertur-
bation theory, i.e., using the bare coupling constant at the
vertices instead of the DS vertex function. By a simple
power-counting argument, one can see that the two dia-
grams are individually ultraviolet divergent. However, it
turns out that the divergences coming from the two dia-
grams cancel each other, as one would expect from the
renormalizability of the theory. The Feynman integral
of these box diagrams is given by

Q) Q4 Q2
(2n) P, —k' P, +k

The propagators in these expressions come with the +i c
prescription, and in the language of distribution theory
they should be interpreted as the sum of a principal-value
part and a 5 function:

1 1=P in5—(k .),k2+ic k~
(47)

2 4
iA4b, „=—p go . (48)

Now let us return to the dressed skeleton case. We have
to replace the bare coupling vertex —igo by the dressed-
vertex function —igDs(k ). At high energies (p »ADs)
the dominant contribution will still be coming from the
two double-5 points, the reason for this resides in that
these two points are located in deep spacelike and deep
timelike regions, i.e., far away from the light cone, and in
that gDs(k ) is a slow varying function at large ~k ~.

Therefore, the corrections coming from the infrared be-

thus the tertns in the integrand in Eq. (46) can be
classified into the following three types: (1) the product
of two principal-value parts; (2) the product of a
principal-value part with a 5 function; (3) the product of
two 5 functions.

By direct calculation, it can be shown that the contri-
bution from the 6rst two types of terms vanish; thus, the
net contribution of the box diagrams comes entirely from
the double 5 function terms. In Fig. 22 we plot the loca-
tion of the singularities of the double 5 functions. The re-
sult after integration has a simple expression:

1+ u3 u)
1

Q4 Q2 2p i & (b)

424 dk k
(2n )~ (k — )2

1 1X
(k+p2) (k —p2)

(46)

//
1

/ k,

3

2 4

FIG. 20. Tree-skeleton diagrams for two-particle elastic-
scattering amplitude in the N =2 Gross-Neveu model.

FIG. 22. Location of the double-5 function singularities of
the box diagrams (a) and (b) of Fig. 21 in the ko-k& plane. The
hyperbola indicates the location of the Landau singularity at
k ADse
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havior of the vertex function gDs(k ) are expected to be
higher twist in nature [31]. In a sense, we can interpret
the two points shown in Fig. 22 as the "scale-setting
centers" of the skeleton box diagrams. The Landau
singularity at k =ADs might cause concern about the
box integral, but one should bear in mind that this pole is
actually located off the real axis due to the presence of
the +i c. term, and as long as we respect this prescription,
this pole poses no threat to the finiteness of the box in-
tegral. It turns out that box skeleton diagram can be cal-
culated exactly (see the Appendix for the calculation and
discussion about the box integral and its renormalons):

d k kiJkb, „=—4p I (2m. ) (k —p, )

103

102

0
Q

101

100

ase

1

(k+p~)
4 k2)

(k )2 gDs

—40

= —2p 4' ———ln(2p /ADs )
1 i

——ln(2p /ADs) (49)

—= 2 2~
1n(p,s /ADs )

(5O)

In Fig. 23 we plot the real and imaginary part of the
effective coupling constant g,ir(p), and in Fig. 24 we plot
the Bode diagrams of amplitude and phase for the
effective scale p,s(p). We observe that, at high energies,

0.4

0.3

CQ

0.2

O. i

00 010 101
p/A

102 10

FIG. 23. Real and imaginary parts of the effective coupling
constant for the box amplitude of the N =2 Gross-Neveu mod-
el. Notice that, at high energy g,&(p )~g»(p ).

where 4' is the trigamma function [32]. Needless to say,
this amplitude is totally free of scale ambiguity: the re-
sult of the skeleton box diagrams is directly expressed in
terms of p and Aos, and no exogenous coupling has been
invoked in the calculation. One can associate an
"effective coupling" and an "effective scale" with the box
diagram. These functions are defined by [see Eqs. (42)
and (48)]

'~bo (p)= p g fr(p)

=p gDs( pen)
2 4 2

—60
ip0

I

101
I

102
p A

FIG. 24. (a) Bode diagram of amplitude for the effective scale
of the box amplitude in the N=2 Gross-Neveu model. The
dashed line represents p,z=p. (b) Bode diagram of phase (mea-
sured in degrees) for the effective scale of the same amplitude.
The dashed line indicates —45'.

the effective scale has, in the language of phasors, a reac-
tive (negative) angle of 45'. This is expected since one
box diagram probes into the deep timelike region while
the other box diagram probes into the deep spacelike re-
gion (see Fig. 22); thus the efFective scale is expected to be
half reactive and half resistive. In contrast with conven-
tional scale-setting methods, the effective scales and the
effective coupling constants in DSE are, in general, com-
plex numbers.

The total amplitude to one-loop skeleton level is given
by the simple addition of the tree-level amplitude [Eq.
(44)] and the box amplitude [Eq. (49)]:

i IK„,=iAt„„+i/Lb,„. (51)

Notice that different order skeletons in general have
different effective coupling scales, a feature that has been
pointed out in BLM's paper [4].

VII. YUKAWA INTERACTION
IN 1+1DIMENSIONS

The main purpose in using the Yukawa model here is
to present the subtleties related to the mass renormaliza-
tion of propagators and to the matrix structure of vertex
functions. While the usage of the skeleton technique for
massless scalar bosons is straightforward, the presence of
a mass term and the existence of a matrix structure in the
various basic vertex functions make the extension of the
DSE not immediately trivial. The Yukawa model is
chosen because it presents these two features at first-loop
level. Although the Yukawa model in 1+1 dimensions is
a super-renormalizable theory, this does not affect our
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discussion of Dirac structure. The Yukawa theory de-
scribes the interaction between a fermion field and a sca-
lar boson field according to the Lagrangian density

~ Q ~

k

r
k+r

X=+(i B m—f )4+ ,'(—8 —m
b )P +Rom%'%P, (52)

where a mass unit m has been inserted in the interaction
term to make the bare coupling A,0 dimensionless. To
simplify our discussion, we shall assume that both the fer-
mion physical mass and the boson physical mass are
equal to m. The bare interaction vertex is scalar in the
sense that it is given by —

A,0m and thus proportional to
the identity matrix (this will be the meaning of the word
"scalar" throughout this section). However, this feature
is spoiled by the presence of higher-order corrections.
The full vertex function will, in general, contain nontrivi-
al Dirac structure:

P P

k-p
~+~

I
/ l 4 a

p k p

~ 3

FIG. 25. One-loop scalar and fermion propagator and vertex
correction diagrams for the Yukawa model.

im—A(p, q)= im —[A lo+A, (p, q)/+A (2p, q)g

+A3(p' q )N ] . (53)

In general, the vertex function A(p, q) will be an N by N
matrix, where N is the dimension of the representation of
the Dirac algebra, and an immediate question is how to
apply the DSE method to obtain all the N components
of this vertex function. A first approach would be to
write down the RGE's for all the components and solve
them separately. But this would introduce N integration
constants, that is, N quantities analogous to AQCD This
is hardly necessary, for we know that, aside from the
masses of the particles, we only need one more parameter
to fix the entire theory. Therefore, we can solve the RGE
for only one component, and then expand the other com-
ponents in terms of the one we have solved for.

The next question is how to choose the component for
the RGE. One obvious selection is A0, for we know that,
in the weak-coupling reg™ the vertex function should
somehow resemble the bare coupling, which is scalar (i.e.,
proportional to the identity matrix). More precisely, we
(1) solve the ROE for Ao(p, q ),

l
ihb(p )=

p mb

p mb p2 mb2
(56)

will not be representative of the entire vertex function.
Therefore, we are led to the natural choice of basis ma-
trices given by [ I,P m, g—m, (—g —m )(P —m )] [33].
Notice that now the nonscalar components
[gf

—m, g —m, (g —m )(gf —m ) ] vanish on shell upon con-
traction with the external fermion wave functions be-
cause of the Dirac equation; thus, the on-shell value of
the vertex function is completely contained in the scalar
component.

Let us carry out the explicit computation of these com-
ponents of the vertex function in the DSE to one-loop or-
der. The scalar-boson propagator offers no major
difficulty: we simply absorb all renormalization effects
into the effective wave-function renormalization constant
Z~ (Fig. 25):

Ao(p q)=ho[1+ f&(p q)Ao +f (2p q)Ao+ ' ' ] (54) ik,om II(r )=(—1)( ik,om) (i)—

(2) expand the other components in power series of
Ao(p, q) by inverting Eq. (54). For example, A, will have
the expression

A, (p, q ) =h, (p, q )A,o+h2(p, q )A,o+

=h, (p, q)Ao(p, q)

+[~2(p q) 3fi(p q)]Ao(p q)+ ' ' (55)

While this procedure is formally valid, we shall argue
that the four matrices I l,gf, g,gg] are not the most desir-
able choice of basis to decompose A. The problem is that
when p and q are on shell and the vertex function is mul-
tiplied by the external fermion wave functions, the ma-
trices gf and g can be formally replaced by the scalar ma-
trix m 1 because the wave functions satisfy the Dirac
equation: (P' —m )u (p ) =u (q )(g —m ) =0. This means
that, on shell, the matrices P and g are indistinguishable
from a scalar matrix. Thus, it is highly unnatural to per-
form the RGE on A0 for it means that its on-shell value

Tr[(k +1+mf )(k+ mf ) ]
X

(2m ) [(k+r) —mf ](k —mf )

(57)

+m —iE]

The bare boson mass to order A.~ is given by

mb=m (I+A,oc~), (59)

where cb is the lowest-order counterterm [34]. Replacing
(58) and (59) into (56), and retaining only terms to order
A,0 we obtain the expression

To lowest order, we can replace the bare fermion mass
mf by m in the previous expression, and obtain

II(r )= — —+2+ dx ln[ —x(1—x)r1 1 1 2

277 0
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ibb(r )= l c~ —II(r )
1+A,pm

r m r m
(60)

obtain the following expression for the full fermion prop-
agator:

On mass shell (r =m ), b b has a simple pole; therefore,
cb =II(m ), and

, 11( ') —ll(
I br =

2 2 Om 2 2r —m r —m

l
Zq(r ) .

r —m

iDf(p)=Zf(p)
P —m

A,
2

'
2 2 2 2o m f(p )—m f(m )

8 p m

3~o m f(p )
—m f(m ) gf

—m

Sm p m m
(67)

The effective wave-function renormalization constant is
given by

mf(p')=
+p (p 4m —+iE)

r 1/2

II(r ) —II(m )
b 0 r —m

In particular, the on-shell renormalization constant is

. .dll ~

Zb os=Zb(m )=1 Rom
r2=m2

~0 2K
2

=1— ——1
2m 3v'3

(62)

(63}

X ln 1—
p —4m +ic.

—ln 1+
p —4m +iE.

Notice that, instead of a scalar wave-function renormal-
ization constant, we have introduced an effective wave-
function renormalization matrix. The on-shelf expression
of this matrix is

iDf(p ) = + [i A—omX(,p ) ]
p —mf gf

—mf gf
—mf

(64)

where the self-energy is given by

idiom X(p)=( imam—o) (i, )

d "k k'+ m

(2m. )" [(k —p) —mb](k —mf )

(65)

For Df (p ) to order A,o, we can replace the boson mass mb

by m. After removing the mass counterterm for the fer-
mion mass

mf =m ( I+A,ocf ) (66)

by requiring Df(p ) to have a simple pole at p =m, we

For the fermion propagator we apply a similar pro-
cedure (Fig. 25). To one-loop order,

Zf Qs(p ) —Zf (p )
~

2
kp=1+ ——4
8m. 3v'3

2
~o n. P —m+ ——2
Sm 3v'3 m

(68)

where the scalar part (the first two terms) is readily
identified as the conventional on-shell wave-function re-
normalization constant. The last term vanishes on shell
upon contraction with the associated external fermion
wave function.

Let us study the full function at the on-shell boson, one
spacelike fermion and one on-shell fermion configuration.
That is, p =r =m and q = —

Q (0. The vertex func-
tion at a completely general momentum configuration
could be studied in the same manner, but the expressions
involved would be much more complicated.

The vertex correction (Fig. 25) is given by

d k (i) (ii+g+m)(ic'+P+m)
(2m) [(k+q) —m ][(k+p) —m ](k —m )

I

(69)

where we have set mf =mb=m. The decomposition of
I, into the various components is given by

r, (q ) = 1
h, (q )1+h, (q )

g' +h, (q )—
ho(q )=3 f dx f dy

h(q)=f dxf dy z

h~(q )=—f dx f dy (71)

with

(g —m }(P'—m )+h3(q ) (70) h, (q }=—f dx f dy

2

D =1—y+y —(1—x )(x —y) iE . —
m
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The renormalized vertex function is given by

im A(p q ) = i Rom Zf (q )(1+AOI
& )Zf os(p }Z~ os

(72}

Upon decomposition we have

A(p, q)=ADs(q )1+A., (q ) +)(~(q2)

2
C)

1—II

XB(

0

q)
(&)

+& z (g —m)(P —m)
+A3 q

m
(73)

X,(

2

where we have named the scalar component the dressed
skeleton effective coupling constant A, Ds(q ). It satisfies
the ROE

1

A,Ds(q )
2+ f(q ) —2ho(q )

Qo

m f(q) —m f(m )

q' —m'

+ —+2
3

(74)

O
II

rC

I

10210'
Q/m

10-1

(q) ~)Es(Q)

0
x,(q)-

I I

100

with the solution

g2 ( 2}—
I + (A, /4~)L (q )

q +5m
L(q )=

2 2 f(q ) —2ho(q )
q

—m

(75)

FIG. 26. Different components of the full vertex function of
Yukawa model in 1+1 dimensions as obtained by DSE. The
external legs of the scalar boson and one of the fermions are on
shell; the second fermion has a spacelike momentum
q'= —Q &0. In (a), A'/4n =0, 15. In (.b), A, '/4m. =0.1.

2' m
v'3 q' —m'

2K 7
3v'3 2

'
ponent at high energy only gets slightly renormalized,
and the nonscalar ones become comparatively negligible.

where we have chosen the integration constant A. such
that L(q =0 ) =0. That is, A, is the effective coupling at
zero spacelike momentum

XDs(q'=0 )=X. (76)

A,'( ')

~( p) Dsq
h ( 2) 3 ~f(q ) —f(m )

&' ( ')
zq 4 2q

~Ds(q'}
A3(q )= h3(q ) .

4m

(77)

In Fig. 26 we plot the different components of the full
vertex function for two different values of A, . Notice that,
in the weak-coupling regime (say, A, /4m & 0. 1) the renor-
malization effects become small, namely, the scalar com-

The general procedure to obtain the other three com-
ponents involves an expansion of Ao in term of A,Ds(q ) by
inverting Eq. (74), and then using this substitution in the
various A., (q ) of Eq. (73). But, to this order, we simply
need to replace A,e in Eq. (73) by A,Ds. The resulting ex-
pressions are

VIII. SUMMARY AND CONCLUSIONS

We have analyzed the application of the DSE to simple
field-theory models in 1+ 1 dimensions and discussed the
various technical features in its implementation. Among
the main conclusions we should mention the following.

(1) In the leading 1/N Gross-Neveu model, the DSE is
equivalent to the exact result. We argue that the trouble
of conventional scale-setting methods (FAC, PMS) in
yielding the exact result resides in the assignment of a
uniform coupling scale to different skeleton graphs.

(2} We have shown in the N=2 Gross-Neveu model
that loop skeleton diagrams can be meaningfully comput-
ed. For asymptotic free theories such as QCD, we indi-
cate that the presence of the Landau singularity at AQCD
is not expected to pose a threat to loop skeleton integrals,
as long as the +ic. prescription is carefully respected.
Also, the effective scale of loop skeleton diagrams is
shown to be determined by the kinematics from deep
tixnelike and spacelike regions, thus the detail infrared be-
havior of the vertex function gives only higher-twist
correction. We notice also that the renormalon-type
divergences are effectively "packed" into well-defined
analytical functions (see the Appendix).

(3} We have extended the DSE to vertex functions in-
volving Dirac matrix structure. For the fermion-boson
interaction vertex, we have pointed out that one should
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perform the RGE on the scalar component (A,Ds) of the
vertex function, excluding therefore those components
that vanish on shell upon contraction with external fer-
mion wave functions. Once the scalar component is ob-
tained, the nonscalar ones are to be expanded in power
series of the scalar component.

The application of the DSE to QCD is discussed in a
forthcoming paper.

x = ln(p'/ADs

we have

(A2)

2k
2

ADS

2—iE = ln
2

~DS
+ ln

k
lC

—2

square of the logarithm into a power series in
ln(p /ADs). Define
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APPENDIX

where

=[x+ ln( —k —ie)]

n=o

ln "( —k i E—)

X

(A3)

(A4)

( —2)( —3) (
—1 n)—=( —1)"(n+1) .

1X2X Xn

The skeleton box diagrams indicated in Fig. 21 give the
Feynman integral

d k k 1 1

(2n)' (k —p, )' (k+p, }' (k —p, )'

This expansion effectively corresponds to the expansion
of the box skeleton diagrams into a power series in the
coupling constant at scale p.

By applying the identity

4m.

ln ( k /A—Ds i E)—
ln"( —k —ie) =

Bcx a=O
( —k —ie) (A5)

To perform this integration, let us first expand the inverse the Feynman integrals can be done exactly, the result is

i Afb, „=—
' n

4n p + „n+1 of
x =p x ~a —p

2 n

4 2 2

[1—2!f~x '+ +( —1)"(n+1)!f„x "+.. . ],
X

(A6)

where

f(a)=( 4i) se—c 7TO!

2
=fo+f, a+f2a + .

(A7}

I

(because f; is roughly constant for large value of i ), typi-
cal of an asymptotic series that needs Borel resurnmation
[9,35] in order to yield a finite result [36]. Fortunately,
this series can be Borel resummed exactly, and the result
obtained by a straightforward application of the Borel

We give here the numerical value of the first few
coefficients:

o=1,
f ~

=1.38629 i1.5708—,

f~ =0.960906—i2. 177 59,

f, =0.444 033 i 2. 801 32, —

f4=0. 153 89—i2.48848,

f~
=0.042 667 4 i2 758 23—, .

f6
=0.009 858 26 i 2 408 32 . — .

The expansion (A6) exhibits an n! divergence behavior

-7 -5 -3 -1 1 3 5 7 Re y

FIG. 27. Location of the singularities of the Borel transform
of the box amplitude in the complex-y plane. There is a 6 func-

tion at the origin and an infinite number of poles located at odd
integer numbers, which correspond to renormalon singularities.
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resummation formulas is given by

i Jgb,„=—2p 4' ———ln(2p /ADs )
1 i

the series (A6),

d2G(y)-&(v)+, [yf( —y )]
dg

(Al 1)

——ln(2m. /ADs) (A9)

where 4' is the trigamma function [32] defined by

1nI (z)
dz2

1 1 1——+ +
z 2z 6z

1 1 1+ + ~ ~ ~

30z 42z 30z

(A 10)

It is interesting to observe that the Borel transform of

possesses an infinite number of poles on the real axis (see
Fig. 27). These poles exhibit the typical feature of renor-
malon singularities [9,37]. We notice that these poles lie
exactly on the real axis; i.e., they do not have an
infinitesimal imaginary part. Thus, when performing the
Borel integration, those poles on the positive real axis
should be interpreted in the principal-value sense. We
note that the resulting integral under this prescription is
finite, despite the presence of the infinite number of poles.

Notice that if the original integration in Eq. (Al) were
performed numerically, we would never have to worry
about renormalons. In a sense, the renormalons of this
example are effectively absorbed by skeletons.
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