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I. INTRODUCTION

A traveling wave is a wave that propagates without
any change in amplitude or shape. The wave solution
can be regarded as a modified space-time solution, i.e.,
the wave viewed as a perturbation on a background
spacetime where the perturbation need not be small.
Electromagnetic plane waves in a flat background space-
time are examples of traveling waves. In addition both
certain vacuum Einstein and Einstein-Maxwell back-
ground spacetimes admit traveling waves as
modifications. In this paper we find solutions of the
Einstein-Maxwell equations representing traveling waves
whose background is the cylindrically symmetric magnet-
ic universe [1]. While small disturbances on the magnetic
universe have been previously studied [2], our treatment
allows the disturbances to have arbitrary strength. The
solution is found by applying a variant of the generalized
Kerr-Schild ansatz to the background. Our variant im-
poses more stringent symmetry conditions on the null
vector field defining the ansatz. These are satisfied for the
magnetic universe. In Sec. II we review some properties
of the magnetic universe and then use the ansatz to
reduce the Einstein-Maxwell equations to a single ordi-
nary differential equation. Section III contains our treat-
ment of this equation and shows how, by an iterative pro-
cedure, one can obtain the solution to arbitrary accuracy.
Section IV is a discussion of the properties of the travel-
ing waves.

II. EINSTEIN-MAXWELL EQUATIONS

The cylindrical magnetic universe is a solution of the
Einstein-Maxwell equations. The solution is for an an-
tisymmetric tensor F,, and a metric g,, satisfying

ViaFp=0, 2.1)
v, F®=0, 2.2

*Present address.

R,,=2F, F,‘—1g, F. F*, 2.3)
with the metric and Maxwell fields given by
ds*=H (2du dv +dp?)+H ~'p’d6* , (2.4)
—npy—1 6
F,,=2H  Bp®5°, . 2.5)

Here B is a constant for any given total flux. The magni-
tude of the physical magnetic field, B, =F,4/p, on the
axis is the constant B and the total magnetic flux is 47 /B.
The function H is given by

H=(1+1B%?)? (2.6)

and u=(z—1)/V2, v=(z+1t)/V2 where ¢, z, p, 0 are
the conventional time and cylindrical space coordinates.
The magnetic universe possesses a Killing vector k¢ that
is null and hypersurface orthogonal. The vector k¢ is
given by

a a
= | 2.7
3 2.7)
The derivative of k“ is given by
V.ky=H 'k, V,H . (2.8)

The traveling-wave solutions that we will find will be of
the form (g,,,F,,) where F,, is the same as in the mag-
netic universe and g,, has the form

Zop =8ap +H "Wk, k, 2.9)

for some scalar V. This ansatz is called the generalized
Kerr-Schild ansatz [3] when the vector k? is null, geodet-
ic, and shear-free. In this case we have imposed the
stronger condition that k° be a null, hypersurface orthog-
onal Killing vector (for null vectors Killing implies geo-
detic and shear-free, but not conversely). As shown in
Ref. [4] the metric g,, with the Maxwell field F,, satisfies
the Einstein-Maxwell equations provided that the scalar
WV satisfies

kv, ¥=0, (2.10)
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V, V=0 . (2.11)

One can derive this result as follows. First impose Eq.
(2.10). This ensures that the vector k? is also a null Kil-
ling vector for the metric g,,. It is this fact that makes
g, a traveling wave. Since g, is invariant under a null
symmetry, any disturbances must propagate at the speed
of light without changing their amplitude or shape. Next
use Egs. (2.8) and (2.9) to compute R, the Ricci tensor
of g,,- The result is that R®, —R?, is proportional to
V,V°¥. Thus imposing Eq. (2.11) ensures that the Ricci
tensor is unchanged when g, is substituted for g,,. Us-
ing the fact that k°F,, =0 we then find that the Einstein
equation (2.3) is satisfied by g,,. As for Maxwell’s equa-
tions (2.1) and (2.2) the first is independent of the metric
while the second can be written as V(,*F,,,=0 where
*F,, is the dual of F,;,. Now from Eq. (2.9) and k°F,, =0
it follows that *F,, is the same in the metric g,, as in g,,-
So Maxwell’s equations are still satisfied in the new
metric. Thus to find a new solution of the Einstein-
Maxwell equations we have only to solve Egs. (2.10) and
(2.11) in the magnetic universe.

In the magnetic universe equation (2.10) becomes

oV

v 0,
so the scalar V¥ is independent of the coordinate v, de-
pending only on u, p, 6. The wave equation (2.11) then
becomes

9
3

(2.12)

v
dp

2 %W _

0 (2.13)

p

One can separate variables in this equation. We first in-
troduce the coordinate x by x=B%p’/4. Then the
separated solutions for W take the form

Y=P(x)f (u)cosm(60—6,) . (2.14)

Here f is any smooth function; 6, is a constant; m is an
integer and P satisfies the equation

o

dx

dpP
x &L

dx (2.15)

—1im(1+x)*P=0.

A solution of this equation yields a traveling-wave solu-
tion of the Einstein-Maxwell equations. The function f is
the profile of the wave.

III. SMALL- AND LARGE-x APPROXIMATIONS
TO THE EXACT EQUATION FOR P

Equation (2.15) can be solved in closed form [5] for the
case m =0. The solution is P =Inx. The general case
m 70 is more complicated. We first define the function Q
by Q =x!/2P. Then Q satisfies the equation

0"+ 5 l1-m¥1+x)10 =0. (3.1)
X

Here a prime denotes a derivative with respect to x.
For x very small, Q —q where Eq. (3.1) takes the form

1189

vy 1=m?
-t 4x? 9=0

(3.2)

which has as its general solution the linear combination
g =x'%C;x™"*4+C,x ~™"?) (C,,C,=real constants) .

(3.3)

Thus, at x =0, P has a zero of order m /2 or a pole of or-
der m /2 according to which special solution we adopt.

In contrast, for x very large, the dominant behavior of
Q is given by Q where Eq. (3.1) takes the form

2
~ m ~
" xZQ_O

4 (3.4)

for which the general real solution is the linear combina-
tion

mx?
4

2
0=x'2|CI,, | 2% |+C,K, 4 (3.5)

Here I, ,, and K/, are Bessel functions of imaginary ar-
gument. Asymptotically, for large x, the solution be-
comes [6]

172

0— 2 —L exp |22
mx Vi L
+V7C, exp 4 (3.6)

Though possibly meromorphic elsewhere, we see that
as x — o P has an essential singularity, either of the zero
type or of the infinite type according to which solution
we adopt.

We may conjecture that the exact solution of the exact
P equation that becomes zero at x =0 is the one that be-
comes infinite at x = o and, conversely, the solution that
becomes infinite at x =0 becomes zero at x = . We will
discuss the verification of this conjecture subsequently.

IV. SOLUTION OF THE EXACT EQUATION FOR P

It appears that there is no general solution of Eq. (3.1)
in finite elementary terms [7]. However this equation can
be treated by the iterative method of Langer [8] which al-
lows us to compute the solution to arbitrary accuracy.
The Langer method provides not only a more powerful
approximation for the solution of any ordinary
differential equation such as our Eq. (3.1), but also pro-
vides a convergent iterative solution of the exact equation
to any desired accuracy. The key point is to construct a
“related equation” to the given equation for Q. The re-
lated equation is such that (a) the solution Y (x) is known
(by construction) and (b) Y (x) can serve as a first-order
ground function upon which a convergent iterative solu-
tion to an integral for Q /Y can be found.

Equation (3.1) can be written as

Q"+ [p*d%(x)—x(x)]Q =0 .

In our case the parameter p and the functions ¢(x) and
x(x) are given by u=im/2, ¢=(1+x)*/x, and

4.1)
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= —1/(4x?). The related equation has the form

Y+ 2% (x)—o(x)]Y =0 . (4.2)

Here the function o(x) will be chosen so that Eq. (4.2)

has a known solution. Let £ be the integral of u¢. In our

case
£=

[lnx +ix(x+4)]. (4.3)

2

Writing Y'=d In£ /dx for the logarithmic derivative of £,
the function w(x) has the form

' 12
1| 27 + 3(Y')

wlx)=—

2
rd k-t S (4.4)

(In our case w comes out to be given by
o—x=(x —1)/[x(1+x)?].) In general, in cases such as
our second-order linear differential equation, where ¢ has
no zero between x =0 and x = «, each of the two solu-
tions of the related equation has the form of an order-1
Hankel function, H{!;(£) or H{*,(£), divided by the
square root of Y. We have that

—1/2
Hi)liz)=—i t%z e %, 4.5)
—1/2
H®),iz)=i i%z e”. 4.6)

The related equation associated with Eq. (3.1) having
the form

1 2 4, 4x(1—x) -
"y - — l+x) + - Y““O (4.7)
Yo |t (1+x)?
has the solutions
YE=(14+x)"1x1"™"2exp —%x(x +4) (4.8)

with positive and negative values assigned to a given
value of |m| giving two linearly independent solutions.
Since the equations for Q and Y are similar, one might ex-
pect that Q is well approximated by Y. Choose the sign

of m to be positive and define the function U by
U=Q/Y". Then U satisfies the integral equation
Ux)=1+— [ "Cl,x)U(ndt 4.9)
m ¥ x
In general the kernel C(t,x) is calculated from ¥,  and
the known solutions of the related equation and is given
by

)—aw(t)

1 _ X 5 -
o C (6X) W Y ()Y (1)

2 Y (x)
Y*(x)

Here the constant W is the Wronskian of Y* and Y .
That is

W=Y" (Y )—

—[Y ()] (4.10)

Y—( Y+ )

In our particular case the function C(¢,x) is given by

C(t,x)=

1—(x/t)"exp

1
+4
(l+t) 2 [x(x :

—t(t+4)]

(4.11)

Equation (4.9) is solved by iteration. Define U, by
U,=1. Then define U, by
- 1 po
U, 11(x0)=1+—- [ “Cl,x)U, (1)dt . 4.12)
Then U, converges uniformly to a solution of Eq. (4.9) as
n— . One proves the convergence as follows. First
note that since ¢ = x > 0 for the range of integration it fol-
lows that |C(t,x)| <|1—1t|/(1+¢)*. Then for any x it fol-
lows that

f |C(t,x) ldt<f0°° I1+t)l4dt %

Now define k, by k,=sup|U, ,—U,l.
(4.12) we have

(4.13)

Then from Eq.

1 - l © 1

k, , =sup Tn—fx C(t,x)U, ()= U,(r)]dt S;(sup|Un+,—U,,!) [supfx |C(t,x)|dt]s;;k,, ) (4.14)

Similarly for k, we have
1

ko= C(t,x)|dt | <— . (4.15)

o<sup | L[ ictumlar < L
It then follows by induction that k, <(4m)~ "1 Now for any positive integers n,j with n > j we have

n—G+D) n—(+1) 1 1V
sup|U,,—Uj|§sup rgo |U,-+]'+1—U,+j|§ r§0 k,+j< Z’n—_—l‘ —4—m— (4.16)
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Thus for any €>0 there exists an integer M such that
sup|U, —U;| <€ for all n,j>M. Thus the functions
U,(x) are a Cauchy sequence in the sup norm. The U,
therefore converge uniformly to a function U(x) in the
limit as n — .
To summarize, the function P is given by
U

pP= H_xx_"’/zexp

. (4.17)

—-L:—x(x +4)

The function U is a solution of Eq. (4.9) and can be com-
puted to arbitrary accuracy by iterating Eq. (4.12). Thus
we obtain a traveling-wave solution of the Einstein-
Maxwell equations to arbitrary accuracy.

V. PROPERTIES OF THE TRAVELING-WAVE METRIC

The metric of the traveling wave is given by
ds’=H (2du dv +dp*)+ H 'p*d6*

+Hf (u) cosm (0—6,)P(B*p?/4)du* .  (5.1)

The function f, which can be freely specified, is the
profile of the wave. In regions where f vanishes the
metric is just that of the magnetic universe. Thus the
traveling wave can be regarded as a disturbance propaga-

ting in the magnetic universe.

We now consider the properties of the metric in the re-
gions where f does not vanish. First consider the case
where m >0. Then the function P is singular at p=0;
and P approaches zero extremely rapidly as p— . The
traveling-wave metric then rapidly approaches the
magnetic-universe metric for large p. However, there is a
singularity at p=0 and the curvature diverges there. The
case m =0 is also a metric singular at p=0. The case
m <0 is somewhat different. Here the function P and the
metric are well behaved at p=0. However, P diverges
rapidly as p— . This is reflected in a divergence of the
curvature as p— . Furthermore, this is an actual cur-
vature singularity; since some geodesics now approach
p=  in a finite proper time.

Thus for all the choices of m the metric is singular.
However, the singularity only exists in regions where
f70. Thus if f has compact support then the spacetime
is a singular traveling wave with a singularity of finite
width that propagates along with the wave.
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