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Generating solutions of the Einstein-Maxwell equations with prescribed physical properties
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A linear transformation for generating electrovacuum solutions is presented. The multipole moments
of the new solutions can be expressed explicitly in terms of those of the seed solution. This provides a
method of generating solutions with physical properties determined a priori. We discuss the specific ex-
ample of a solution representing the gravitational field of a deformed rotating source with zero charge
and a vanishing magnetic-monopole moment but nonvanishing higher electric and magnetic multipoles.
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The active development of solution-generating tech-
niques [1] during the past two decades has provided
researchers in general relativity with a powerful tool for
generating exact solutions of Einstein’s equations. At
present, the derivation of new solutions does not present
major difficulties, especially when using algebraic pack-
ages operated by computers. More important and
difficult, however, is the task of determining the physical
relevance of the generated solutions. Here we are in-
terested in solutions that can be used for the description
of the gravitational field of astrophysical bodies. In this
context, the investigation of the asymptotic properties of
the solution and its singularities are very useful. Never-
theless, the most important properties of a solution are
determined by the physical significance of the indepen-
dent parameters entering the solution. If we limit our-
selves to stationary gravitational fields, then the physical
interpretation of the parameters reduces, in principle, to
the problem of calculating the corresponding
coordinate-invariant multipole moments. To do this, one
may use any one of the known equivalent definitions orig-
inally due to Geroch and Hansen [2].

To derive a new solution, one need only select any one
of the known solutions and apply one of the solution-
generating techniques according to well-established pro-
cedures. If one is interested in deriving physically mean-
ingful solutions, one can only hope that the seed solution
has been chosen appropriately. This might be considered
a trial and error approach. In this paper, we present a
method that permits one to specify a priori the physical
properties of the solution to be generated. The method is
based upon a linear transformation that acts in the set of
stationary axisymmetric solutions of the Einstein-
Maxwell equations and can be used to generate new solu-
tions. The linearity of the transformation allows one to
represent easily all multipole moments of the new solu-
tion in terms of those of the known one, so that the new
multipoles can be fixed so as to correspond to a realistic
source.

The field equations for stationary axisymmetric fields
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can be written in the Ernst representation as [3]
(EE* —qq* —1)AE=2E*VE—q*Vq)VE , (1
(EE*—qq*—1)Aq=2(£*VE—q*Vg)Vg , (2)

where £ is the gravitational and g the electromagnetic
complex potential as defined by Ernst. The symbol V
represents the two-dimensional gradient operator defined
by the two nonignorable coordinates (for instance, p and
z in Weyl canonical coordinates ¢,p,z,¢), and A=V2
Moreover, the asterisk denotes complex conjugation.
Since £ and g satisfy the same type of differential equa-
tion, one is then tempted to make the ansatz q =e§,
where e is a complex constant, in general. Then it turns
out that Egs. (1) and (2) are identically satisfied if one
chooses £=1&,, where n=(1—ee*)"!"? and &, is a vacu-
um solution. This method of generating electrovacuum
solutions from vacuum ones is known as the Harrison
transformation [4] and has been used recently to obtain a
generalization of Kerr-Newman spacetime [5].
Attempting to use more effectively the symmetric
structure of Egs. (1) and (2), we consider the vector
)(=(§ ), where £ and q represent a known electrovacuum
solution, and define a linear transformation of x as

a b

c d|’ 3

Y'=Ay with A=

where a, b, ¢, and d are complex constants. Introducing
this ansatz into Egs. (1) and (2), one sees that Y represents
a new solution of the same equations if the following con-
ditions are satisfied: ab*=cd*, aa*=1-+cc*=dd*. It
follows then that the set of linear transformations (3) gen-
erates the group U(1,1), whose general element can be ex-
pressed as (B?=cc*)

a=V1+p%explit,), b=Bexplit,),

— 4)
c =Bexplir,), d=V1+p%exp(r,),

where B, 7,, 7,, and 7, are real constants, and
1, +71,=7.+7,. Therefore, a linear transformation gen-
erates a four-parameter family of electrovacuum solu-
tions. The Harrison transformation is contained in this
transformation with B=le|(1—|e|?)"!/%, 7,=7,=0, and
7, = —1, such that e =|e|exp(i7,). It can be shown that
other known transformations [6], which generate electro-
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vacuum solutions, are contained in the linear transforma-
tion (3), as special cases [7]. Defining the norm of the
vector Y as XZEX*gX, where g =diag(+1,—1) and the
dagger denotes Hermitian conjugation, it is interesting to
note that this norm is invariant under the linear transfor-
mation (3), i.e., Y2 =x>

To investigate the physical significance of the solutions
generated by a linear transformation, we calculate the
corresponding multipole moments by using the invariant
definition proposed by Geroch and Hansen (see Ref. [2])
for vacuum fields and recently generalized by Hoense-
laers and Perjés [8] to include electrovacuum fields. Ac-
cording to these results, all information about the mul-
tipole moments is contained in the potentials £ and g,
which are related to the gravitational (¢,, and ¢;) and
electromagnetic (¢ and ¢, ) potentials by

E=dutid;, q=¢dp+idy . (5)

Then the gravitoelectric (M, ), gravitomagnetic (J,),
electric (E,), and magnetic (H,), n =0,1,2,..., mul-
tipoles are determined in an invariant way by the asymp-
totic behavior of & and g [9]. Let the seed solution y be
characterized by the set of multipole moments M,, J,,
E,, and H,. Then the linear transformation (3) generates
a new solution ' whose multipole moments are given by

M,: =aRM,, —a]J,, +bREn —bIHn ,
J,=a;M,+apJ,+bE,+bgH, ,

E': =CRM" —CIJ'I +dREn _dIHn ’
H,=c,M,+cpJ,+d,E, +dpH, ,

(6)

where ap =Re(a), a;=Im(a), etc. Equation (6)
represents an algebraic relationship between the seed
multipoles and the new ones. It is easy to see that the
determinant of this algebraic system is nonsingular and is
equal to 1. Hence Eq. (6) can be solved with respect to
the seed multipoles for any given M,, J,, E,, and H,.
That is, one can specify a priori the physical properties of
the new solution by fixing its multipole moments. The fol-
lowing important example illustrates our approach.
Astrophysical objects, such as stars, planets, etc., are
characterized by aspherical deformations, rotation, and
magnetic fields with vanishing magnetic monopole. In a
first-order approximation we can consider the aspherical
deformations as axially symmetric. Astrophysical obser-
vations indicate that the net charge of astrophysical bo-
dies may be vanishing small, although on the average,
higher electric multipoles might exist [10]. By a straight-
forward application of the known solution-generating
techniques, attempts to derive a solution describing this
specific kind of gravitational field were unsuccessful. It
turns out that it is not possible to get rid of the net
charge without introducing undesirable parameters such
as the gravitomagnetic or magnetic monopoles. The
method presented here avoids this difficulty easily. Ac-
cording to the descriptions given above, the desired solu-
tion should have the following monopoles: M, =m (total
mass), J,=0 (asymptotic flatness), E;=0 (no charge),
H,=0 (no magnetic monopole); the dipoles should be
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M =0 (center of mass coincides with the origin of coor-
dinates), J} =J (angular momentum), H} =y (magnetic
dipole), E|{=p (electric dipole) [11], etc. Higher mul-
tipole moments can be fixed to correspond to any specific
configuration of the mass distribution. Putting these
values into Eq. (6) and solving with respect to the seed
multipoles, we obtain

M0=m1/l—+,§2cos‘ra, J0=——mm—2sin7a ,
Ey=—mpBcost,, Hy=mpPsint, ,

M, =J \/—1—+_B.2sin*ra —pBcost, —puBsint, ,
J=J \/IT,B2 cost, +pBsint, —uPcost, ,
E,= ,u\/_l—IB—z(sinrd +p costy)—JBsinTy ,

H,=pV'1+B*cost, —p sint;)—JBcosT,, etc. ,

(7)

where we have used the representation (4), and
T74=1,+7,—7,. Higher multipole moments can be cal-
culated in the same way. Equation (7) shows that the
multipole moments of the seed solution must satisfy cer-
tain  conditions, for instance, J,=—Mjtant,,
H,= —Etanr,, etc. Therefore the physical significance
of the seed solution becomes rather unclear. However,
this is not a disadvantage of our approach since it is the
very physical meaning of the new solution that really
matters, and this has been established a priori according
to the specific gravitational source under consideration.
Moreover, we do not need to worry about the physical
significance of the parameters introduced by the linear
transformation (4), because these are now entering only
the seed solution.

The question arises whether there is a seed solution
with multipole moments satisfying Eq. (7). In a series of
publications, Quevedo and Mashhoon [12] presented a
stationary vacuum solution with an infinite set of arbi-
trary parameters. This work was recently extended to the
electrovacuum case [5] by using a real Harrison transfor-
mation and can easily be generalized to include elec-
tromagnetic fields by means of a complex Harrison trans-
formation. Another class of solutions with arbitrary pa-
rameters has been investigated by Manko et al. [13]. Al-
though the solutions presented in Refs. [12] and [13] are
equipped with sets of arbitrary parameters, say m,,
n=0,1,2,..., the corresponding relativistic multipole
moments are not arbitrary. Indeed, the gravitoelectric
multipole moments of these solutions can be written as

M,=N,+R, , 8)

where N, xm, are the Newtonian multipoles and
R,=R,(N,_,N,_,,...,N,) are the relativistic contri-
butions. The Newtonian multipoles are arbitrary since
they are uniquely determined by the arbitrary parameters
m,. Using Eq. (8), one may write the relativistic contri-
butions as R,=R,(M, _,M, _,,...,M,). That is, Eq.
(8) represents a relationship between M, ,M, _,,...,M,.
Consequently, the relativistic multipole moments are not
arbitrary.

Arbitrary multipoles should have the form M, «<s,,
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where all s, are linear independent. To generate solu-
tions with such sets of multipoles, one may use linear
transformations. Indeed, using the solutions presented in
Refs. [12] and [13] as a seed solution and applying a
linear transformation, one can always use the arbitrari-
ness of the parameters in order to satisfy Eq. (7). Fur-
thermore, one can also use any other seed solution with
nonarbitrary parameters and still satisfy Eq. (7) (at least
for some finite number of multipoles) by exploiting the
freedom of the parameters 3, 7,, 7,, and 7, introduced by
the linear transformation.

Although the potentials £ and g contain very useful in-
formation about the metric, one would like to have the
metric coefficients explicitly in order to investigate other
properties of the solution. Let f’, «', and ¥’ be the
metric coefficients of the new stationary axisymmetric
electrovacuum solution, which are related to the poten-
tial £ and g by certain algebraic and differential equations
(see, for instance, Ref. [12] for notation and details).
Then the function f’ can be calculated algebraically by
means of

f'=0—x®)|1+ak+bg|~?, 9)

with y?=£E* —qq*, and the function o’ is determined by
the differential equations

(1—=x)V ., 0’ =2pIm{(1+£)[(1+E)V_E*
—q'(1+&*)WV_q'*
+q'q"*V_§*1}, (10)

where V

=(9,,9,), V_=(3,,—9,), and p and z are the

nonignorable cylindrical coordinates. Finally, the func-
tion ¥y’ can be calculated by quadratures once f’ and o’
are known. The explicit integration of the differential
equations (10) for arbitrary £ and g becomes rather
cumbersome and requires detailed study. This work will
be presented elsewhere.

The importance of the method presented here lies in
the possibility of generating solutions with well-defined
and a priori fixed physical properties. The specific exam-
ple discussed above describes, for the first time, an exact
solution of the Einstein-Maxwell equations representing
the gravitational field of a source with physical charac-
teristics closely related to those of realistic astrophysical
objects. A more complete investigation of this solution is
necessary in order to clarify the possible consequences for
astrophysics. It turns out that the specific relationship
between the gravitational and electromagnetic potentials
as expressed by the linear transformation (3) has deep
physical significance related to the classical theories of
gravity and electromagnetism, and leads to unexpected
physical consequences [14].
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